
Epidemic Models Practical 2 (Lecture 7):  Deterministic compartmental 

models in populations with different levels of susceptibility and infectivity     - 

1.5 hours 

Accompanying R codes: EpiTut2a.R (Case 1), EpiTut2b.R (Case 2), EpiTut2b_init.R (optional section) 

with corresponding ODEs coded in SIR.R, SIRMajorSus.R, SIRMajorSusInf.R and function for R0 and 

WAIFW-matrix in betaAndR0fc.R 

Notes & Tips: 

1.  Move all of the above R-files into your working directory and change the directory path in the R-
codes for EpiTut2a.R and Epitut2b.R 

2. Skip the mathematical derivations in the ‘analytical assessment’ sections if you feel uncomfortable 
with mathematical equations 

 

Outline: 

In this practical you will learn how to use deterministic epidemiological models for predicting 

epidemiological characteristics and the impact of control strategies in populations with variation in 

susceptibility.  In particular, we explore how distinct levels of susceptibility affect epidemiological 

characteristics for different scenarios: 

o Case 1: only difference in susceptibility 

o Case 2: susceptibility confers difference in infectivity 

 

1. Case 1: Difference in susceptibility only 

Figure 1 shows a flow diagram for an SIR model in a closed population of constant size N for a 

disease for which individuals belong to one of two categories according to their susceptibility to the 

infection. Let S+ and S- denote the ratio of susceptible individuals with high and low susceptibility, 

respectively, with corresponding transmission rates β+ = β and β- = εβ, with 0 ≤ 𝜀 ≤ 1. Let’s further 

assume that both groups have equal recovery rate γ and that the proportion of individuals with low 

susceptibility is p, 0 ≤ 𝑝 ≤ 1. As in previous applications, we assume that the contact structure is 

homogeneous.  

 
 

 

1.1 Empirical assessment: 



a) Give some (real life) examples for which the model in Figure 1 may be a valid representation. 

b) What value does the parameter ε have if the presence of a gene confers complete resistance to 

infection?  What is the value of ε in homogeneous populations? 

 

1.2 Analytical assessment:  

a) Use the formula for R0  below to obtain the minimum proportion of individuals with low 

susceptibility required for preventing an epidemic outbreak as a function of the model 

parameters β,γ,ε,p.  

b) Show that in the case of complete resistance this proportion is equal to 𝟏 − 
𝟏

𝑹̂𝟎
 where 𝑹𝟎 ̂  

refers to the basic reproductive ratio in a homogeneous population with transmission rate β.  

c) What proportion of fully resistant individuals would be required to prevent an outbreak for a 

disease with an estimated value of R0=2  in a population with high susceptibility?  

 

𝑅0 =  
1

𝛾
(𝑝𝜀𝛽 + (1 − 𝑝)𝛽) 

 

1.3 Numerical assessment of the infection dynamics: 

Open the R-script EpiTut2a.R and auxiliary file SIRMajorSus.R  

The code describes the above SIR model in heterogeneous populations such as those described 

above with parameters 

β = 0.8, γ = 1/4, ε=0.3 and p = 0.2 in a population of N=1000 individuals, where 1 infectious 

individual of the type with low susceptibility is introduced into a population of 999 non-infected 

individuals.  

Take some time to familiarize yourself with the code. Then use the code (in particular steps 1-

3) to 

a) calculate R0 for the above parameters. What is the required proportion of individuals 

with low susceptibility to prevent a disease outbreak?   

b) generate infection profiles for the above population and compare them with those 

corresponding to a homogeneous population with the same average transmission 

rate. Does ignoring heterogeneity cause an upward or downward bias for the total 

proportion of infected individuals at the end of the epidemic?  

c) Explore the profiles for different parameter combinations. Does heterogeneity in 

susceptibility always produce an upward / downward bias? 

 

1.4 Optional section:  

 

d) Set the parameter values back to the original values (see above). Use steps 4 and 5 in 

the R-code to explore the impact of the effect size ε on the epidemiological 

characteristics. Looking at the graphs you generated, how much do peak prevalence 

and duration of the epidemics differ between the scenarios where the maximum 

transmission rate β is reduced by a factor ε = 0, ε = 0.5 and  ε = 1 for a proportion p=0.2 

of individuals with low susceptibility? Are 20% of completely resistant individuals 

sufficient to prevent an epidemic? 

 



e) Similarly, what impact does the proportion of individuals with low susceptibility have 

on the epidemiological characteristics in the case that the transmission rate for the 

highly susceptible group is twice as high as that of the group with low susceptibility 

and parameter values for β, γ as above?  Can the presence of individuals with low 

susceptibility prevent an outbreak?    

 

2. Case 2: Difference in susceptibility and infectivity 

In the model above we assumed that individuals differ in susceptibility only. Let’s now relax this 

assumption and explore how differences in both susceptibility and infectivity affect the epidemics. 

For simplicity we assume that differences in susceptibility may confer differences in infectivity, and 

that S+ and I+ denote the category of susceptible and infectious individuals from the high 

susceptibility group and S- and I- denote the corresponding categories for the low susceptibility 

group. The figure below illustrates the flow chart of the corresponding epidemiological model. As 

above we assume that both groups have equal recovery rate γ and that the proportion of individuals 

with low susceptibility is p, with 0 ≤ 𝑝 ≤ 1. 

 

 

For the analysis it is helpful to re-parameterize the above model by defining the transmission rates 

relative to a reference rate β0.   Let us set β++ = β0,  β-+ = εS * β0,  β+- = εI * β0 and  β-- = εI * εS * β0. Here 

the scaling factor εS, 0 ≤ 𝜀𝑆 ≤ 1 describes the effect of the low susceptibility type on the 

transmission rate and the factor εI describes the effect of the low susceptibility type on its infectivity.  

Thus, the WAIFW (beta) matrix for the above model is  

β = (
𝛽++ 𝛽+−

𝛽−+ 𝛽−−
) =  (

𝛽0 𝜀𝐼𝛽0

𝜀𝑆𝛽0 𝜀𝐼𝜀𝑆𝛽0
) 

 

2.1. Analytical assessment  

(a) What can be said about the value of 𝜀𝐼 and about the relative values for the transmission 

parameters in the case that 

(i) difference in susceptibility confers no difference in infectivity 

(ii) susceptibility and infectivity are positively correlated (i.e. high susceptibility confers high 

infectivity) 



(iii) susceptibility and infectivity are negatively correlated (high susceptibility confers low 

infectivity) 

Can you think of biological explanations for each of the scenarios (i) to (iii)? Which scenario is most 

likely in your opinion? 

 

 

(b) Write down the model equations, the next generation matrix of the number of secondary cases 
produced through each of the four transmission routes, and the equations for the number of 
secondary cases produced by each of the two infectious classes (I+ and I-) to get expressions for the 
upper and lower bounds for R0, i.e. R0

+  and R0
-. The actual value for R0 is the eigenvalue of the next 

generation matrix. We will calculate this value in the R-script below.   
 

 

2.2. Numerical assessment 

Open the R-file EpiTut2b.R and auxiliary files  SIRMajorSusInf.R and c 

The code describes the above SIR model in a population comprising 1000 individuals. In these 

simulations, parameter values are set to γ = ½ days, β0 = 1.5 per day, εS=0.5, and p = 0.2. For εI   three 

values are chosen, representing different relationships between susceptibility and infectivity,  i.e  εI   

=0.2, εI   = 1 and εI   = 5, respectively.  The epidemics starts by introducing 1 infectious individual of 

the low susceptible type into a population of 999 non-infected individuals.  

 Take some time to familiarize yourself with the code. Then use the code (in particular steps 2 and 

3) to answer the following questions.  

a. Check your model equations derived in 2.1b above by comparing your equations with the 

derivatives coded in the R-scripts (SIRMajorSusInf.R and betaAndR0fc.R). Also check your 

expressions for the 2 by 2 next generation matrix of the number of secondary cases and  R0
-  

and R0
+ derived in 2.1b (Step 2 in code – formulas coded in betaAndR0fc.R).  

b. For the parameter set above, calculate the basic reproductive ratios R0 for this model for the 

three scenarios εI   =0.2, εI   = 1 and εI   = 5, respectively. Which scenario gives the highest value 

for R0? Is this expected? (Step 2 in code of EpiTut2b.R: call the function betaAndR0fc with 

different values of εI). 

c. How do these values compare with the values for the two thresholds R0
-  and R0

+, and with the 

corresponding R0 for homogeneous populations with the same average transmission rate β = 

(1-p) * β0 + p* εS * β0? (Step 2 in code: Compare values of R0 and R0_homo). 

d. Generate infection profiles corresponding to the four scenarios (1) homogenous population 

with the above average transmission rate β (2) heterogeneous population with difference in 

susceptibility only (εI   = 1), (3) heterogeneous population where low susceptibility confers low 

infectivity (εI   = 0.2), (4) heterogeneous population where low susceptibility confers high 

infectivity (εI   = 5) (Step 3 in code). Inspect the plots to fill in the following table for 

epidemiological characteristics: 

 

Characteristics 
/ Scenario 

Peak 
prevalence 

Time of peak 
prevalence 

Total 
proportion 
infected 

Duration of 
epidemics 

R0 

1      

2      



3      

4      

 

Which of the four scenarios causes the most / least severe epidemics? 

e. Now use step 4 in the code to explore the effect of the proportion of individuals with low 

susceptibility on the epidemiological characteristics. In particular, use the figures and R0 

values to determine 

o the effect (increasing or decreasing?) of increasing the proportion of individuals with 

low susceptibility on time and value of peak prevalence, total proportion infecteds, 

duration of the epidemics and on R0.  

o in which case is a change in the proportion of individuals with low susceptibility from 

50% to 75% more effective: if susceptibility and infectivity are not correlated or if they 

are positively correlated? [Tip: Compare the R0-values associated with different 

proportions for both scenarios] 

o the proportion of individuals with low susceptibility required to achieve R0<1 in the 

case that εS  = 0.5 and εI   = 0.2. Could one achieve R0<1 if low susceptibility confers no 

impact on infectivity?  

f. How may this kind of analysis help to determine the best disease eradication strategies for IPN 

in Atlantic salmon or other infectious diseases for which susceptibility loci have been 

identified? Is it ok to ignore potential differences in infectivity? 

 

2.3 Optional section: Explore the impact of initial conditions on the infection dynamics 

Save the code and plots of the infection dynamics generated in section 2.2 above.    

Then modify this code to determine the effect of initial conditions on the infection dynamics. For 

example, rather than assuming that the infection is introduced by 1 individual with low 

susceptibility, assume that the infection is introduced by 100 individuals with low / high 

susceptibility type respectively or with 50 individuals of each type. How does this affect the 

prevalence profile? Do initial conditions affect R0? 

 

 

 


