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1. Linkage disequilibrium in livestock populations

1.1 Models of quantitative trait variation

Many economically important traits in livestock uagulture and plant production are
guantitative, that is they show continuous distiitms. In attempting to explain the
genetic variation observed in such traits, two ni@tave been proposed, the
infinitesimal model and the finite loci model. Timéinitessimal model assumes that
traits are determined by an infinite number of nikdid and additive loci, each with an
infinitesimally small effect (Fischer 1918). Thieodel has been exceptionally
valuable for animal breeding, and forms the bawmivfeeding value estimation theory
(e.g. Henderson 1984).

However, the existence of a finite amount of geradty inherited material (the
genome) and the revelation that there are perhégalaof only around 20 000 genes
or loci in the genome (Ewing & Green 2000), mednad there is must be sorfieite
number of loci underlying the variation in quantitative traite fact there is
increasing evidence that the distribution of tHeafof these loci on quantitative
traits is such that there are a few genes witrelaftect, and many of small effect.
This genetic architecture is observed for traitdigerse as bristle number in
Drosophila, height in humans, yield in rice, percentage bfromaize kernels, and
milk production in dairy cattle (Shrimpton & Robswh 1988, Lango-Allen et 2010,
Huang et al. 2010, Laurie et al. 2004, Hayes €2@11). For human height for
example, Lango-Allen et al. (2010) conducted a pawexperiment to find the loci
affecting this trait. They found and validatedyobrphisms affecting the height at
180 loci, however these loci together explained &% of the variation in human

height! And human height is a highly heritableattra

The search for loci affecting quantitative tragéad the use of this information to
increase the accuracy of selecting genetically soipanimals, has been the
motivation for intensive research efforts in thet favo decades. Note that in this
courseany locus with an effect on the quantitative traitiisalled a QTL, not just the

loci of large effect.



Two approaches have been used to uncover QTL.cardedate gene approach
assumes that a gene involved in the physiologietrait could harbour a mutation
causing variation in that trait. The gene, or aftthe gene, are sequenced in a
number of different animals, and any variationthi DNA sequences, that are found,
are tested for association with variation in thenmtypic trait. This approach has had
some successes — for example a mutation was digtbiwrethe oestrogen receptor
locus ESR) which results in increased litter size in pig®{schildet al. 1991). For

a review of mutations which have been discoverezhimdidate genes see Andersson
and Georges (2004). There are two problems welcédmdidate gene approach,
however. Firstly, there are usually a large nundfeandidate genes affecting a trait,
SO many genes must be sequenced in several aranthlmany association studies
carried out in a large sample of animals (the iil@d that the mutation may occur in
non-coding DNA further increases the amount of seging required and the cost).
Secondly, the causative mutation may lie in a deatwould not have been regarded
apriori as an obvious candidate for this particular triaterestingly, a variant of the
candidate gene approach called pathway analysisebastly been used with some
success to detect loci underlying variation in ditative traits. In this approach,
pathways of genes rather than individual genes that colddgibly affect the trait are
identified (eg. Li et al 2013). Then polymorphismishin the genes in the pathway
are tested for association with the trait.

An alternative is the QTL mapping approach, in \lmitbromosome regions
associated with variation in phenotypic traits identified. QTL mapping assumes
the actual genes which affect a quantitative &ntnot known. Instead, this approach
uses neutral DNA markers and looks for associati@t&een allele variation at the
marker and variation in quantitative traits. A DM#arker is an identifiable physical
location on a chromosome whose inheritance candyetared. Markers can be
expressed regions of DNA (genes) or more often ssegenent of DNA with no

known coding function but whose pattern of inherit can be determined
(Hyperdictionary, 2003).

When DNA markers are available, they can be usetermine if variation at the
molecular level (allelic variation at marker lotdag the linkage map) is linked to

variation in the quantitative trait. If this isetltase, then the marker is linked to, or on



the same chromosome as, a quantitative trait locG¥r'L which has allelic variants

causing variation in the quantitative trait.

Until about 2007, the number of DNA markers ideatlfin livestock and plant
genomes was comparatively limited, and the cogeabtyping these markers was
high. The scarcity of markers constrained expemisidesigned to detect QTL to
using a linkage mapping approach. If a limited benof markers per chromosome
are available, then the association between th&ersaand the QTL will persist only
within families and only for a limited number ofrggrations, due to recombination.
For example in one sire, tiAeallele at a particular marker may be associatel the
increasing allele of the QTL, while in another siteea allele at the same marker
may be associated with the increasing allele aQXhk, due to historical

recombination between the marker and the QTL iratieestors of the two sires.

To illustrate the principle of QTL mapping explog linkage, consider an example
where a particular sire has a large number of prpgehe parent and the progeny are
genotyped for a particular marker. At this markiee, sire carries the marker alleles
172 and 184, Figure 1.1. The progeny can then tiedsmto two groups, those that
receive allele 172 and those that receive allefefdd@n the parent. If there is a
significant difference between the two groups algemy, then this is evidence that
there is a QTL linked to that marker.
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allele for the marker allele for the marker

Figure 1.1. Principle of quantitative trait loci (QTL) detection, illustrated using
an abalone example. A sire is heterozygous for aamker locus, and carries the
alleles 172 and 184 at this locus. The sire hasaage number of progeny. The
progeny are separated into two groups, those thaeceive allele 172 and those
that receive allele 184. The significant differencin the trait of average size
between the two groups of progeny indicates a QTlinked to the marker. In
this case, the QTL allele increasing size is linket the 172 allele and the QTL
allele decreasing size is linked to the 184 allgleigure courtesy of Nick

Robinson).

QTL mapping exploiting linkage was performed inladéstock species for a huge
range of traits (for a review see Andersson andr@a(2004) ). The problem with
mapping QTL exploiting linkage is that, unless gé&mumber of progeny per family
or half sib family are used, the QTL are mappedeiy large confidence intervals on

the chromosome.

An alternative, if dense markers are availablexisloit linkage disequilibrium
between markers and QTL. Performing experimentsap QTL in genome wide
scans using LD is now possible due to the avaitgtmf many thousands of single
nucleotide polymorphism (SNP markers) in cattlgspchickens, sheep, salmon and
goats. A SNP marker is a difference in nucleokideveen individuals (or an
individual’'s pair of chromosomes), at a definedipas in the genome, eg.

Animal 1. ACTCGGGC



Animal 2. ACTTGGGC
Rapid developments in SNP genotyping technology albow genotyping of a SNP
marker in an individual for less than 1c US. Timiakes possible large experiments to
uncover the loci affecting quantitative traits whexploit LD between markers and
QTL.

1.2 Definitions and measures of linkage disequilibr ium.

The classical definition of linkage disequilibriyirD) refers to the non-random
association of alleles between two loci. Constder markers, A and B, that are on
the same chromosome. A has alleles A1 and A2Bamak alleles B1 and B2. Four
haplotypes of markers are possible A1_B1, A1 _B2,BRand A2_B2. If the
frequencies of alleles Al, A2, B1 and B2 in the yapon are all 0.5, then we would
expect the frequencies of each of the four hapksyp the population to be 0.25.
Any deviation of the haplotype frequencies from80i2linkage disequilibrium (LD),
ie the genes are not in random association. Assale, this definition serves to
illustrate that the distinction between linkage #inkage disequilibrium mapping is
somewhat artificial — in fact linkage disequilibmubetween a marker and a QTL is
required if the QTL is to be detected in eithet ebranalysis. The difference is:

linkage analysis only considers the linkage disequilibrium thatséxiwithin
families, which can extend for 10s of cM, and iskan down by

recombination after only a few generations.

linkage disequilibrium mapping requires a marker to be in LD with a QTL
across the entire population. To be a properth@fwhole population, the
association must have persisted for a considerabteer of generations, so
the marker(s) and QTL must therefore be closekekh

One measure of LD B, calculated as (Hill 1981)

D = freq(Al_Bl)*freq(A2_B2)-freq(Al_B2)*freq(A2_Bl)



where freq (A1_B1) is the frequency of the A1_Bblbéype in the population, and
likewise for the other haplotypes. TBestatistic is very dependent on the frequencies
of the individual alleles, and so is not particlyarseful for comparing the extent of
LD among multiple pairs of loci (eg. at differergipts along the genome). Hill and
Robertson (1968) proposed a statisficyhich was less dependent on allele
frequencies,

2 - D2

freq(AD * freq(A2) * freq(BL * freq(B2)

Where freq(Al) is the frequency of the Al allelehe population, and likewise for
the other alleles in the population. Values’ainge from 0, for a pair of loci with no

linkage disequilibrium between them, to 1 for ardiloci in complete LD.

As an example, consider a situation where theeafteljuencies are

freq(Al) = freq(A2) = freq (B1) = freq (B2) = 0.5

The haplotype frequencies are:

freq(Al B1) = 0.1

freq(Al B2) = 0.4

freq(A2_Bl1) = 04

freq(A2_B2) = 0.1

TheD =0.1*0.1-0.4*0.4 = -0.15

And D? = 0.0225.

The value of Tis then 0.0225/(0.5*0.5*0.5*0.5) = 0.36. Thisaisnoderate level of

re.

Another commonly used pair-wise measure of LD igll2wontin 1964). To

calculate D’, the value of D is standardized byrieximum value it can obtain:

D'= |D|/Dmax

Where Dha= min[freq(Al)*freq(B2), -1*freq(A2)*freq(B1)] if D>>0, else
= min[freq(Al)*freq(B1),--1*freq(A2)*freq*B2)] if D<O.



The statisticTis preferred over D’ as a measure of the extehDofor two reasons.
If we consider the’rbetween a marker and an (unobserved) @7ls the proportion
of variation caused by the alleles at a QTL which is explained by the markers. The
decline in f with distance actually indicates how many markerphenotypes are
required in initial genome scan exploiting LD aegquired to detect QTL.
Specifically, sample size must be increased by®faf 1/f to detect an
ungenotyped QTL, compared with the sample sizéefsting the QTL itself
(Pritchard & Przeworski 2001). D’ on the other Haloes a rather poor job of
predicting required marker density for a genomer soaloiting LD, as we shall see
in Section 2. The second reason for usfn@ther than D’ to measure the extent of
LD is that D’ tends to be inflated with small samgizes or at low allele frequencies
(McRaeet al. 2002).

The above measures of LD are for bi-allelic marka##hile they can be extended to
multi-allelic markers such as microsatellites, Zledal. (2005) recommended thé
measure of LD for multi-allelic markers, where
1 K D
21; freq(A) freq(B;)
and D; = freq(A _B;) - freq(A) freq(B;) , freq(A) is the frequency of thid allele

at marker Afreq(B;) is the frequency of thid allele at marker B, arlds the
minimum of the number of alleles at marker A andkaaB. Note that for bi-allelic

markers, y* =r?.

While pair-wise measures of LD are important andelyi used, are not particularly
illuminating with respect to the causes of LD. Eaample, statistics such &s r
consider only two loci at a time, whereas we masiwvio calculate the extent of LD
across a chromosome segment that contains muttipiers. An alternate multi-
locus definition of LD is thehromosome segment homozygosit® SH) (Hayeset

al. 2003). Consider an ancestral animal many geoasatgo, with descendants in
the current population. Each generation, the daaceschromosome is broken down,
until only small regions of chromosome which trbeek to the common ancestor

10



remain. These chromosome regions are identicdebgent (IBD). Figure 1.2

demonstrates this concept.

The CSH then is the probability that two chromos@®gments of the same size and
location drawn at random from the population aoenfa common ancestor (ie IBD),
without intervening recombination. CSH is defifeda specific chromosome
segment, up to the full length of the chromosormike CSH cannot be directly
observed from marker data but has to be inferreah fmarker haplotypes for
segments of the chromosome. Consider a segmehtahosome with marker locus
A at the left hand end of the segment and marlard® at the other end of the
segment (as in the classical definition above)e dlteles at A and B define a
haplotype. Two such segments are chosen at randomthe population. The
probability that the two haplotypes are identicakhkate (IBS) is the haplotype
homozygosity (HH). The two haplotypes can be IB8no ways,
I. The two segments are descended from a common aneegtout intervening
recombination, so are identical by descent (IBD), o
il. the two haplotypes are identical by state but Bax |
The probability of i. is CSH. The probability of is a function of the marker
homozygosities, given the segment is not IBD. piababilities of i. and ii. are
added together to give the haplotype homozygokity)(

(Hom, —CSH)(Hom, —CSH)
1-CH

HH =C3H +

Where Hom and Homg are the individual marker homozygosities of makemnd
marker B. This equation can be solved for CSH wtherhaplotype homozygosities
and individual marker homozygosities are observechfthe data. For more than two
markers, the predicted haplotype homozygosity @odiculated in an analogous but

more complex manner.
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Figure 1.2 An ancestor many generations ago (1) le@s descendants (2). Each
generation, the ancestor’'s chromosome is broken dewby recombination, until
all that remains in the current generation are smdlconserved segments of the
ancestor’'s chromosome (3). The chromosome segméwimozygosity (CSH) is
the probability that two chromosome segments of theame size and location

drawn at random from the population are from a comnon ancestor.

Another justification for using multi-locus meassii@ LD is that they can be less
variable than pair-wise measures. The variatidtDrarises from two sampling
processes (Weir & Hill 1980). The first sampling@pess reflects the sampliafy
gametes to form successive generations, and isxdept®n finite population size.

The second sampling process isgsampling of individuals to be genotyped from the
populationand is dependent on the sample sizeT he first sampling process
contributes to the high variability of LD measurddarker pairs at different points in
the genome, but a similar distance apart, can temedifferent f values, particularly

if the marker distance is small, Figure 1.3. Tikibecause by chance there may have
been an ancestral recombination between one paladiers, but not the other.

12
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Figure 1.3. The value of T against distance in bases between pairs of markers
from 10 000 genome wide SNPs genotyped in a popudat of Holstein Friesian
cattle. 1000000 bases is approximately 1cM.

Multi-locus measures of LD can have reduced vditgliiecause they accumulate
information across multiple loci in an intervaluthaveraging some of the effects of

chance recombination.

1.3 Causes of linkage disequilibrium in livestock p opulations

LD can arise due to migration, mutation, selectsmall finite population size or
other genetic events which the population expedsife.g. Lander & Schork 1994).
LD can also be deliberately created in livestocgiations. In an F2 QTL mapping
experiment LD is created between marker and QTalesdlby crossing two inbred

lines.

In livestock populations, finite population sizegisnerally implicated as the key
cause of LD. This is because
- effective population sizes for most livestock p@tigns are relatively small,
generating relatively large amounts of LD
- LD due to crossbreeding (migration) is large whesssing inbred lines but

small when crossing breeds that do not differ aketly in gene frequencies,

13



and it disappears after only a limited number afegations (e.g. Goddard
1991)

- mutations are likely to have occurred many genenatago.

- while selection is probably a very important caaseD, it's effect is likely to
be localised around specific genes, and so hasvedialittle effect on the
amount of LD ‘averaged’ over the genome. The ddébomeasures to detect

selected areas of the genome will be discussetiybinesection 1.8.

1.3.1 Predicting the extent of LD with finite population size
If we accept finite population size as the key drigf LD in livestock populations, it

is possible to derive a simple expectation forahmunt of LD for a given size of
chromosome segment. This expectation is (Sved)1971
E(r?) =1/(4Nc +1)

whereN is the finite population size, amds the length of the chromosome segment
in Morgans. The CSH has the same expectation @& 2003). This equation
predicts rapid decline in LD as genetic distan@eaases, and this decrease will be
larger with large effective population sizes, Frgir4.

035
o]\ oo
ozsl
« N

0.15 \A\

Linkage disequilibirum (CSH)

0.11 ~ a
A—
b—n
] -\-\'\'\Hh.‘.h:x
0 T T T T '
0 1 2 3 4 5

Length of chromosome segment (cM)
Figure 1.4. The extent of LD (as measured by chrorsome segment

homozygosity, CSH) for increasing chromosome segmdength, for Ne=100 and
Ne=1000. Note that f has the same expectation as CSH.

As the extent of LD that is observed depends botreoent and historical
recombinations, not only the current effective gdapan size, but also the past
effective population size are important. Effectpapulation size for livestock species
may have been much larger in the past than thetpdeg. For example in dairy
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cattle the widespread use of artificial inseminatmd a few elite sires has greatly
reduced effective population size in the recent.pashumans, the story is the
opposite; improved agricultural productivity andlirstrialisation have led to dramatic
increases in population size. How does changiqmuation size affect the extent of
LD? To investigate this, we simulated a populatigrich either expanded or
contracted after a 6000 generation period of stgbilThe LD, as measured by CSH,
was measured for different lengths of chromosomensat, Figure 1.5. Results f6r r

would look very similar.

0.25 08
s~ CSH s CSH
% — E(CSH) if N=1000 o e E(CSH) if N=100
-~ E(CSH) if N=5000

05 — E(CSH) if N=1000

015 0514

047 1

0.3 %ﬁ

0.2

Chromosome segment homozygosity

005 1. i‘

0.1 W

Chromosome Segment Homozygosity (CSH)

R ST ——

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Length of haplotype (M) Length of haplotype (M)

A
B

Figure 1.5. Chromosome segment homozygosity for érent lengths of
chromosome (given the recombination rate) for popuaitions: A. Linearly
increasing population size, from N=1000 to N=5000ver 100 generations,
following 6000 generations at N=1000. B. Linearlgecreasing population size,
from N=1000 to N=100 over 100 generations, follongn6000 generations at
N=1000.

The conclusion is that LD at short distances igrecfion of effective population size
many generations ago, while LD at long distanc#eats more recent population
history. In fact, provided simplifying assumptiosisch as linear change in population
size are made, it can be shown that fher ICSH reflects the effective population size
1/(2c) generations ago, where c is the lengthettiromosome segment in Morgans.

So the expectation fof with changing effective population size can betteri as

E(r?) =1/(4N,c+1) wheret =1/2c.

15



1.4 The extent of LD in livestock and human populat  ions

If LD is a predominantly result of finite populaticize, then the extent of LD should
be less in humans than in cattle, as in humansfthetive population size is ~ 10000
(Kruglyak 1999) whereas in livestock where effeetpopulation sizes can be as low
as 100 (Riquett al. 1999). The picture is somewhat complicated byfalcethat
livestock populations have been very much largéilenthe Caucasian effective
population size has been very much smaller (folhgythe out of Africa hypothesis).
So what we could expect to see is that at longdcss between markers, the r
values in livestock are much larger than in humamsle at short distances, the level
of LD is more similar. This is in fact what is @rged. Moderate LD (eg.” = 0.2in
humans typically extends less than 5kb (~0.005cdpending on the population
studied (Dunninget al. 2000; Reichet al. 2001; Tenesat al. 2007), Figure 1.6. In

cattle moderate LD extends up to 100kb, Figure Héwever, very high levels of

LD (eg. r* = 0.8) only extend very short distances in both humanbscattle.

a 0.6+
A © Angus
! o Holstein
0.5 A N'Dama
£ Brahman
+ Human (CEPH)

Linkage disequibrium (r?)

*3 °

o o°

INIY LR TLAPT I IR o o o »

A a <8 e ° ° oo °gge e ¢ *

s LB LA EUTELL R LT LT L T LM T TSROSO N
A >
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adba, RaaAN A
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Distance (kb)

Figure 1.6. A. Average f with distance in Caucasian humans (from Tenesa et
al. 2007), and average’value according to the distance between SNP markein

different cattle populations (from Goddard and Hayes 2009, Bovine HapMap
Consortium 2009).
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Figure 1.6 implies that for the Holstein populaiat least, there must be a marker
approximately every 100kb (kilo bases) or lesscitieve an averagé of 0.2. This
level of LD between markers and QTL would allowesngme wide association study
of reasonable size to detect QTL of moderate efféstthe bovine genome is
approximately 3,000,000kb, this implies that inesrdf 30,000 evenly spaced
markers are necessary in order that every QTLearggmome can be captured in a
genome scan using LD to detect QTL. In a breeelNkDama, a larger number of

markers would be required, give the lower levelBrdfage disequilibrium.

Du et al. (2007) assessed the extent of LD in pgisg 4500 SNP markers genotyped
in six lines of commercial pigs. Only maternal ledypes of the commercial pigs
were used to evaluatélvetween the SNPs, as the paternal haplotypesavere
represented in the population. The results froair tudy indicate there may be
considerably more LD in pigs than in cattle. FbIPS separate by 1cM, the average
value of f was approximately of 0.2. LD of this magnitudéyoextends 100kb in
cattle. In pigs at a 100kb the averagwas 0.371.

Heifetz et al. (2005) evaluated the extent of L@ainumber of populations of

breeding chickens. They used microsatellite marked evaluated the extent of LD

with the x? statistic. In their populations, they found siggaht LD extended long

distances. For example 57% of marker pairs segitat 5-10cM had apy® = 0.2in

one line of chickens and 28% in the other. Hei&dtal. (2005) pointed out that the
lines they investigated had relatively small effiezfpopulation sizes and were partly
inbred, so the extent of LD in other chicken pofiales with larger effective
population sizes may be substantially different.

In sheep, the extent of LD varies greatly betweeedbs, reflecting their population
histories (Kijas et al. 2012). In breeds such aslBr Leicester, the extent of LD is
similar to that in Holstein cattle, reflecting aahrecent effective population size.
However in Merino sheep, the extent of LD is maneilar to that observed in human
populations, reflecting the fact that even recéigctive population size is quite large

in this breed (Kijas et al. 2012). At the extreane Soay sheep, which have been
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isolated on an island of the coast of Scotlandrfany generations, with a small

effective population size, reflected in extensimed range LD.

1.5 Extent of LD between populations and breeds.
Marker assisted selection exploiting LD relies loa phase of LD between markers

and QTL being the same in the selection candideges the reference population
where the QTL marker associations were detectamlveider as the reference
population and the population in which MAS is todpplied become more and more
diverged, for example different breeds, the phadess and less likely to be
conserved. The statistic r is a measure for Livbeh two markers in a population,
but can also be used to measure the persistertbe bD phases between
populations, provided the same allele is designasetthe first allele in both
populations. While the statistic between two SNP markers at the samardistin
different breeds or populations can be the same\valen if the phases of the
haplotypes are reversed, they will only have theesgalue and sign for the r statistic
if the phase is the same in both breeds or popuisiti For marker pairs of a given
distance, the correlation between r in two popaitatj corr(rl,r2), is equal to the
correlation of the effects of the marker betweethlpmpulations, for markers that
have that same distance to a QTL (De Ra@s. 2008). If this correlation is 1, the
marker effects are equal in both populationshil torrelation is zero, a marker in
population 1 is useless in population 2. A highrelation between r values means
that the marker effect persists across the popusati Calculating the correlation of r
values across different breeds and populations asdicator of how far the same
marker phase is likely to persist between thesedsr@and populations (Goddastcal.
2006). This information can in turn be used toegiw indication of marker density
required to ensure marker-QTL phase persists apa@mslations and or breeds, which
would be necessary for the application MAS or Geicsrlection using the same

marker set and SNP effects across the breeds otgimms.

In Figure 1.7, the correlation of r values is givena number of different cattle
populations. The correlation of r values for DuRdd-and-white bulls and Dutch
Black-and-white bulls was 0.9 at 30kb. This intisaat this distancé is high in

both populations and the sign of r is the sameoth populations, so the LD phase is
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the same in both populations. If one of these Sh&sactually an unknown mutation
affecting a quantitative trait, the other SNP cdoddused in MAS and the favourable
SNP allele would be the same in both breeds. dstein and Angus breeds, the
correlation of r is above 0.9 only at 10kb or leB®r Australian Holsteins and Dutch
Holsteins, the correlation of r values was abo@up. to 100kb, reflecting the fact

that there are common bulls used in the two pojmuiat(e.g. Zengest al. 2007).

—— Australian Holstein, Australian Angus

0.9 1 A —&— Dutch black and white bulls 95-97, Dutch red and white bulls
S - -~ - Dutch black and white bulls 95-97, Australian Holstein bulls
0.8 4 -

0.7 4

0.6

0.5 4

0.4 4

Correlation of r values

0.3 4

0.2 4

0.14
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Average distance between markers (kb)

Figure 1.7. Correlation between r values for varias cattle populations or sub-

populations, as a function of marker distance (fron{De Rooset al.2008)).
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2. Genome wide association studies

2.1 Introduction
This chapter provides an overview of statisticathmes for genome wide association

studies (GWAS) in animals, plants and humans.

The simplest form of GWAS, a marker by marker asiglyis illustrated with a small
example. The problem of selecting a significarinreghold that accounts for the large
amount of multiple testing that occurs in GWAS iscdssed. Population structure
causes false positive associations in GWAS if sobanted for, and methods to deal
with this are presented. Methodology for more claxmpnodels for GWAS, including
haplotype based approaches, accounting for idetycdescent versus identical by
state, and fitting all markers simultaneously aealibed and illustrated with

examples.

2.2 Genome wide association tests using single mark  er
regression
Genome wide association studies exploit linkagedgligibrium, that is population

level associations between markers and causativations (also called quantitative
trait loci or QTL). These associations arise beeahere are small segments of
chromosome in the current population which are eleded from the same common
ancestor. These chromosome segments, which teagetd the same common
ancestor without intervening recombination, wilirgaidentical marker alleles or
marker haplotypes. If there is a QTL somewheraiwithe chromosome segment,
they will also carry identical QTL alleles. Thexee a number of statistical
methodologies which exploit these associationse dimplest of these is the genome

wide association test using single marker regressio

In a random mating population with no populatiomisture the association between a
marker and a trait can be tested with single mam@ression as

y =Wb +Xg+e
Wherey is a vector of phenotyped/ is a design matrix assigning phenotype records
to fixed effectsh is a vector of fixed effects (e.g. the mean, pojaestructure

effects, age and so or¥,is a design matrix allocating records to the magttect,g
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is the effect of the marker ards a vector of random devia@s~ N (0, o?), where

oZis the error variance. In this model the effecthaf marker is treated as a fixed

effect, and the model is additive, such that twpies of the second allele has twice as
much effect as one copy, and no copies has zegoteff The underlying assumption
here is that the marker will only affect the tiit is in linkage disequilibrium with

an unobserved QTL.

The null hypothesis is that the marker has no effiadhe trait, while the alternative
hypothesis is that the marker does affect the @ip@tause it is in LD with a QTL).

The null hypothesis is rejected > F whereF is theF statistic calculated

a vlv2?

from the data andr, ,, , is the value from aF distribution atx level of significance

andvl, v2 degrees of freedom.

Consider a small example of 10 animals genotyped f&ingle SNP. The phenotypic

and genotypic data is:

Animal Phenotype SNP allele 1  SNP allele 2

1 2.03 1 1
2 3.54 1 2
3 3.83 1 2
4 4.87 2 2
5 3.41 1 2
6 2.34 1 1
7 2.65 1 1
8 3.76 1 2
9 3.69 1 2
10 3.69 1 2

We need a design matrkto allocate both the mean and SNP alleles to phpas.
In this case we will use a matrix with number of rows equal to the number of
records, and one column for the SNP effect. Wéseil the effect of the “1” allele to
zero, so the SNP effect column in thematrix is the number of copies of the “2”

allele an animal carrieX(matrix in bold):
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X, Number of “2”
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o

In this case th&/ matrix is simply a vector, with each element 1eash individual

gets a dose of the mean. The mean and SNP effiechen be estimated as:

gl [Ww o wx]wy
S_ XW X'X| | Xy
Wherey is the (number of animals) vector of phenotypes.

In the above example the estimate of the mean Allrle®fect are

HEl

This is not far from the real value of these par@mse The data above was
“simulated” with a mean of 2, a QTL effect of 1, @rfa standard measure of LD)
between the QTL and the SNP of 1, plus a normadiiyiduted error term.

The F-value can be calculated as:

O
(n—l)(gx'y—llny'yj
F =

o o,
yy-gXy-ul,y

Using the above values, the value of F is 4.56is Tan be compared to the tabulated
F-value of 5.12 at a 5% significance value andd @%uhumber of records -1) degrees

of freedom. So the SNP effect in this case issigtificant (not surprisingly with
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only 10 records!). F-values can of course be g#aisihsformed into P values for

comparison with significance thresholds, a topiéolvhis addressed later.

2.3 Power of genome wide association tests using si ngle
marker regression
An important question for GWAS is how big does $tigdy have to be to have any

power to detect associations of a given size? pbueer of the association test to
detect a QTL by testing the marker effect depemds o
1. The F between the marker and QTL. Specifically, sansjte must be
increased by a factor of 4o detect an ungenotyped QTL, compared with the
sample size for testing the QTL itself (PritchardP&eworski 2001).

2. The proportion of total phenotypic variance exptaimy the QTL, termedjlé.

3. The number of phenotypic reconds

4. The allele frequency of the rare allele of the SMharkerp, which
determines the minimum number of records usedtimate an allele effect.
The power becomes particularly sensitivg tohenp is small (e.g. <0.1).

5. The significance leved set by the experimenter.

The power is the probability that the experimerit orrectly reject the null
hypothesis when a QTL of a given size of effectlyedoes exist in the population.
Figure 2.1 illustrates the power of an associatésh to detect a QTL with different
levels of f between the QTL and the marker and with differembers of
phenotypic records. The power was derived usiegdmula of (Luo 1998).

Using both this figure, and the extent of LD in @apulation, we can make
predictions of the number of markers required tiecteQTL in a genome wide

association study. For example, &ofrat least 0.2 is required to achieve powéx8
to detect a QTL ohé = 005with 1000 phenotypic records. To illustrate, inrda

cattle, f~ 0.2 at 100kb. So assuming a genome length of\dB0A cattle, we

would need at least 15 000 markers in such an ewpat to ensure there is a marker
100kb from every QTL. However this assumes thattlarkers are evenly spaced,
and all have a rare allele frequency above 0.2rdctise, the markers may not be

evenly spaced and the rare allele frequency oasoreable proportion of the markers
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will be below 0.2. Taking these two factors intawaunt, approximately 30 000
markers would be required. In practise, higheelewf ¢ than 0.2 are desirable;
otherwise it is difficult to distinguish true asgmtens from noise when 10s of

thousands of markers are tested.
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Figure 2.1 A. Power to detect a QTL explaining 5%ef the phenotypic variance
with a marker. B. Power to detect a QTL explainiig 2.5% of the phenotypic
variance with a marker, for different numbers of phenotypic records given in the
legend and for different levels of f between the marker and the QTL, with aP

value of 0.05. Rare allele frequencies at the QTand marker were both 0.2.
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2.4 Choice of significance level
With such a large number of markers tested in genaide association studies, an

important question is what value @fto choose. In a genome wide association study,
we will be testing tens of thousands, hundredsiofisands or with sequence data
potentially millions of variants. So a major issnesetting significance thresholds is
the multiple testing problem. In most QTL mappegperiments, many positions
along the genome or a chromosome are analysebddqrésence of a QTL. As a
result, when these multiple tests are performedrbminal” significance levels of
single tests don't correspond to the actual sicgmiite levels in the whole experiment,
e.g. when considered across a chromosome or gbesgole genome. For
example, if we set a point-wise significance thotgtof 5%, we expect 5% of results
to be false positives. If we analyse 100 000 markassuming for the moment these
points are independent), we would expect 10000&8.6000 false positive results!
Obviously more stringent thresholds need to be ete option would be to adjust the
significance level for the number of markers testsithg a Bonferoni correction to
obtain an experiment wise P-value of 0.05. Howeweh a correction does not take
account of the fact that ‘tests’ on the same chson@e may not be independent, as
the markers can be in linkage disequilibrium widicle other as well as the QTL. As a
result, the Bonferoni correction tends to be vamgservative, or requires some

decision to be made about how many independerdnegif the genome were tested.

Churchill and Doerge (1994) proposed the technafygermutation testing to
overcome the problem of multiple testing in QTL rpigug experiments. Permutation
testing is a method to set appropriate significahoesholds with multiple testing
(e.g. testing many locations along the genomehiempresence of the QTL).
Permutation testing is performed by analysing gdarumber of simulated data sets
that have been generated from the real one, bynalyshuffling the phenotypes
across individuals in the mapping population. Teimoves any existing relationship
between genotype and phenotype, and generateea gkdata sets corresponding to
the null hypothesis. Genome scans can then berpextbon these simulated data-
sets. For each simulated data the highest valutéaiest statistic is identified and
stored. The values obtained over a large numbguai simulated data sets are
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ranked yielding an empirical distribution of thettstatistic under the null hypothesis
of no QTL. The position of the test statistic obéa with the real data in this
empirical distribution immediately measure the gigance of the real dataset. For
example if we carry out 100 000 analyses of perthdtga, the F value for the 5300
highest value will represent the cut off point floe 5% level of significance.
Significance thresholds can then be set correspgrtdi5% false positives for the
entire experiment, 5% false positives for a sirgflspbmosome, and so on.
Permutation testing is an excellent method ofrsg#ignificance thresholds in a
random mating population. In populations with sqredigree or other structure,
however, randomly shuffling phenotypes across mragkaotypes will not preserve

any pedigree structure that exists in the data.

In human genetics, permutation testing has beeth tosgetermine the number of
independent tests, given the SNP on standard SKélp@ypically close to a million,
with >10% MAF), and for widely studies populationSuch studies derive a nhominal
P value in the order of <5xTin order to arrive at an experiment wise P valile
0.05 (Churchill & Doerge 1994).

An alternative to attempting to avoid false pogfivs to monitor the number of false
positives relative to the number of positive res(fernandet al. 2004). The
researcher can then set a significance level witacgeptable proportion of false
positives. The false discovery rate (FDR) is theeeted proportion of detected QTL
that are in fact false positives (Benjamini & Hoehip 1995; Welleget al. 1998)
FDR can be calculated for a QTL mapping experinasnt

MPmayN,
where R.axis a chosen P value significance threshold, hasiumber of QTL which
exceed the significance threshold and m is the murmbmarkers tested. Figure 2.2
shows an example of the false discovery rate iexgeriment where 9918 SNPs were
tested for the effect on feed conversion efficiemc$84 Angus cattle. As the
significance threshold is relaxed, the number giisicant SNPs increases. However,
the FDR also increases.
A
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Figure 2.2. A. Number of significant markers at diferent P values in a genome
wide association study with 9918 SNPs, using 384 durs cattle with phenotypes

for feed conversion efficiency. B. False discowerate at the different P-values.

In this experiment, a P-value of 0.001 was chosea eriteria to select SNPs for
further investigation. At this P-value, there wBfesignificant SNPs. So the false
discovery rate was 9918*0.001/56 = 0.18. Thislle¥éalse discovery was deemed

acceptable by the researchers.
A number of other statistics have been proposedmérol the proportion of false

positives, including the proportion of false pogt — PRP (Fernandal. 2004),
and the positive false discovery rate - pFDR (St@@02).
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Quantile-Quantile plots (QQ plots) are widely usedisplay the proportion of
significant results compared to the expected nurabsignificant results at a given P
value. An example QQ plot (Pryeeal. 2011b) is shown in Figure 2.3. The figure
clearly demonstrated that in their study, at valyremiter than P<0.001, more
significant SNP were observed than expected byahan
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Figure 2.3. An example of a quantile-quantile plobf observed against expected
by chance P values. From Pryce et al. (2011b), association test of SNP for
effect on stature in cattle, in regions of genes saciated with variation in height
in other species. The Quantile-quantile plot is oP-values of 879 SNPs that were
500 kbp either side of 55 orthologous genes found be associated with height in
human populations (Gudbjartssonet al.2008; Lettre et al.2008; Weedoret al.
2008; Kim et al.2009). Using dairy and beef data sets, the phenpty (stature)
was regressed on each SNP by using a mixed modeattmcluded pedigree
(ASReml (Gilmour et al.2009)). Observed and expected P-values would falt
the gray solid line if there were no association. Ae dashed horizontal line is the
threshold selected for significance (P < 0.001). Mothat a 1-Mbp window was
used from which to select SNPs because, in contrasthumans, where LD is
expected to persist over only 10s of kilobase pai($enesaet al.2007), non-zero
levels of LD have been observed up to 1 Mbp in cétt(Bovine
HapMapConsortium 2009).
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2.5 Confidence intervals
Interestingly, there are very few reports in therature on methods to estimate

confidence intervals in genome wide associatiodistu A method based on cross-
validation is briefly described here. To calculapproximate 95% confidence
intervals for the location of QTL underlying thgsificant SNPs, a genome wide
association study is first conducted as above. dita set is then split into two halves
at random (e.g. half the animals in the first dagta the other half in the second data
set). The genome wide association study is thearrdor each half of the data.
When each half of the data confirmed a signifiGaNP in the analysis of the full data
(i.e. a significant SNP in almost the same locgtitren a confidence interval can be
calculated in the following way. The position bétmost significant SNP from each
split data set was designategland x%; respectively, for thé'iQTL position (taken as
the most significant SNP in a region from the @ldta set). So for n pairs of such
SNPs, the standard error of the underlying QTlailsudated as

se(X) = /%ZXM — X, . The 95% confidence interval is then the positbthe
Nz

most significant SNP from the full data analysis96se(X) .

Using this approach in a data set with 9918 SNRstyped on 384 Holstein-Friesian
cattle, and for the trait protein kg, there weresshificant SNP clusters (clusters of
SNP putatively marking the same QTL, a cluster me®f 1 or more SNPSs) in the

full data, and the confidence interval for the QWas calculated as 2Mb.

2.6 Avoiding spurious false positives due to popula tion
structure
Any unaccounted for population structure will resnlfalse positive associations in

GWAS (Pritcharckt al. 2000). In livestock and plant populations withltiple
offspring per parent, selection for specific bregdgoals and breeds, strains or lines
within the population all create population struetuA simple example is where the
population includes a parent with a large numbegarofeny in the population. In our
example the parent has a significantly higher esttoh breeding value than other

parents in the population. If a rare allele ataakar anywhere on the genome is
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homozygous in the parent, the sub-population madaf it's progeny will have a
higher frequency of the allele than the rest ofgbpulation. As the parent estimated
breeding value is high, his progeny will also haigher than average estimated
breeding values. Then in the genome wide assoniatudy, if the number of
progeny of the parent is not accounted for, the adlele will appear to have a

(perhaps significant) positive effect.

Spielman et al. (1993) proposed the transmissisedqgiilibrium test (TDT) which
requires that parents of individuals in the genevite association study are
genotyped to ensure the association between a nall&ke and phenotype is linked
to the disease locus, as well as in linkage didibgiuim across the population with it.
In this way the TDT test avoids spurious assoaistidue to population structure.
However the TDT test has a cost in that genotypésih parents must be collected,

and this is often not possible in livestock andhplaopulations.

An alternative is to remove the effect of populatstructure using a mixed model:
y=1'u+Xg+Zu+e
Where u is a vector of polygenic effect in the mawdiéh a covariance structure

u ~N(0,Ac?), whereA is the average relationship matrix built from gesligree of

the population, andr’is the polygenic varianceZ is a design matrix allocating

animals to records. In other words, the pedigteeture of the population is
accounted for in the model. Note that this is BLLuUiRh the marker effect and the

mean as fixed effects and the polygenic effectmiadom effects.

In the study of Macleod et al. (2010), they assi#ise effect of including or omitting
the pedigree on the number of QTL detected in ¥peement, in a simulation where
no QTL effects were simulated so that all QTL detdavere false positives (Table
1). They found a significant increase in the nundidalse positives, when the
polygenic effects were not fully accounted for.

Table 2.1. Detection of type | errors in data wito simulated QTL (MacLeod et
al. 2010).
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Analysis model Significance level

p<0.005 p<0.001 p<0.0005
Expected type | errors 40 8 4
1. Full pedigree model 39 (SD=14) 9 (SD=b) 4 (Sp=3
2. Sire pedigree model 46 (SD=21) 11 (SD=7) 6 (SD=5.5)
3. No pedigree model g8(SD=31) 18 (SD=11) 16 (SD=7)
4. Selected 27% - full
54" (SD=18) 12 (SD=6) 7" (SD=4)

pedigree

The results indicate that the number of type lrersignificant SNPs detected when
no QTL exist) is significantly higher when no pemg is fitted, and even fitting sire

does not remove all spurious associations duepalpton structure.

A problem arises if the pedigree of the populatgnot recorded, or is recorded with
many errors. One solution in this case is to heanarkers themselves to infer the
genomic relationship matri® (Hayeset al. 2007)or population structure (e.qg.
Pritchardet al. 2000). The G matrix can then be fitted in thecplaf A in the model

above.

Principal components (of the genomic are widelydusehuman GWAS to take
account of population structure (e.g. Pattertal. 2006). In livestock and plant
populations, extreme caution is recommended witticgral components approaches,
as unless they are specifically tested it is umalM®at component of variation they are
removing (McVean 2009; Daetwylet al. 2012a).

One way of determining if population structure bagn successfully removed is to

inspect the QQ plot. If population structure haslmeen correctly accounted for, this
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will result in an excess of associations at alelewf P-value. That is, the observed

values will be greater than the expected valued aalues of —logy(P).

2.7 Genome wide association experiments using hapl  otypes
Rather than using single markers, haplotypes okemarcould be used in the genome

wide association. The effect of haplotypes in wivd across the genome would then
be tested for their association with phenotypee jlstification for using haplotypes

is that marker haplotypes may be in greater linkdigequilibrium with the QTL

alleles than single markers. If this is true, theaf between the QTL and the

haplotypes is increased, thereby increasing theepoiwthe experiment.

To understand why marker haplotypes can have ahigith a QTL than an
individual marker, consider two chromosome segmeaitsaining a QTL drawn at
random from the population, which happen to catgntical marker haplotypes for
the markers on the chromosome segment. Therevaredys in which marker
haplotypes can be identical, either they are ddrivx@m the same common ancestor
so they are identical by descent (IBD), or the samaeker haplotypes have been
regenerated by chance recombination (identicatdtg $BS). If the “haplotype”
consists only of a single SNP the chance of balegtical by state is a function of the
marker homozygosity. Now as more and more maiersdded into the
chromosome segment, the chance of regeneratingademarker haplotypes by
chance recombination is reduced. So the probaltildt identical haplotypes carried
by different animals are IBD is increased. If Haplotypes are IBD, then the
chromosome segments will also carry the same QIEleal As the probability of
two identical haplotypes being IBD increases, thapprtion of QTL variance
explained by the haplotypes will increase, as nrankplotypes are more and more
likely to be associated with unique QTL alleleshisTis particularly true for QTL with

rare (low frequency) minor alleles.
Just as for single markers, the proportion of Qatiance explained by the markers

can be calculated. Let e the frequency of the first QTL allele andog the

frequency of the second QTL allele. The surrougdivarkers are classified into
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haplotypes, wittp; the frequency of thé" haplotype. The results can be classified
into a contingency table:

Haplotype

1 [ N
QTL allele 1 pgi-D1  pigi-Di Pnd1-Dn Q
QTL allele 2 A0tD:1 patDi pagtDn | Q
P Pi Pn

H

For a particular haplotype i represented in tha,dat calculated the disequilibrium
as D =pi(q.)-pig1, where Q) is the proportion of haplotypes i in the data tery
QTL allele 1 (observed from the data)jgpthe proportion of haplotypes i, angdis
the frequency of QTL allele 1. The proportion loé {QTL variance explained by the

haplotypes, and corrected for sampling effectstivas calculated as

n D2
Z i
i=1 pi

1q2

r2(ha) =

A model for testing haplotypes in an associatiagicould be similar to the model
described above:

y=1'u+Xg+Zu+e

Howeverg is now a vector of haplotype effects rather thandffect of a single
marker. The haplotypes could be treated as randsrtiere are likely to be many of
them and some haplotypes will occur only a smathber of times. The effect of
treating the haplotypes as random is to “shrink’ ¢élstimates of the haplotypes with

only a small number of observations. This is ddde because it reflects the

uncertainty of predicting these effects. §o~ N(0,1g? whgrel is an identity

matrix andg; the variance of the haplotype effects. The glmestimated from the

equations:
O
0 I PR B4 1.'X 17,y
ul=|z1, ZZ+AM  ZX Z'y
g| | x1, X'Z X'X+14,| | Xy
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Where A, :J—‘z, andA, = J—‘z. Note that this model assumes no-covariance legtwe
a h

haplotype effects. In practise, the haplotypeavere is unlikely to be known, so will

need to be estimated . A REML program, such asEA8R(Gilmour et al. 2009),

can be used to do this. As the haplotypes aefdas random effects, an F value is no

longer appropriate. Rather, the statistic -2*(lioglihood no haplotype fitted —

Loglikelihood haplotype fitted) can be calculatadd compared to an inverse chi

square distribution with 1 degree of freedom.

In GWAS in real data, haplotypes may have somergdga. Pryce et al. (2010a)
conducted a GWAS using either 50,000 genome wide &N\haplotypes constructed
from the alleles of these SNP, in a dairy cattlpytation. For the trait fertility,
significant effects were only detected, and subeetiyvalidated in a different
population, when haplotypes were used. There ittkesdifference, in terms of
number of effects validated for other traits likéknproduction.

While the use of haplotypes seems initially atikagtthere are a number of factors
which potentially limit their value over single nkars. These are:

- The requirement that the genotypes must be samtechaplotypes and this
may not be a trivial task, and it may not be 10@Xusate (see chapter 5).

- The number of effects which must be estimated as®s. For a single marker
there is one effect to estimate if an additive mhaglassumed, while for
marker haplotypes there are potentially a largebemof effects to estimate
depending on the number of markers in the haplotype

- Some simulation results which show benefits of rmaHaplotypes rely on
increasing the density of markers in a given chreonte segment to achieve
this. This may not be possible in practise.

2.8 Mapping QTL with an Identical by descent appro  ach
The identical by descent (IBD) is quite differerdrh that used in single marker or

haplotype regression, as now the effect of a pudd@TL is explicitly modelled,

rather than assuming the marker is associatedthatiQTL.:

Yy =Ty tVp tVvm +€
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Wherevp: andvm are the effects of the QTL alleles carried onithanimal’s
paternal and maternal chromosome respectivelyhisrmodel, the assumption is that
each animal carries two unique QTL alleles, anthece are two QTL effects fitted

for each animal.

Then marker haplotype information is used to itifier probability that two

individuals carry the same QTL allele at a putatvEL position. As described
above, the existence of LD implies there are ss&jiments of chromosome in the
current population which are descended from theessmmmon ancestor. These IBD
chromosome segments will not only carry identicatker haplotypes; if there is a
QTL somewhere within the chromosome segment, tiledBromosome segments
will also carry identical QTL alleles. Therefofdwo animals carry chromosomes
which are likely to be IBD at a point of the chrasnme carrying a QTL, then their
phenotypes will be correlated. We can calculagepttobability the 2 chromosomes

are IBD at a particular point based on the marlgldtypes and store these

probabilities in an IBD matrix®). Then thev are distributed/ ~ N (O,GJSTL) ,

where O'éT,_ is the QTL variance. If the correlation betweea @mimals is

proportional to G there is evidence for a QTL & fhosition.

Consider a chromosome segment which carries 10enbo& and a single central
QTL locus. Three chromosome segments were sel&ciedthe population at
random, and were genotyped at the marker locivte tjie marker haplotypes
11212Q11211, 22212Q11111 and 11212Q11211, wheesiQrates the position of
the QTL. The probability of being IBD at the QThgtion is higher for the first and
third chromosome segments than for the first acdrse or second and third
chromosome segments, as the first and third chromesegments have identical

marker alleles for every marker locus.

This type of information can be used, together witbrmation on recombination rate
of the chromosome segment and effective populaiios for calculating an IBD
matrix, G, for a putative QTL position from a sample of ne&rkaplotypes. Element

G;; of this matrix is the probability that haplotypand haplotypg carry the same
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QTL allele. The dimensions of this matrix is (Bve number of animals) x (2 x the

number of animals), as each animal has two hapstyp

Meuwissen and Goddard (200dgscribed a method to calculate the IBD matrix dase
on deterministic predictions which took into accotie number of markers flanking
the putative QTL position which are identical batst the extent of LD in the
population based on the expectation under finifgupadion size, and the number of

generations ago that the mutation occurred.

Now consider a population of effective populaticaesl00, and a chromosome
segment of 10cM with eight markers. Two animaésdnawn from this population.
Their marker haplotypes are 12222111, 1112211 ihtofirst animal, and 12222111
and 11122211 for the second animal. The putatiVe @bsition is between markers

4 and 5 (i.e. in the middle of the haplotype). Theatrix could look something like:

Animal 1 Animal 2
Hap 1 Hap 2 Hap 1 Hap 2
12222111 11122111 12222111 11122211
Animall  Hap1 12222111 1.00
Hap 2 11122111| 0.30 1.00
Animal 2 Hap 1 12222111| 0.90 0.30 1.00
Hap 2 11122211| 0.20 0.40 0.20 1.00

To estimate the additive genetic variance, we coaldulate the extent of the

correlation between animals with high additive denelationshipsd;. In practise,

we fit a linear model which includes additive genetlue (1) with V(u) = Ag?, and

then estimater’ . In a similar way, to estimate the QTL varianta autative QTL

position we fit the following linear model:

y=1,u+Zu+Wv +e,
whereW is a design matrix relating phenotypic record®id. alleles,v is a vector of
additive QTL effectsethe residual vector, where the random effease assumed to
be distributed ag~(0, GGQTLZ). A REML program, such as ASREML (Gilmoefral.
2009), can be used to estimate the QTL variancetentikelihood of the data given

the QTL and polygenic parameters.

36



QTL mapping then proceeds by proposing a putatiVe Qosition at intervals along
the chromosome. At each point, the QTL varianastsnated and the likelihood of
the data given the QTL and polygenic parametecalmulated. The most likely

position of the QTL is the position where this likeod is a maximum.

The significance of the QTL at its most likely pamn can then be tested using a
likelihood ratio test by comparing the maximum likeod of the model with the
QTL fitted and without the QTL fitted:

LRT =-2(LogLikelihood,, o fines — LOGLIKEINOOd o ieq)

This test statistic has g distribution. The QTL is significant at the 5% &¥f LR
> 3.84.

Grapes et al. (2004zrapes et al. (2006) and Zhao et al.(2007) compsirege

marker regression, regression on marker haplotgpdghe IBD mapping approach
for the power and precision of QTL mapping. Grageal (2004) and Grapes et al.
(2006) did this assuming a QTL had already beenpadpo a chromosome region,
Zhao et al (20079lid this in the context of a genome wide scan foL(All three
papers compared the approaches using simulatedapiops. The conclusion from
these papers was that single marker regressios gneater power and precision than
regression on marker haplotypes, and was compa@bhe IBD method. However
these results contradict those of Hayes and God@amsB), who found that in real
data (9323 SNPs genotyped in Angus cattle) usirndren&aplotypes would give
greater accuracy of predicting QTL alleles thagkemmarkers. They also contradict
the results of Calus et al.(2008), who found thagenomic selection, use of the IBD
approach gave greater accuracies of breeding vdlaasusing either single marker
regression or regression on haplotypes, partiguérlow marker densities (discussed
further in section 8). The explanation for thetcadictory results may be that these
authors (Grapeat al. 2004; Grapest al. 2006; Zhacaet al. 2007) were simulating a
situation where single markers had very highalues with the QTL, in which case
using marker haplotypes would only add noise toetenation of the QTL effect.
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With current densities of markers in livestock (o 77,000 for cattle), the high
levels of f obtainable would appear to make the IBD approacédisndant.

However, this statement does have an implicit agsiom that the distribution of
allele frequencies of the QTL match that of the kees, otherwise the LD between
QTL and markers will still be limited. For traitthere many of the QTL have low
minor allele frequencies, using haplotypes or B2 Approach may still have
considerable benefits. For example, Browning ahdnipson (2012) reported rare
sequence variants associated with type 1 diabes¢svere only detected with an IBD

approach.

2.9 Fitting all markers simultaneously in GWAS
There are two disadvantages of the approachesiloed@bove that fit either single

SNPs, haplotypes or single genome regions in th/sis. One of these is the
multiple testing problem, that is many thousandtesfts are run, so the significance
level must be very stringent to take this into acto Further, the setting of a
significance threshold combined with the testing@imany marker effects means
that the markers most likely to exceed the threshot those with favourable error
terms, so that the significant markers have ovemesed effects. The second
disadvantage, particularly of the single SNP apgnpes that a region containing the
true mutation can be hard to define, as a largebenrmf SNP can be in LD with the
QTL, such that significant SNP span a wide regmqg.(Pryceet al. 2010a). This is
particularly problematic in livestock (and likelgrae plant species), as low, but non
zero, LD extends for Mb. While a partial solutionthis second problem is to jointly
fit SNP in multiple or conditional regression (eYanget al. 2012), an even better
solution to both these issues is to fit all SNPwiameously. This involves fitting the
same models that have been proposed for genondcpom (e.g. Meuwissed al.
2001), which is the subject of the next chapter.

2.10 The need for validation
The only evidence that a significant associaticiected in a GWAS is “real” (that is

truly associated with a QTL affecting the traityaidation in an independent

population. Despite efforts to control for popidatstructure, and use of fairly
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stringent thresholds, false positives will stillcac in GWAS given the enormous
number of SNPs tested, which means that the chtaatat least one of these is
associated with some unaccounted for structuredrdata is high. This means that
the design of a GWAS experiment includes both disgpand validation. A
validation experiment is also required to more aaimly estimate the size of the QTL
effect, as in the discovery experiment the effé¢he QTL will be over-estimated, as
described in section 2.9. The validation set rbedtarge enough to have sufficient
power (e.g. Figure 2.1), otherwise a SNP may faildlidate just because the
experiment is underpowered. The relationship betwhe discovery and validation
set should also be carefully considered. For exanifa significant SNP is
discovered in a population of dairy bulls, and 8P is “validated” in their
daughters, there is high chance that the same gibgruistructure exists in both data
sets, leading to apparent validation of what ilyeafalse positive result. In
livestock, the most convincing validation is acrbsseds (as the pedigree structure in
the breeds should be independent). However, if BiNRo validate across breeds it
may be because the underlying QTL is not segregatiboth breeds.
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3. Genomic selection

3.1 Introduction to genomic selection
One way to use DNA marker information in livest@sid plant breeding would be to

first perform a GWAS, then take the most signiftcararkers and use them in marker
assisted selection. However, for traits that argrolled by a large number of loci all
with small or small to moderate effects, markeisted selection will result in only
small gains in the accuracy of breeding valuesnig a limited proportion of the

total genetic variance will be captured by the mreask An alternative to tracing a
limited number of QTL with markers is to tracethé QTL. This can be done by
dividing the entire genome up into chromosome segspéor example defined by
adjacent markers, and then tracing all the chromessegments. This method was
termed genomic selection by Meuwissen et al. (20@gnomic selection exploits
linkage disequilibrium — the assumption is thateffects of the chromosome
segments will be the same across the populatioauseche markers are in LD with
the QTL that they bracket. Hence the marker dgmsiist be sufficiently high to
ensure that all QTL are in LD with a marker or loaypbe of markers. Genomic
selection is now possible with the availabilitymény thousands of markers and high

throughput genotyping technology.

Implementation of Genomic selection conceptuallycgeds in two steps, 1.
Estimation of the effects of chromosome segmengsraference population and 2.
Prediction of genomic EBVs (GEBVSs) for animals imothe reference population, for
example selection candidates. This second st&paightforward: To predict
GEBVs for animals with genotypes but no phenotypeseffect of the chromosome
segments they carry can be summed across the genome

n O
GEBV =) X, g,
Wheren is the number of markers across the genotnés a design matrix allocating

O
animals to genotypes at markeand g, is the effect of the genotype at marker
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The difficulty in step 1. is that a very large nuenlef marker effects must be

m]
estimated (they, ), most likely from a data set where the numbegstanotypic

observations is much less than the number of mafkects to be estimated. Most of

this chapter is devoted to this problem.

Before we discuss methods to simultaneously estimdarge number of marker
effects from a limited number of phenotypes, a k®y points. It is important to note
that genomic selection has the desirable propkstytiecause all chromosome
segment effects are estimated simultaneously,ritidem of over-estimation of QTL
effects due to multiple testing described in sec8® does not occur.

Genomic selection can proceed using single markegdptypes of markers or using
an IBD approach. The methodologies that will becdiéed in this chapter can be
applied to either single markers or haplotypese difference will be in the number
of effects to estimate per chromosome segment fiigmohe problems of inferring

haplotypes). In the case of single markers, thatde one effect per segment (eg.

O
g, are scalars). In the case of marker haplotypese twill be multiple effects per
O
segment (egg; are a vector). Also, the following genomic selectprocedures can

be used to map QTL as well as predict GEBV.

3.2 Least squares for genomic selection

A number of approaches have been proposed for &stignthe single marker or
haplotype effects across chromosome segment efteagenomic selection. The

simplest of all, and usually worst performing,he teast squares approach.

The first approach treats marker effects as fiXéeLts in a least squares approach.
As described by Meuwissen et al. (2001) least sgugenomic selection proceeds in
two steps.
1. Perform single segment regression analigesvery segment, using the
model
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y=4Ml, +X,g, +e

wherey is thedata vector; u is the overall medpjs a vector oh (n=number
of records) onegg; represents the genetic effectsha marker or haplotypes

O
thei™ 1-cM segment (the vector of values @f for the differeng but at the

samei) ; X; is the design matrifor thei™ segment; and is the error deviation.
If haplotypes are fitted, the dimensiongyptvill be (number of haplotypes
within chromosome segmenk 1), while the dimensions &f; will be

(number of records x number of haplotypes withiroalnosome segment

2. Select then most significant segments. Estimate the effettiseomarkers

or haplotypes at these positiasiultaneously using multiple regression

y=u1, + ingi +e where summatioXZ, is over all significant QTL

positions. All othehaplotype effects are assumed to be zero.

The least squares approach has two major probl€ms.is the choice of significance
level (arguments such as FDR could be used). mMh& not be too lenient, or else
the number of chromosome segment effects to estimiditbe larger than the number
of phenotypic records, in which case least squeastaaot be used. The other is that in
the least squares approach, there is a selectiwhioh markers or chromosome
segments to include in the estimation of breedages based on the effect of the
single marker or haplotype regressions. As atehd problem of over-estimation of

effects due to multiple testing will be incurred.

3.3 SNP-BLUP and Ridge Regression

To overcome the limitations of least squares, agres which treat marker effects or
haplotype effects as random effects (effects cawma f distribution of effects) have
been proposed. A number of different assumptitwasiathe distribution of effects of

marker effects or haplotype effects are possible.
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If we fit a model to the data where the observeehplypes are the result of the
overall mean and m marker effects (the effectsaateally at the QTL of course, we

are just using the associations with the marketsattk them):

y=1,u+Xg +e
Where
y is a vector of phenotypes (number of records x 1)
1, is a vector of 1s, allocating the effect of theaméo each record
u is the overall mean
X is a design matrix, allocating records to genosyfjeem markers (number or
records xm)

g is a vector of the effects of themarkers

eis a vector of random residuals, assumed norrdiglyibuted, variancer’

We want to use this model to estimate the effecteeomarkers. Perhaps the

simplest assumption we can make is that the mafkects are all very small, and are
normally distributed, ey () ~ N (O, Iaé) whereagis the variance of the marker

effects for all markers. If we make this assummptimarker effects can be predicted
as

] —
,U — 1n'1n 1n'X ' 1nly
S X1, XX+In| | Xy

2

o . . . - :
Where A =—-andl is an Identity matrix (with dimensions number ddnkers x

g

number of markers). This method for predicting keaeffects has been called Best
linear unbiased prediction (BLUP) (Meuwissen ef8l01) or SNP-BLUP (Moser et
al. 2010) for genomic selection.

Let's now consider a small example. In the follogvdata set there are 5 animals
with phenotypes, and each animal has been genofgpd&@ markers. The genotypes
have been coded as the number of copies of thedediele at the marker. For

example, if the alleles at the marker were A andnd an animal had the genotype
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AA, the animal would have a 0 coded genotypehdfgenotype was AT, the coded
genotype would 1, and TT would be 2. These codgnbtypes become the X matrix.

X
Animal Y 1|2 03 4 15 N6 N/ RS RO 0
1 0.19 0 [ IR0 R IO IO BRI (RO
2 1.23 1) |0 1 T T 1 I T1 D S
3 0.86 1 R0 ] ) T 1
R 1.23 1§ N ) R ) I Yl
5 0.45 ) 2 T )

In this small example, the phenotypes were gerngratitn a mean of 1, an effect of
the second allele for the first marker of 1 (eqaaimal with the coded genotype 1
would get an effect +1), and a random error teflthe effect of markers 2-9 was zero.

Now let’s fit the model

y=1,u+Xg+e

to the data, and estimate the mean and market®ffec
[} -1
,U — 1nlln 1n' X 1n'y
5 X1, XX+In| | Xy

To do this, we can build up the blocks of the coefht matrix
X1 X' X+IA

n

1.1, 1.'X T

1 1
And the right hand sid%x"l ﬂ Thel, is the transpose of a 5 x 1 vector of 1s, eg

[11111]. Using a value of 1 for lamda, we get
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[ 047 |
029
- 005
- 005
0 008
{ﬁ]: - 002

013
013
- 008

011
- 008

That is our estimate of the mean is 0.47, the ed&rof the effect of a 2 allele at the
first SNP is 0.29 and so on. We can then use¢ltov of SNP effects (the prediction
equation) to predict estimated breeding valuesifgroup of selection candidates with
genotypes only. Let’s say we have five progenybich we want GEBV, with

genotypes coded into a new X matrix as below:

Progeny X

) I (01 (111 1t 2 90 ) I
100 1 A1 T 1 2% [ ) I
I 1O O [l L 2% L O
1) 3 ) T4 2 [0 O [
000000120 2

N BN W N

]
Then we can calculate their GEBV @BV = Xg

X 9 = GEBV
il EEE IS 0.47
100111210 1 -0.05 0.58
100111210 1 -0.05 0.58
100111210 1 0.08 0.58
000000120 2 -0.02 20.20
0.13
0.13
-0.08 45

0.11
-0.08



Selection candidates could then be ranked on GERMlze best selected for

breeding.

When implementing SNP-BLUP in practise, the vaerrg)is unlikely to be known.
In this case the procedure could more correctlsebsrred to as Ridge Regression.

There are a number of options to obtain valuesdér. One would be to first

estimate the total additive genetic variance (UStEdVIL in a pedigree analysis for

example) then divide by the number of markers oortiosome segments, q=

o’/ m . Additive genetic variances have been estimftechany traits in livestock

breeding. However this simple equation does i@ tato account the differences in

marker allele frequencies. A better estimateésetforeas = 0’5 /22 p,d-p;) .
j==1

This is still one potential problem with this eséita, which is that it assumes the
linkage disequilibrium between SNP and QTL is pettfehat is the SNP capture all
the genetic variation. In practise this may notheecase. An alternative way to
estimate\ which takes this into account is cross validatitmthis approach, part of
the data is set aside when fitting the SNP-BLUP @hod@he model is solved (SNP
effects predicted) with different valuesiof Then GEBV are predicted for the
animals that were set aside, and the valueistaken which minimises the mean
square error between the GEBV and the y. Thisgg®can be repeated, dropping
out different subsets of the data, to obtain gsiohmates of. by averaging across
data sets (Moser et al. 2010).

3.4 An equivalent model using the genomic relations hip
matrix (GBLUP)
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An useful alternative method for implementing gemosaelection is to predict
breeding values using a genomic relationship maimiplace of the pedigree derived
relationship matrix (eg Habier et al. 2007, VanRedeal. 2009, Hayes et al 2009).
This model is actually an equivalent model to peedg individual SNP effects and
calculating GEBV as the sum of these effects, pledithe SNP effects are assumed
to be normally distributed. If we assume a model

y=1 u+Zu+e
wherey is a vector of phenotypeg,is the meanl, is a vector of 1sZ is a design
matrix allocating records to breeding valuess a vector of breeding values aab

a vector of random normal deviatefN{0,0?” . Jhenu=Wg where gis the effect of
thej™ SNP, andV (u) = WW' Js. W is a design matrix allocating records to

genotypes, as for the matrix in the section above, but correacted flaial
frequences. Elements of matkix arew; for thei™ animal and™ SNP, wheray; = 0
— 2p; if the animal is homozygous 11 at ifeSNP, 1-p; if the animal is
heterozygous and 2 df the animal is homozygous 22 at ifeSNP (egwij=xXij-2p;,

whereX is the matrix used in SNP-BLUP above). The diafj@etements ofvVW’

will be Zij @~ p;) wheremis the number of SNPs. WWW’ is scaled such that

j=

_nww!

n

;\Nii

G

then V(u) =Go?. GEBV for both phenotyped and non-phenotyped

individuals can be then predicted by solving theatipns:
. 1 1'Z t
U _ ln n n 02 1n y
¥y Z1, ZZ+G7*=%| |z'y

u

a7



Implementing genomic selection in this way is atiree, as all that may be required
is to replace the average relationship matrix wighgenomic relationship matrix in
the existing genetic evaluation. The method ie a&yy attractive for populations
without good pedigree records — the genomic retatigp matrix will capture this
information among the genotyped individuals attle&s real data, this method has

been shown to be at least as good for many traitdheer methods (VanRaden et al.
2009). Note thatr> may be less than the additive genetic variancéh®trait, if the

linkage disequilibrium between SNP and QTL is nartfgct.

3.5 Bayesian methods

Both GBLUP and SNP-BLUP make the prior assumptiat the effects of the SNP
are all non zero, small and normally distributétbwever we may wish to make
different prior assumptions about the distributtdrSNP effects. For example, there
may be some SNP in high linkage disequilibrium v@XfL of moderate to large
effect. Further, for some regions of the genoneeetimay be no QTL affecting the
trait at all, and in those regions SNP effects &hbe zero.

If we adopt a Bayesian approach, we can captur@roorknowledge that there are
some chromosome segments containing QTL of lafgetsf some segments with
moderate to small effects, and some segments wWitDTL at all when we estimate

the effects of haplotypes (or single markers) witthie chromosome segments.

Using Bayesian models allows us to incorporate guit assumptions into our

analysis.

3.5.1 Bayesian statistics refresher

Bayes theorem uses a simple rule about conditfnadlabilities
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P(x|y) = P(xandy)/ P(y) = P(y | X)P(x)/ P(y)

This can be understood with an example. Suppbagd a jar of coins in which 99%
are fair coins and 1% are double headed coingkel & coin at random and toss it
three times and observe three heads. What igtialpility the coin is a double
headed coin? Let y = the data, eg. 3 heads fromssgs, x is this is a double headed
coin, X’ this is a fair coin. Then P(x)=0.01,P(x)299, P(y|x)=1.0 and P(y|x’) =0.125

(eg. 0.5"3). Then the outcomes of the experimemtearepresented in a table:

P(xorx) P(ylxorx) P(yx)*P(x)
Fair coin 0.99 0.125 0.124
Double headed coin 0.01 1.0 0.01
P(y) 0.134

Therefore the probability that this is a doubledeshcoin given | observed three
heads from three tossesRgx | y) = P(y| x)P(x)/P(y) =1.0*0.01/0.134 = 0.075.
That is despite the outcome of three heads themelysa small probability of the coin

being double headed because doubled headed ceise aare.

Bayes theorem is useful because often it is easgltmlate P(y|x), while it is more
difficult to calculate P(x|y), as in the above exden

After the experiment has been done, the P(y) wilalzonstant in all calculations we

do. So we can also write Bayes theorem as

P(x]y) O P(y[x)P(x)

Where the symbdll indicates is proportional to. This is useful hesmthe

calculation of P(y) may be difficult.

The probability P(x|y) is called the posterior pabbity because it is the probability
after the experiment has been done. It is cakedl&dbm two terms. P(y|x) is the
likelihood used by frequentists. P(x) is called frior probability because it is the
probability of x before the experiment was conddct&his allows us to incorporate

prior knowledge into the estimate of x.
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In practise, calculating the posterior distribut{@nd integrating out nuisance

parameters) may be difficult to do. Often it igpimssible to find a formula that gives

the solution. Bayesians have developed a numbapmiaches to overcome this

problem.

Choose priors that make the algebra easy. Saloadkgjugate prior
distributions have the property that, when combiwét a particular
distribution for the data, they yield a recognisiéstribution for the
posterior. For instance if the data are normabyrihuted, and a normal
prior is used for a parameter affecting the déuean tthe posterior
distribution of that parameter will be normally thisuted.

Numerical integration. If you can calculate thégheof the posterior
distribution at every point, you can integratevieonascence parameters
using numerical integration such as Simpsons rule.

Simulation. If you can draw samples from the pastelistribution, you
can use the samples to approximate the distributi@mr example the
mean of many samples is a good approximation tongen of the
distribution. This is what Markov Chain Monte Ca(MCMC) methods

such as Gibbs sampling do.

3.5.2 Bayesian method with a prior that assumes many QTL have a
small effect and few have a large effect (BayesA)

One possible assumption about the distributionNf &ffects is that they follow a

Student’s distribution, rather than a normal distributiofx.t distribution has a larger

probability of moderate to large effects (“a thickail”) than a normal distribution,

Figure 3.1.
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Density

Figure 3.1 . At distribution (blue line) has a higher probability of moderate to
large effects than a normal distribution (red line) that is it has “thicker tails”.

Unfortunately, t distributions are not as straighifard to incorporate into our
predictions of marker effects as the normal distidn was. One mathematically

tractable way of incorporatingtalistribution is to assume each SNP effect comes

from a normal distribution, but thes can be vary among the SNP. alﬁ is large,

O O
then g can be large, if ng is small, theng is likely to be small as it will be

regressed back towards zero.

This leads to a hierarchical model, with one madéehe level of the SNP effects and
one model at the level of the variances acrosShie. Meuwissen et al. (2001)

termed this approach Bayes A.

The first model is at the level of the data, ansinsilar to before:
y=1l,u+tXg+e

Using the Bayesian approach, we want the postdistribution ofp andg, given the
datay, and we will get this from the likelihood of thatdy given the parameters

andg, multiplied by the priors ofi and g,P(g, 1| y) O P(y | g, 4)P(g, 1) .
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In Meuwissen et al (2001), the prior distributidrttee mearu was uniform and

uninformative, while the prior distribution of SN#ffects (actually haplotype effects

in their case) wasg, ~ N (0, agi) . Note that this is equal to BLUP estimation a th

chromosome segment effects with different variaficesach segment:

o1 [1,1, 1,'X, L LX, |
H , , o , L'y
ol X1, XX+l m X, X, X'y
'D ., ,. . ' O'e2 x ly
g, | |Xp'Ln Xi Xy X X+ p

-7 L gp |

The prior distribution of the error varians& wasx (-2, 0), which yieldsn

uninformative prior (eg the prior receives littlera weight in the calculation).

The second level of model is at the variances ofraesome segment effects. In
Meuwissen et al (2001), the prior distribution lo¢ tvariances of effects across
chromosome segments was chosen to be resuttdistibution at the level of the
SNP effects consistent with many QTL of small effaed few of large effect. The

prior distribution was used the scalederted chi-square distribution,
Prior(agi )~ x7(v,S), whereSis a scalparameter and is the number of degrees of

freedom. The values efandSwere chosen as v=4.012 and S =0.002 [these values
were chosen to give a distribution similar to wivauld be expected from the
distribution of QTL effects derived by Hayes andd@ard (2001) and the expected
heterozygosity of QTL under the neutral model].

The posterior distribution odfgi combines information from the prior and the data.
Information from the data is included by conditimgion the chromosome segment
effects, eg. P(O'; |9,). An advantage of using an inverted chi-squargiligion as

a prior for the variances is that with normallytdtsuted data, the posterior is also
inverted chi-squared @njugate prior). In fact if the prior for our chromosome

segment variances has the scale parareterd degrees of freedomthen the

posterior foragi given the chromosome segment effeaévsi |g,)is an inverted

chi-squared scaled I8+ gi’g; andv+n; degrees of freedom:
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P(Ugi 19:) :X_Z(V+ni’8+gi'gi)

wheren; is thenumber of haplotype effects at segmierdr 1 if when a single effect is

estimated for each SNP.

We cannot use this posterior distribution direbtiyestimating theagi because it is

conditionalon the unknowny; effects. Likewise, the values gf depend omgi .

Meuwissen et al. (2001) therefore used Gibbs samgpdi estimate effects and
variances. In Gibbs sampling, samples for eacarpeter are taken from the

posterior distribution of that parameter, condiéiban all the other parameters.
The Gibbs chain could proceed as follows:

Step 1. Initialise the vectors of haplotype effdfar each vector of chromosome
segment effectg; for j=1,n where nis the number of haplotypes at the chromosome

segment, with a small positive number. The ovenalanu must also be initialised.

Step 2. Update th‘c‘rzgi for the " chromosome segment by sampling it from the fully
conditional distribution y *(v+n,,S+g,'g;), where v is 4.012 and S is 0.002, and

niis the number of haplotype effects at thehromosome segment.

Step 3. Given thg andyu calculate the values ferase=y —Xg -1, i, whereX =

[X1 X2 X3 ...] is the design matrix of all haplotypHects; and) is a vector of all
haplotype effects across chromosome segments. Ufdate the error varianese

by drawing a single sample from?(n-2,e'e, )

Step 4. Sample the overailean p given the updated error variance from a abrm
distribution with meara1 (1'”y -1, Xg)and variances? / n, whereX = [X1 X2 X3 ...]
n

is the design matrix of all haplotypffects; and) is a vector of all haplotype effects.
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Step 5. Sample all the haplotype effegtgigen the newly samplgg, e andcrzgi

Xy =X. X0, . —X.1
from a normal distribution with measL> il 9<.,_02) . n# , whereX; is
XX +oglo

column ofX of effectg;; gj=0) €qualgy except that the effect gf; is set to zero, and

2
variancea? [(X; X, + 7 /2.
gi

Step 6. Repeat Step 2 (using the updgderd Step 5 for a large number of cycles.

Other authors have published similar methods btlt different priors used for the
variance of chromosome segment effed¢tsXu (2003) this was ¥, (eg. an

inverted chi-square distribution with O degreefreédom). Xu (2003) also described
their method for single SNP markers, rather tharkerehaplotypes. Therefore the
matriciesX; are the design matricies for the effect of a @nghrker, so X=1 if the

i SNP genotype for individuglis aay, X;=0 if the {" SNP genotype for individul

IS adp, and X=-1 if the f" SNP genotype for individuglis aa. The implicit
assumption in Xu (2003) is that the partial regassoefficient,g;, (the effect of
marker i on the trait), will absorb partly the effe of all QTL located between
markers i-1 and i+1. The validity of this assumptwill depend on the LD between
the markers and the QTL.

Ter Braak et al. (2005) argued that prior used by2003) would result in an
improper posterior distribution, in particular asperior of gwith infinite mass near

zero. To ensure a valid posterior, they alteregtiw distribution of variance of

chromosome segment effects to b, .

Xu (2003) actually proposed their method for QTLpmiag rather than genomic
selection, claiming that the method gave more peeestimates of QTL location than
single QTL models. This was because the effect@Th was removed in adjacent
marker brackets so the QTL were mapped to a smatkwval. The approach also
gave more accurate estimates of QTL effect, aptblelem of over-estimating the
QTL effect due to multiple testing were avoided.
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3.5.3 Bayesian method with a prior that assumes many SNP have a
no effect, some have a moderate to large effect (BayesB)

Another possible assumption about the distributib8NP effect is that many SNP
are not in genomic regions containing QTL, anddfare have zero effect, while
some SNP may be in LD with QTL having a moderatartge effect. The prior
BayesA does not reflect this, the prior does nethadensity peak frfgi = 0; infact
its probability ofcrzgi = 0 is infinitesimal. Meuwissen et al. (2001) eei$ed this in
their Method BayesB. The prior distribution of SHfects in BayesB is a mixture
distribution with many SNP with zero effect, ane tiest with & distribution of
effects. Method BayesB used a prior that has la temsity , ac‘rzgi = 0and has an

inverted chi-square distribution f(r‘?gi > 0; . The prior distribution was

a;ji = 0 with probability =,

2

in

~ x" % (v, S) with probability (1 — «),

wherev = 4.234 and S = 0.04gi@ld the mean and variances3f; given that?; > 0

(see Meuwissen et al. 2001 for derivatiorvaindS values).

Figure 3.2 lllustrates the difference between thermlistribution of variances of
chromosome segment effects used in method Bayesl Bhat used in method

BayesA.
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Figure 3.2 A. Prior distribution of variances of ctiromosome segment effects
used in method BayesA, and B. Prior distribution dvariances of chromosome
segment effects used in method BayesB in Meuwissetral. (2001), for 20% of

chromosome segments containing QTL.

The figure illustrates the infinitesimal densitytbé prior used in BayesA at 0, and
the much higher mass near (and actually at) zerthéprior used in BayesB. The
Gibbs sampler described in Method BayesA cannaiskee in method BayesB, as it
will not move through entire sampling space. Thisesause the sampling f?fgi =0
from the posterior distribution of Var(megi ) is not possible ijigi >0, which it will
never be ag; = 0 has an infinitesimalrobability ifcrzgi > 0. This problem was
resolved by samplin@zgi andg; simultaneously using a Metropolis-Hastings

algorithm (see Meuwissen et al. 2001 for details).

3.5.4 Other assumptions for the distribution of SNP effects

Another possible prior assumtion for the distribntof QTL effects is that they
follow a double exponential distribution — very ngaof the SNP effects are very
close to zero. This method was developed by Yiam@008) and was called the
BayesianLASSO.

56



Another method is similar to BayesB, in that ibals some of the SNP effects to be
zero, but assumes that for the SNPs with non Zéote these effects follow a
normal distribution (Habier et al. 2011). This nethad two potential advantages
over BayesB — the proportion of SNP that had z#axtwas estimated from the
data, rather than assumed, and secondly therenndtiple degress of freedom to
estimate the variance of the normal distributi@mfrwhich SNP effects were derived,
rather than one per SNP as in BayesB, althoughbftieet of this at the level of SNP
effects may not be that pronounced.

3.6 Comparison of accuracy of methods of genomic
prediction

Meuwissen et al. (2001) evaluated their methodss({lsquares, BLUP, Bayes A and
Bayes B), using simulation. A genome of 1000 cM winulated witla marker
spacing of 1 cM. The markers surrounding every Ir@fion were combined into
marker haplotypes. Due to finite populatre (N. = 100), the marker haplotypes
were in linkage disequilibriurwith the QTL located between the markers. The
effects of the chromosome segments were predintede generation of 2000
animals, and the breeding values for the progeniesfe animals were predicted

based only on the markers which they carried, Tadle

Table 3.1. Comparing estimatedss.true breeding values in progeny with no
phenotypic records (from Meuwissen et al. (2001)Chromosome segments were

estimated in a population of 2000 animals.

rteviesv + SE brev.esv + SE
LS 0.318 £ 0.018 0.285 + 0.024
BLUP 0.732 +0.030 0.896 + 0.045
BayesA 0.798 0.827
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BayesB 0.848 + 0.012 0.946 + 0.018

Mean of five replicated simulations LS, least sggaBLUP, best linear unbiased
prediction; Bayes, Bayesian method with inversesthiare prior distribution and
where the prior density of having zero QTL effegtss increased;sy-esv,
correlation betwen estimated and true breeding values (equalsaagcaf selection

brev.esv, regression of true on estimated breeding value.

The least squares method does very poorly, primbebause the haplotype effects
are over-estimated. The increased accuracy of dlyedan approach occurs because
this method sets many of the effects of the chramessegments to close to zero in
BayesA or zero in BayesB, and “shrinks” the estewnaif effects of other

chromosome segments based on a prior distribufi@Ta effects.

In real data, large differences in the accuracBldfiP, BayesA, BayesB and the
other methods have not been observed. For examgibyla et al (2009) compared
the accuracy of GEBV from BayesA, BLUP and BayesSSVhich is very similar to
BayesB, for three traits in dairy cattle, Protegy kKat% and Protein%. The data were
1800 bulls genotyped for 39,000 SNP markers. THenptypes of the bulls were the
average of their daughters performance for thé téatcuracy of the methods was
approximated by removing the youngest bulls fromdhta set when the prediction
equation was derived. Then GEBV was calculatedhfese bulls, and correlated with

their progeny test values.

Table 3.2. Correlation and Regression Coefficienbetween predicted
GEBV and EBV in the validation data set

Method Measure Bayes SSVS* Bayes A* BLUP*

Protein Kg pbov.asy 0.58 0.57 0.60
basv.DGV 0.99 1.00 1.06
Fat kg TbGv,ABY 0.56 0.53 0.56
basv.DGV 0.90 0.86 0.99
Protein % 1oy asy 0.67 0.64 0.66
basv.DGV 0.97 1.00 0.89
Fat % TbGv,ABY 0.74 0.72 0.65
bav.DGV 0.87 0.86 0.93

*Average accuracies reported over validation seisnfyears 2005, 2006,
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2007. pevasy Correlation coefficient between the EBV and predidiésV,

basvpev Regression coefficient of the EBV on predicted DGV

The accuracy of the methods was surprisingly sinidamost traits, except for fat%.
This is probably because a mutation with large toenate effect, in the DGAT1
gene (Grisart et al. 2002) segregates for thit tBoth BayesA and BayesB would
not shrink the effect of this large mutation asesely as BLUP, and so the GEBV

are more accurate.

3.7 Factors affecting the accuracy of genomic sele  ction

While the simulations, and now real results, dertrates genomic selection has huge
potential to increase rates of genetic gain, sékesaquestions remain regarding its
implementation. These are

1) How many markers are required, determined by thengxf LD.

2) How many phenotypic records are required in thiainexperiment estimating

the effect of chromosome segments

To address the first question, the lower the LDntioee SNPs will be required to
ensure at least one SNP is in LD with each QTLlu€at al. (2008) demonstrated
that provided? (a commonly used measure of LD) between adjadsRsSvas on
average greater than 0.2, accurate genomic bregdlngs could be predicted. In
Holstein Friesian (Black and white) cattfeof 0.2 occurs at approximately 100kb,
implying 30,000 markers should be sufficient to lggenomic selection. The extent

of genome wide LD is largely determined by the pdifgctive population size. The

expectation of? is whereN, is effective population size armds the

N.c+1

distance between loci in Morgans (Sved 1971). Mssewn (2009) demonstrated by
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simulation that to achieve very accurate genontimmaged breeding value$0* Ng* L
markers are required, whdras the length of the genome in Morgans. In Hatste
Friesian cattleNe is approximately 100 and the length of the gen@3® Morgans,
again suggesting 30 000 markers are required.hdsesults in real data above
suggest, 30 000 markers is indeed sufficient tdipteccurate breeding values in
Holstein Friesian cattle. In other species witigéaeffective population sizes, larger

numbers of markers will be required.

Provided the markers are dense enough, the accofgenomic breeding values will
depend on the number of individuals genotyped dr@hptyped in the reference
population, the heritability of the trait, and thember of loci affecting the trait
(Goddard 2008; Daetwyler et al. 2008). Given thate is little knowledge of the
number of loci affecting the vast majority of teimportant in livestock, a
conservative assumption is that the number ofitoegual to the number of
independent chromosome segments in the populalibis can be derived from the
effective population size and the length of theayee as=2N.L. (Goddard 2008,

Hayes et al 2009). Then the accuracy of genongeding values for individuals with

no phenotypes of their own is= \/[1— A1@NVa) * In(L+a+2va) (L+a- 2\/5)] where

a= 1+2MN, andi= qk/h? , with k = 1/log(2Ne), whereh? is the heritability of the trait
andN is the number of phenotypic records in the refeegropulation (Goddard

2008). This deterministic prediction suggestsdamference populations are required
to predict accurate genomic estimated breedingegalparticularly for low

heritability traits, Figure 3.3. The determinigpiedictions agree well with accuracies

that have been achieved in dairy cattle experimgtages et al. 2009).
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Figure 3.3. Number of genotyped and phenotyped imdduals required in the
reference population to reach a desired accuracy @enomic breeding value (for

un-phenotyped individuals) N was 100.

3.8 Genomic selection across populations and breeds
In practise Genomic selection is always applied population that is different to the

reference population where the marker effects stienated. It might be that the
selection candidates are from the same breedréyoanger than the reference
population, or they could be from a different setactline or breed. Genomic
selection relies on the phase of LD between markedsQTL being the same in the
selection candidates as in the reference populatitowever as the two populations
diverge, this is less and less likely to be theecaspecially if the distance between
markers and QTL is relatively large. In sectioh We used the correlation between r
in two populations, corr{jr,), to assess the persistence of LD across popnsatibo

if the chromosome segment effects are estimatpdpalation 1, and GEBVs in that
population can be predicted with an accuracyhen the GEBVs of animals
population 2 may be predicted from the chromosoegenent effects of population 1
with an accuracy, = x;*corr(ry,r2). For each set of populations, one can work loait t
marker density that is required to obtain a cemr= 0.9 (De Roost al. 2008).
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In the above, we have assumed that effect of QIEleal are similar in different
breeds and populations. For some QTL which haeea baced to known mutations,
the alleles do act reasonably similarly in différbreeds and populations. For
example, the A allele of the DGATL1 gene resultgareased fat yield and reduced
protein yield and milk volume in New Zealand Hoist€riesians, Jersey’s and
Ayshires (Spelmast al. 2002). However while the size of the effects@ssistent

for protein and milk volume in the Holstein-Friasiand Jersey breeds, the size of the
fat response in Holstein-Friesians is nearly dotie for Jerseys (Spelman et al.
2002). Another problem is that we have assumedhieasame mutations affecting
production traits are polymorphic in different base This is true for some well
characterised mutations such as the K232A mutati@GAT1, which is

polymorphic in Holsteins, Jerseys, Aryshires anmiesBos indicus breeds (Spelman

et al. 2002). Other mutations, such as some of the ifmait mutations in the
myostatin gene, appear to breed specific (Duenar 2003). One solution would be
to use a multi-breed reference population, sodhdhe genetic variants are captured.

In practise, the observed increases from usingi+brded reference populations have
been small (eg Erbe et al. 2012). One possib#ityhat the markers are not yet dense
enough to be in the same phase with the QTL atnessis — this is a justification for

using sequence data as described in chapter 5.

Finally, genotype by environment interaction magoaleduce the accuracy of
predicted GEBV when the chromosome segment efégetestimated from animals

in another population.

3.9 How often to re-estimate the chromosome segment
effects?

If the markers used in genomic selection were &dgtttee underlying mutations
causing the QTL effects, the estimation of chromossegment effects could be
performed once in the reference population. GERBVsll subsequent generations
could be predicted using these effects. A momyikituation in practise is that there

will be markers with low to moderate levels dfaith the underlying mutations
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causing the QTL effect. Over time, recombinatietween the markers and QTL will
reduce the accuracy of the GEBV using chromosomment effects predicted from
the original reference population. Meuwissen e(2001) used simulations to
investigate the change in accuracy of GEBV withremneasing number of generations
between the reference population and the populébiowhich GEBV were estimated,
Table 3.3.

Table 3.3. The correlation between estimated andue breeding values in
generations 1003-1008, where the estimated breedinglues are obtained from
the BayesB marker estimates in generations 1001 ad®02. From Meuwissen
et al. (2001).

Generation I'TBV;EBV
1003 0.848
1004 0.804
1005 0.768
1006 0.758
1007 0.734
1008 0.718

The generations 1004—-1008 are obtained in the sayas 1003 from their
parental generations.

After five generations, the decline in accuracys&BV was large. This suggests that
with the levels of LD simulated in Meuwissen et(@001), re-estimation of the

chromosome effects should take place every 3 geoesa

De Roos et al (2008) investigated the same issng vsal SNP data from both Dutch
and Australian Holstein Bulls. They calculated tlerelation of r values at different
marker distances for sub-divisions of the same |abjom across time, as an indicator
of persistency of marker-QTL phase across generatid hey found correlation of r
values between Dutch Holstein bulls before 1995@nith Holstein calves born in
2006 is 0.9 at 135kb. They concluded from thigdaat with 20,000 markers, the
predictions of chromosome segment effects shoulashble for two generations, as
accuracy will be reduced only slightly (by a facto®) by breakdown of LD phase
over this time.
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More results are needed in real data to deternomedften SNP effects or

chromosome segment effects should be re-estimatedctise.

3.10 Validation of genomic predictions

Measures of prediction accuracfadapted from (Daetwyler et al. 2013)) . The term
accuracy refers to different statistical properidésan estimator or a predictor. The
correlation between estimated and true breedingegahas a linear relationship with
the response to selection. Therefore correlatiamdmerged as the most commonly
used metric to assess prediction accuracy. Moghefmodels used in genomic
selection are designed to predict breeding valinesefore, the predictand should be
the true breeding value. However, true breedirigesare generally only available in
simulation studies. Therefore, an important deciso be made is what should be the
predictand in real-data studies. Some of the mostneonly used predictands are:
individual phenotypes (raw or adjusted for factsush as fixed effects), averages of
offspring performance (e.g. daughter yield deviaio dairy cattle or progeny means
in poultry), and estimated breeding values (EBV)ffddent predictands contain
different signal-to-noise ratios and this requimmsideration when assessing an
estimate of predictive performance. A common pcacto accommodate this problem

is to divide the estimated correlation by the squanot of the heritability of the

predictand,\/ﬁ, or more in general, by the square root of thepraon of variance
of the predictand that can be attributed to additeffects (e.g. accuracy of bull

daughter trait deviations or deregressed proofs).

In pedigree animal models, individual accuracies @alculated from the prediction

error variance (PEV) using,q =+/1 — PEV[VarG]~-1 (or approximations thereof
(e.g. Misztal & Wiggans 1988; Hickesgt al. 2009)), where VarG is the additive
genetic variance. REML methods using a genomiaticgiship matirx such as
GBLUP, are quite sensitive to the population stritestin the sample and their allele
frequencies. The main issue is that numeratottioakship matrices and genomic
relationship matrices assume different base popuaktand this may affect the
estimation of the variance components. Setting tthe matrices to the same

numerical scale has received some attention mustatflow fitting them together in
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the same model or within creation of the H maimiXdneStep genomic selection (e.g.
Christensen & Lund 2009; Aguilaat al. 2010). This will partly correct for the

problem. However, if there are multiple breedsliwerse populations (e.g. Africans
and Europeans, heterotic groups in maize) in thepkg additional adjustements of
the genomic relationship matrix may be necessagetall subgroups adjusted to the
same base population (Ereteal. 2012). Further research is needed to correctiesc
the genomic relationship matrix in heterogeneotdsreace populations. Caution is
advised when using accuracies from PEV.

Another important metric is the slope of the regras of true on estimated breeding
values. If this slope deviates from its expectihjch is usually 1, it is called bias.

Biased estimated breeding values are an issue wheénaduals are given mating

contributions that are proportional to their estiedh breeding values, or where
pedigree and genomic information is combined talpce one breeding value. In all
cases, it is important to investigate the slope amdrcept of the regression of
observations on predictions as well as their exteets, because departures from

expected values should point to deficiencies ofitioelel.

Deciding on the target of predictionfadapted from (Daetwyler et al. 2013)). The
ultimate target individuals of genomic predictiore ahe selection candidates, but
their accuracy of prediction cannot be computed tduthe lack of predictands (e.g.
phenotypes). Hence, a testing population neetie teelected, which requires giving
thought to a number of factors. Likely the mospartant principle of selecting a
testing population is that it should mimic the telaship of the selection candidates
to the training population. Relatedness is an mambd component of prediction
accuracy, as pointed out above. If the testingufaijon is more related to the
training population than the selection candidatben the estimate of prediction
accuracy will inflated. For example, in a trainitggting scheme, it is not adequate to
test the accuracy only in individuals one genematiemoved from the training
population, if the selection candidates are mogtlignd progeny. Similarly, in
replicated cross-validation, the manner in whidtividuals are assigned to particular
folds affects accuracy. Drawing random subsewngple to implement, but if full
and half-sib families are present in the refergmmgulation then prediction implicitly

contains a within family component which increaaesuracies. Achieved accuracy
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may be significantly lower than within family aceay if individuals in selection
candidates do not share full or half-sib familiéeedarraet al. 2008). A more
rigorous test would be to randomly assign whole ili@as to subsets to make
prediction explicitly across families. Being cogamt of the impact of relationships
on the accuracy of genomic estimated breeding salakows cross-validation
procedures to be modified so that the accuracybeanalculated within and across
groups of individuals such as families, generati@enetic groups, strains, lines and
breeds. Saatchi et al. (2011) proposed an apprimctiesigning cross-validation
schemes that uses k-means clustering based on gereationships to partition the
data into the various folds to minimize the relasbips between training populations

and testing populations.

It is also important to be cognizant of the preseaed effect of population structure
(e.g. breeds, lines of common origin) when designine testing scheme. While
genomic selection can make use of otherwise unknstmncture to increase the
response to selection, similar to applicationssisoaiations mapping (e.g. Pritchatd
al. 2000), it is more often the case that the strecisialready captured by some other
means (breeders knowledge or pedigree informamorekample) (Malosettét al.
2007). The accuracy of a structured dataset mayidieer than the accuracy within
its subgroups, because the ‘structured data’ acguwrantains a component discerning
individuals based on mean genetic level of eaclysuip. If the GEBV are going to
be used to make selection decisions within famig/ €hose between a number of full
sibs on the basis of their Mendelian sampling t¢rraa effort should be made to

obtain the accuracy with which this decision camizele.

Some studies have attempted to evaluate the agcufathe estimation of the
Mendelian sampling term. For example (VanRaeeml. 2009; Lundet al. 2011,
Wolc et al. 2011) compared the accuracy of estimated breegihges predicted from
parent average or genomic information. If the aacyrof the parent average is high
(close to its limit ofx/ﬁ) then any increase in accuracy must relate lynastthe
Mendelian sampling term (Daetwylet al. 2007). If the accuracy of the parent

average is low, then genomic information may kefuldor predicting parent average

as well as Mendelian sampling, so the distinctiendmes less important. Mendelian
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sampling term accuracy can also be predicted bypaoison of accuracies of GEBVs
predicted from average genotypes of the parentsaahdal individual genotypes, as
shown by Wolc et al. (2011), or by correlating thsiduals of GEBV and predictand
when both are corrected for the parent averagenattd breeding values. In the
future the contribution of genomic information teakiating the accuracy of the
Mendelian sampling term needs to become more prmmim the validation of

genomic prediction. For example, validation dats seuld be created which contain
several (e.g. 50) full sib families with each otk full sib families comprising

several (e.g. 30) individuals. Plant breeding d&tts may be particularly suited to this

purpose because large numbers of full sibs catydssgenerated.

Regardless of the applied testing strategy, cormparwith accuracies obtained with
pedigree based models (if available) is generaligamonable approach to assess the
additional accuracy obtained from using marker nmf@tion on top of pedigree
information. This difference may be evaluated & lével of reliabilities (accuracy
squared), since this is a measure of the additieawadnce explained by the markers,
on top of the variance explained by the pedigrethanodel. It should be noted that
an accuracy obtained by testing using the Pearsoelation is never ‘context-free’

and this makes comparison of accuracies acrosgstdifficult.

Common pitfalls of validationadapted from (Daetwyler et al. 2013; Wray et
al. 2013) The main pitfall of validating genomic predictiaacuracy is the failing to
ensure that the training and testing populatiores independent. In this context,
independence does not mean unrelated but thahtbeniation used to calculate the
observations (i.e. daughter trait deviations, EBeregressedEBV) did not include
phenotypic information from the testing populatioAs discussed earlier, the testing
population should mimick the target population elestion candidates. The main
aim of genomic selection is to predict (young) wdiials that do not have
phenotypes. Thus, to ensure proper validationnhgtypes of testing individuals
should not contribute to the training observatioms.this section we discuss various
ways of falling into the non-independence trap, alihiead to inflated genomic
selection accuracy. The fundamental principleoisdt up the validation as close as
possible to the way genomic selection will be aggplin a particular breeding

program.
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Case 1. Observations of training and testing populatiamf same genetic evaluation

Prediction accuracies may be biased upwards whemphlknotypes used to estimate
the genomic breeding values are also included loutzion of adjusted progeny
means or when estimated breeding values for trgiamd testing that are obtained
from the same evaluation (e.g. Amer & Banos 2010he example is using progeny
phenotypes we wish to predict for validation wheaicualating progeny means of
parents in the reference, resulting in upwardlyséthaccuracies. A particularly bad
variation of this occurs when using EBVs with loacaracy as observations from a
genetic evaluation of all individuals. Here the \EBf training and selection
candidates is heavily dependent on their relativés.this case, the accuracy you
calculate as r(GEBV, EBV) will be the accuracy oédlicting the parent average and
will contain very little accuracy due to Mendeliaampling. This is a poor measure
of the efficacy of genomic selection. Another ep#nis using phenotypes of
contemporaries of testing individuals (e.g. sameegation and age) to calculate the
observations in the training population. This &fton would not occur in a real

breeding program and thus the accuracy attainedtisealistic.

Case 2. Selecting subsets of loci based on GWAS in dkda

A guiding principle and one of the main merits ehgmic selection is its use of all
loci to predict a GEBV. Nevertheless, it may bsidmble to reduce the number of
loci in genomic selection due to genotyping costareduce the accumulation of
errors associated with estimating many effectse [atter may become relevant when
using sequence data for genomic selection, wherendgority of variants is expected
to have no effect. One simple way to choose aefuilsswith a GWAS. If both

training and testing individuals are used to setbet most significant variants for
genomic selection, then the accuracy will be ieffaeven if the testing phenotypes
are excluded from genomic selection subsequendlg ESgure below). This is also
called overfitting and is again due to phenotypetesting individuals contributing to

the model.
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Figure from Wray et al (2013): Example of Case 2: erlap of discovery and
testing samples. An example using dairy cattle datto show the impact of
leaving the testing cohort in the discovery set, thier at both SNP selection
(GWAS) and SNP effect estimation stages or at thdfect size estimation stage
only, leads to considerable bias. Data were on 2 Z8airy bulls with ~500K SNPs
phenotyped for average milk yield of their daughtes’ milk production. The bulls
were split into a discovery sample (bulls born dumg or before 2003)Nq4 = 2,458,
and a validation sample (bulls born after 2003) o, = 274. As an aside, it also
demonstrates that string subset selection based o8WAS leads to lower
accuracy than using the whole set of SNP.

3.10 Optimal breeding program design with genomic s election

Adapted from (Pryce & Daetwyler 2012). Genomic selection allows prediction of
very accurate EBVs for young individuals. This Babstantial implications for the
design of breeding schemes. For example in a daitle breeing scheme, rather than
waiting until a bull has daughters with phenoty@cords, a process that typically
takes 5-6 years, young bulls with no progeny candesl as sires. The development
of high-throughput genotyping methods and redu@typing cost has made the
application of genomic selection feasible. Herecaecentrate on dairy cattle

breeding schemes, with brief reference to othesliock species.
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The main dairy genomic breeding schemesBreeding schemes concentrate on
changing three terms in the breeder’s equatibG:iraa[L]'l, where AGis the
genetic gain per year,is the selection intensity, is the accuracy of selectian,is

the genetic standard deviation, adnds the generation interval. Assuming that the
genetic variance is constant, one can calculateateeof genetic gain by increasing
the selection intensity and/or the accuracy of cdigle, or by decreasing the
generation interval. Genomic selection can podfigtiaffect all three of these
components at various points in the four pathwdysetection found in dairy cattle.
Most of the studies on breeding scheme design ugeeomic selection have
compared rates of genetic gain and rates of inbrgetb those achieved in
conventional progeny-testing schemes to allow &rdomparisons to current rates of

genetic gain.

One genomic breeding scheme design that has algaidgd popularity is partially
replacing progeny-testing with genomic selectioerdy young bulls are genotyped
and genomic breeding values are used to seleatealude the number of progeny-test
candidates. The advantage with this scheme is thetumber of bulls entering

progeny-testing is reduced, thereby offsettingcbst of genotyping young bulls.

Another approach is to screen a large number d$ lamd then select the best 10-20
for widespread use as young sires (Schaeffer 208@eet al. 2010b; Winkelman &
Spelman 2010; Buch 2011; de Rasl. 2011; Mc Hughet al. 2011). Most studies
assumed that bulls would be genotyped once. Theption was Winkelman and
Spelman (2010) who also included schemes where ivglie pre-screened with a low
density SNP chip to identify candidates for thd-&akeen. This second scheme is
more aggressive than the pre-screening scheme méhages progeny-testing

completely.
The most intensive selection intensity in femal¢hpays is likely to be achieved

through nucleus breeding schemes. Selection intyenan be increased further and

generation intervals reduced by using reproductdéahnologies such as MOET or
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juvenile in-vitro embryo transfer (JIVET) and sexed semen (Pedestsah 2009b;
Pryceet al. 2010b).

Rates of genetic gain and inbreeding achieved kgahg breeding scheme designs.
Using a pre-screening breeding scheme it is passiincrease the rate of genetic
gain by up to 12% (de Ro@sal. 2011). Similar results were obtained by Prycd.et a
(2010) who used a deterministic model with a reliighof GEBV of 60%. Here the
rate of genetic gain achieved was 16% more thamnaentional progeny test scheme.
The rates of inbreeding per year in PRE-SCREEN@adrfgom 0.10 and 0.20% and
were either very similar or reduced to inbreedirapt progeny testing (Buch 2011;
de Rooset al. 2011; Lillehammetret al. 2011). These results show that the rate of
genetic gain can be increased or maintained thromgtoducing genomically
estimated breeding values (GEBVs), but without mglsubstantial alterations to the
design of breeding schemes. Furthermore, theteffie@nnual inbreeding levels is

small because generation intervals remain unchafmgedconventional schemes.

Large-scale screening and use of young bulls caeplace progeny-testing
completely. The models used to estimate rates aktge gain achievable range
between +28% and +108% improvement over progertyxteélable 3.4). The rate of
genetic gain depends on the number of bulls geedtyersus the number selected as
sires (selection intensity), the accuracy of sedacand the generation interval. The
highest selection intensity was 2.67 (Konig & SveaR009) and was achieved when
the top 0.1% of animals were selected. Exactly same selection intensity and
response to selection can be achieved if the sedegopulation is 10,000 and the best
100 are selected, which is probably a more realistenario. Konig and Swalve
(2009) assumed that older females would be selexdeparents, which is why the
generation interval is longer than other schemesrisiet al.(2008) suggested that
bulls should not be used widely until two year@agé, so that congenital birth defects
can be checked. However, reducing the generatienviad will result in greater rates
of genetic gain, as demonstrated by McHw@ylal. (2011) who evaluated breeding
schemes where bulls were parents at either 2 oea3syof age. These schemes
resulted in the highest rates of inbreeding per yaaging from 0.18 to 0.70%,

mainly due to shortened generation intervals (T8blg.
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Table 3.4. Rates of genetic gain and inbreeding rfdoreeding schemes where

young bulls are genotyped and used

Authors Bulls SC Sl Reliability AG/year AG as AF/year AF/gen L

screened %

conv

Konig and 50,000 500 2.67 56% 0.31  +44%* 4.60
Swalve (2009)
Pryce et al. 1,000 20 242 60% 0.40 +59% 0.07% 0.20% 2.67
(2010)
Winkelman and 500 10 2.42 52% 0.36 +44% 3.75
Spelman (2010)
Buch (2011) 2,000 30 2.52 50% 0.29 +65% 0.31% 0.74% 2.38
Lilehammer et 750 20 231 37% 0.28 +28% 0.18% 3.04
al. (2011)
de Roos et al 1,000 20 242 58% 0.50 +108% 0.52% 1.14% 2.20
(2011)
McHugh et al. 500 30 1.99 59% 0.34 +100% 0.70% 1.73% 2.48
(2011)

SC is sires of cows

Sl is selection intensity in SC-pathway

AG %: is % increase of genomic selection over cotioral progeny testing

* compared to the rate of genetic gain of convergtigrogeny testing of Schaeffer (2006)

De Roos et al. (2011) markers explain 40% gen var

NUCLEUS breeding schemes where the male and fepadlavays are controlled are
another option to structure breeding schemes. Ratyale (2010) considered a nucleus
with 300 females selected for JIVET at 3 months baedoming parents at 1 year of
age, 20 sires were selected, becoming parentyearg of age. The scheme referred
to in Table 3.4 by de Roca al. (2011) was actually a closed nucleus of 200 cows
where each dam had 10 offspring, generating 100ésvend 1000 females. MOET
was used in this scheme, so cows would be 3 ydageowhen her ET calves were
born and the 20 selected sires would be 5 yearsTblkelrate of inbreeding was 0.52%
per year (Table 1) which was almost three timesatieual rate of inbreeding under

conventional schemes.

Pryceet al. (2010) showed that using reproductive technologiggressively could
result in very high rates of genetic gain (doulde trate of genetic gain when
compared to progeny testing). However, this was atsociated with comparatively

high rates of inbreeding, making implementationhis type of scheme less attractive.
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Overview of impact of genomic breeding schemes ates of inbreedingThe rate of

inbreeding per year ranged between 0.07 and 0.76Poypar (Table 3.4). The
relatively low estimates of inbreeding per yearortéed by Pryce et al. (2010) were
calculated using a deterministic model. While isight to compare schemes within
their study, they are not directly comparable tinestes of inbreeding rate in other

studies using stochastic methods.

The source of the increased accuracy of genomecteah over traditional methods is
a better estimation of the Mendelian sampling teffrhis allows for a reduction in co-
selection of relatives. Consider the selectiooarfdidates for a progeny test scheme,
where 2 or more young full brothers will have taeng set of EBVs. Therefore, under
truncation selection all the full brothers will Iselected. In contrast, GEBVs will
differ among full brothers and only the best wil felected. This leads to a reduction
of inbreeding per generation as seen in the pmesang scenarios. The extent to
which co-selection is improved depends how wellMendelian sampling terms can
be estimated (i.e. the accuracy of genomic selectiorherefore, improvements in
genomic prediction methods should decrease inkmggakr generation. It matters of
course what genomic selection is compared with. daéiry cattle, progeny test
schemes already predict Mendelian Sampling terntis lwgh accuracy. Thus, when
comparing use of young genomically tested bullsptogeny test schemes, the
accuracy of young bull GEBVs is generally lowerrtithe accuracy of progeny test
bull EBVs. This results in increased co-selectionthe young genomic scheme
versus the progeny test schemes leading to higiteeeding per generation in the
young genomic scheme (de Rosisal. 2011; Mc Hughet al. 2011). This trend is
moderated if GEBVs are available on female selaatendidates resulting in less co-
selection because the GEBVs will be more accufae traditional EBVs in cows
(Schaeffer 2006; Daetwylet al. 2007; Sorensen & Sorensen 2009).

Implications for the reference population. Continuous re-estimation of marker
effects in a genotyped reference population wittueste phenotypes is necessary for
a successful genomic selection program (e.g. Hadsied. 2007). One risk with
replacing progeny-testing with breeding schemes sbigeen large numbers of young
bulls and only select a small number of these fmtegpread use, is that fewer bulls

will be added to the reference population on anuahbasis than in the past. This
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would decrease the accuracy of genomic predictiorth@ distance between the
current dairy population and the majority of anisnah the reference population
increases (Lillehammaeat al. 2010). Countries with small populations may be enor
affected by this issue than larger populations (Mghiet al. 2011). Considerable
effort has gone into increasing the size of curreférence populations and this effort
must continue to ensure reference populations renetevant to selection candidates.
One of the strategies used to increase referenpalgi®mns is to share genotypes.
Currently, the Eurogenomics (France, Germany, thesthélands and
Denmark/Norway/Sweden) and North American (USA a@dnada) reference

populations include approximately 20,000 and 12 @@es respectively (Table 2).

Genotyping of cows is another way in which a largefierence population can be
achieved. However, currently genotyping costs acehigh to genotype commercial
dairy cows. This means that only high merit (otegdlicows will be genotyped. High
merit cows may have been preferentially treatedthacefore their phenotypes could
be biased. Therefore, adding cows to the referpopelation, in some cases could be
detrimental. However, there are examples of rebearojects where females are
being genotyped specifically to become part ofréference population. For example,
in Australia the Dairy Futures Cooperative Rese&ehtre’s 10,000 Holstein Cow
Genomes project, where 10,000 cows (from commehaads) have been genotyped
to become part of the reference populations. @b éallecting data on cows may
actually be more important in the genomic era tner before, as cows may become
a key part of future reference populations. Degngggenotyping costs may allow all
females to be genotyped in the future. Buch (2@&hhpared using progeny tested
bulls in a reference population to using their dgped daughters and phenotypes in
the reference. The accuracy of genomic selectias gher when using the cows
due to a loss of information when using the progesyed bull. Possibly because the
‘phenotypes’ used for progeny test bulls are daergtrait deviations which are the
mean of a bull's daughter group adjusted for fixedfibcts, thus ignoring variation
around the mean. Whether this increase in accuabmye warrants genotyping of

very large numbers of cows remains to be invesjat

Another attractive aspect of having females inrdference population is that novel

traits that are difficult or expensive to measuld be included in breeding
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programs. Examples include health disorders, sadipaf-diseases recorded by hoof
trimmers (Buchet al. 2011), residual feed intake (Pryeteal. 2011a), milk fatty acid
composition (Soyeurtet al. 2011) or detailed recordings of reproductive
measurements, such as pregnancy diagnosis datao@ios could be to set up

managed groups of information herds, selectednipeiccable record-keeping.

In the pig, beef, sheep, and poultry industriasagor impact of genomic selection is
likely to be increased genetic gain for hard t@sefor traits. This would include
traits like disease resistance in poultry and meatity in pigs. A sheep information
nucleus has been implemented in Australia, whemgyrddficult to measure traits are
recorded (van der Weet al. 2010). This population serves as the reference
population for genomic selection (Daetwyétial. 2012b). In pigs, sheep and beef
cattle, genomic selection is often applied in cfioses] systems (Saatattial. 2011;
Clevelandet al. 2012).
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4. Imputation of genotypes in animal breeding

4.1 Introduction
If we knew the haplotypes individuals carried atmsnvpoint on the genome, and we

knew what SNP alleles were contained within witbreanique haplotype in the

population, then we could infer or impute the ggpes an individual carries for any
SNP locus.

This would be useful for a number of reasons.

Although the SNP array technology is that typicaifgater than 99.9% of
all SNP are called per individual, at high qualityis still leaves a
considerable number of SNP genotypes missing piridual. For
example, with 50,000 SNP, this would result in 58simg genotypes. For
larger arrays, the number missing will be even arghMissing genotypes
complicate the implementation of genomic selecéind genome wide
association studies — the X matrix will be incontplelmputation can be
used to infer these missing genotypes

Imputation could be used to recover the high dgrgganotypes for
animals genotyped with a low density array. Faregle, we may be able
to impute 50K genotypes for an individual from attgenotypes from a
7K array.

Combining data sets. This particularly usefuliegroup of individuals
are genotyped for one panel of SNPs, and anotbepgs genotyped for
another panel. Provided there is sufficient oyedatween the two panels,
the full set of SNPs can be imputed into all induals, and genomic
prediction or genome wide association studies caoged, potentially
with greater power.

Imputation could be used to recover genotypes t@ilgill genome
sequence data (eg. very dense SNP /insertionsadetiotis, copy humber
variants, to enable genomic predictions or genoide &ssociation studies
from this full sequence data.

As will be described in the next chapter, thenensertainty in calling

genotypes from full sequence data, particularthéf coverage of sequence
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is low. For example, if a region of the genomedguenced at a depth of
two sequences, it is difficult to determine if ihdividual is heterozygous
or homozygous, as both sequences may be derivedtifre paternal or
maternal chromosome. Imputation is used to takemtage of the
linkage disequilibrium in the population to improwe probability of

correctly calling genotypes from sequence data.

4.2 How does imputation work — Hidden Markov Mode Is

As described above, if we knew the haplotypes iddals carried at every point on
the genome, and we knew what SNP alleles were iassdavith each unique
haplotype in the population, then we could infemopute the genotypes an individual
carries for any SNP locus.

In practice of course, we don’t know the true hayes that each individual carries.
Hidden Markov Models (HMM), are a useful approaeeh In a HMM, the hidden
state, the true haplotypes in the population, gdedhe observations, which are the
genotypes. HMM have been widely used to estirtteggorobability that an

individual carries a particular genotype at a jgattir SNP, given the genotype data

for that individual at the other SNP and the réshe population.

Many of the methods for imputation that use HMNMbaiske advantage of a reference
population, genotyped for all SNPs, that has beewipusly phased. These
reference haplotypes are designated H. Thehahwtypes carried by the target
individuals for imputation (eg. those genotype@ &w density SNP array) are
considered as a mosaic of the haplotypes in tleeeete. “Mosaic” means that the
target individual must comprise of haplotypes fritra reference population, with
some crossovers between the haplotypes, and soeneuation. This is illustrated

in Figure 1. Some methods assume this populagsrbkeen previously phased from

haplotypes to genotypes, using the PHASE prograraxample.
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Figure 1. From (Marchini & Howie 2010). A cartoonof genotype imputation.

A. A phased reference population is the a requireent in many imputation
programs. B. The genotypes in the target populain are phased, then assigned
a mosaic of the reference haplotypes via a hiddenarkov model.

If we consider a chromosome with L loci, then tive tomponents of a Hidden
Markov Models are

- hidden states (S). In this case these are indigat@ables assigning the
alleles at the reference haplotypes to target iddals. There are one 1 to
L indicator variables, and each indicator variatdenprises two numbers,
one for the paternal and one for the maternal coemme. For example,
in the Figure above, the value of S1 for targeividdial one would be 1,2.

- observed values. In this case these are the geesiby of which some
may be missing.

- state transition probabilities. This is a h x hinxadescribing the
probability of moving from one haplotype to anotffer example through
recombination or mutation).

- emission probabilities. In the HMM, the underlyistate (haplotypes) are

said to “emit” the observations, the genotypes.thfg@eemission
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probabilities are the probability of observing tienotype carried by an
individual for a particular underlying hidden stateéor example, if the
genotype at a particular locus was AT, and the tyidg hidden state was
AACG, with the bold allele the allele at the curr8MP, the emission
probability would be 1 (assuming no genotyping grro

- Initial state probabilities. This is the probatyiihe HMM starts in a
particular state, eg at a particular haplotype.

The methods for imputation differ in their assuraps about the hidden states, the
way state transition probabilities are derived,s=ioin probabilities, and initial state

probabilities.

The major strategies for imputation described aliterature will be reviewed briefly
here. Much of the material is from two reviews ¢btani & Howie 2008; Marchini
& Howie 2010) . Both reviews are suggested furteading.

IMPUTEL.0 uses a reference population as described abowegegof phased
haplotypes), and parameters describing the recatibimrate to estimate the
probability of genotypes.

The probability of the genotypes for an individ@lto be imputed, given the

reference haplotypes H, is then

P(GilH, 0, p) = Z P(GilS, 0)P(S|H, p)

Wherep is the recombination rate map across the genfnsea mutation parameter
that (rarely) allows the genotype vector for indival i to differ through mutation
from the reference haplotypes that they are derfirged, and S is the hidden states
(haplotypes). S can also be thought of as a desagrix which “copies” the selected
reference haplotypes to the target genotypes.ekample, if there are 5 loci, and
individual i is a mosaic of haplotypes from theereince 1 and 2, with a crossover
between the third and fourth loci, then S would be

11100

00011

The probability is calculated by integrating ovimpassible states the probability of
the observed genotypes given the states and thatiorutate, and the transition
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between states P(SHH, This term is the probability of the States givke reference

haplotypes and the recombination rate.

The recombination rate map must be supplied to IMPLIO. A forward-backward
algorithm for HMM is used to estimate the probadpitistributions (Rabiner 1989).

IMPUTEZ2.0 is a modification of IMPUTEL.0. This method fiettimates the phase
of SNP in the target population, then comparesatipbsised haplotypes to those in the
reference population to impute the missing alleléss this algorithm uses haploid
imputation (eg haplotypes in the target are contptrehe haplotypes of the
reference, rather than comparing genotypes), ttt@esiof this method (Howiet al.
2009) demonstrate that this leads to much fastpuiation.

FastPHASE FastPHASE (Scheet & Stephens 2006), is an noadiiéin of the
PHASE program already discussed. The hidden states model are clusters of
haplotypes rather than the haplotypes themselFesexample, a cluster may be a
group of haplotypes that are almost identical, \ilign exception of a (rare) single
mutation. Clustering very similar haplotypes gheet¢duces the number of hidden
states that must be considered, which decreasgsutation time. The default setting
for the number of clusters at a given genomic locain fastPHASE is 20.

The probability haplotype | for the current indiuil comes from the'kcluster is

weighted according to how many haplotypes of typeke been observed:

P(Gi|a,0,71) = Z P(Gi|Si)P(Si|a,1)

Wherea is a vector of the proportion of times each ofltaplotype clusters is occurs,
eg. The weight for the kth haplotype cluster ma@!#& In this case is the

frequency of alleles within each cluster. The sraon probabilities, the probability

of switching between a cluster for an individualthe term P(Z#,r). r is a
combination of recombination rates and mutatioagaboth of which are estimated in
the fastPHASE program.

The likelihood of genotype Gi is then
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L(Gi|H,a,0,7) = 1_[ P(Gi|a,8,1) 1_[ P(Hi|a,0,1)

An Expectation-Maximisation algorithm is used totfie model, and compute

genotype probabilities.

MACH (Li etal. 2010). MACH has some similarities with FastPF¥A however it
uses the full set of haplotypes as hidden stathsmréhan haplotype clusters. During
each EM iteration of the model fitting, the currestimates of haplotype phase,
except for the individual being fitted, are usedresreference haplotypes.
Individuals are removed from the set of refereragldtypes one at a time and are
updated, with the updated pair of haplotypes feritiaividual is sampled from the

posterior probability distribution, based on thereat reference haplotypes:
P(GI|D —i,0,7) = Z P(GilS, T)P(S|D — i, )
S

where D—i is the set of estimated haplotypes ohdilviduals except i, S denotes the
hidden states of the HMMj, is an ‘error’ parameter that controls how simfEaris to

the copied haplotypes (to account for genotypimgrgandd is a ‘crossover’

parameter that controls transitions between thddmdtates. The parametgrand6

are during each iteration (eg estimated from tha)dzased on counts of the number
and location of the change points in the hiddetest& and counts of the concordance
between the observed genotypes to those impligdédogampled hidden states.
Imputation of unobserved genotypes using a referpacel of haplotypes, H, is
naturally accommodated in this method by adding khé set of estimated

haplotypes D—I (Marchini & Howie 2010).

BEAGLE (Browning & Browning 2009). BEAGLE uses a diffateapproach to

define the hidden states to the methods definedeabbocal clustering of haplotypes
is used- that is, for a given genomic location,gbssible hidden states are reduced to
those that are observed in the reference. Thisdentrast to IMPUTE and MACH,
where at any position the number of states is tleher of reference haplotypes
squared. So the number of hidden states in BEA@&ies with location. In

addition, a haplotype cluster can only emit a ®rajlele (eg A or T) — haplotypes

carrying different alleles are assigned to différdasters, and there is O probability of
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genotyping error assumed. The idea behind thesditaans is to reduce
computation. A final difference is that many hdppe configurations are assigned a
probability of zero by the Browning model. Thisoals the model to be more
parsimonious (eg better fit to the data), but meahasthe haplotype model must be
constructed from all sampled individuals, rathertifrom a subset acting as a
reference panel. Otherwise if a new haplotypencoantered in the target
individuals, there may be no haplotype configuraiiothe model that is consistent
with the individual's genotype. Some of the diéieces between BEAGLE and
MACH/IMPUTE and fastPHASE are summarized in FigRr@grom (Browning &
Browning 2009)).

One key difference between BEAGLE and MACH/IMPUTESHPHASE is that no

use is made in BEAGLE of population parametersnésoation rates or mutation
rates. When the reference population is sma#,itha disadvantage for BEAGLE, as
the only information is from the data in the cutrganomic location, while
MACH/IMPUTE/fastPHASE can gain accuracy from theliéidnal information on

the population and genome wide parameters sucimt@oation rates and mutation
rates. However when the data set is large, esBtigithese parameters can incur
additional computational cost, and using the pataraavhen they are inaccurate may

actually decrease the accuracy of imputation.

Li and Stephens framework Browning model
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Figure 2. lllustration highlighting major differen ces between models based on the Li and
Stephens framework (2003), the basis for MACH, IMPUE and fastPHASE, and the Browning
model (Browning 2006), the basis for BEAGLE. Excerts of the models covering three markers
(SNPs i-1, i and i+1) are shown. Ovals are hiddemases of the models. For the Li and Stephens
framework, these states are defined by the refereechaplotypes, while for the Browning model
the states are localized clusters of haplotypes. Mothat the graphical representation of the
Browning model is that given in Browning (2008), whe earlier representations had states as
edges rather than as nodes of the graph. The Browrg model will tend to have fewer states at
any given marker than will unconstrained models basd on the Li and Stephens framework, and
the number of states can vary from marker to markerfor the Browning model but is fixed in the
Li and Stephens framework. Arrows between states im one SNP to the next are transitions of
the HMM. For the Li and Stephens framework, transitions with highest prior probability (those
seen in the reference haplotypes) are shown with labarrows, while thin arrows allow for
historical recombination. For the Browning model, here are at most k transitions coming out of
a state, where k is the number of alleles at the remarker (i.e. 2 for SNPs), which helps to keep
the model parsimonious. Arrows coming out of the tp of the states are possible emissions of the
HMM, which are the observed alleles. For the Li andstephens framework, emissions with
highest prior probability (the alleles on the refeence haplotypes) are shown with bold arrows,
while thin arrows represent mutations to other alldes. The reference haplotypes here are 011,
010, 101 and 001. For the Browning model, there @ly one possible emission from each state,
which helps to keep the model parsimonious. The mets shown are illustrative only. The actual
form of the Browning model will vary depending on he alleles of the reference haplotypes
outside this window of markers.

A good example is given in Browning and Brownin@@2). They compared the
performance of IMPUTEL1.0 and BEAGLE, in the Wellmifrust Case Control
Consortium (WTCCC) data, which includes approxinya2©00 cases for each of
seven diseases (bipolar disorder, coronary ariegade, Crohn’s disease,
hypertension, rheumatoid arthritis, type 1 diabedes type 2 diabetes) and
approximately 3000 shared controls. The comparnsad data from chromosome 1
with 53,683 markers genotyped A subset of 24,70&ena was masked and imputed
with either BEAGLE or IMPUT1.0 in 188 individualssing a reference panel of 600,
300 or 60 individuals with full genotypes. Thelauts found that while IMPUTE1.0
was more accurate with smaller reference set S4e8GLE was more accurate
when the reference size was bigger. The allelguacy correlations were 0.990
(BEAGLE) and 0.992 (IMPUTE) with a reference paoi60 individuals, 0.997
(BEAGLE) and 0.998 (IMPUTE) with a reference paoeB00 individuals, and 0.998
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(BEAGLE) and 0.998 (IMPUTE) with a reference paoi600 individuals. The
authors concluded that the difference in accuratywéen IMPUTE and BEAGLE is
substantially smaller than the gain in accuracyioletd from using larger reference

panels.

4.3 Including information from pedigree to improve the
accuracy of imputation

There is additional information for phasing, andréfore imputation, if the pedigree
amongst the individuals in the target and refergroqmulations are known. For
example, if a sire has large number of offspring,genotypes can be phase into
haplotypes by simply counting the alleles acrossiarkers that occur together
(allelic co-segregation). Trios, which consistather, mother and offspring, and
sometimes used in human genetics for the same gewrp&/’hen this information is
known, the number of hidden states that must beidered can be reduced to four,
corresponding to the paternal and maternal alEié®th the mother and father.
Druet and Georges (2010) extended both BEAGLE astPHASE to take advantage
of pedigree structures more typical of livestock arop populations, for example
large half sib or full sib families. In their agarch, sires with six or more offspring or
individuals with five or more sibs were phased gsatieleic co-segregation and
linkage approach. Then these “known” haplotypesewsed in 1) fastPHASE, to
estimate the parameters of the EM algorithm orPABLE, to generate the directed
acyclic graph (DAG) describing the hidden statemmgition and emission
probabilities. Either BEAGLE or fastPHASE are thran. In dairy cattle, recent
results suggest that using the pedigree informatighis way, prior to running

BEAGLE, can improve the accuracy of imputation (Etrpers com).

4.4 An alternative approach to phasing and imputati  on: Long
range phasing

An alternative approach to phasing and imputatsaio iexploit the fact that some
individuals share a recent common ancestor, andftire share long chromosome

segments which are identical by descent. Thisisqularly true of livestock
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populations, where some sires have very large nuofliescendants. As described
by Kong et al (2008), this leads to a phasing agghdased on the key observation
that if animals have non-conflicting homozygote @fgpes over a long string of
consecutive loci, they have at least one long hgpé&in common. This
requirement, of a long string of loci, leads toighhprobability that the common long
haplotype has originated in a common ancestors@gntical by descent as well as
identical by state). The method proceeds by cdengig one individual at a time, and
identify either real or “surrogate” parents (if tteal parents are unknown). As
describe by Kong et al. (2008) and Hickey et &1, surrogate parents are
individuals who share a haplotype with the indiatlbeing considered, identified as
those individuals that do not have any opposingdmygote genotypes with the
current individual. Inference of the phase at dachs for the current individual
within the paternal/maternal haplotype is attemfgdtepping through the
paternal/maternal surrogates until a surrogateusd that is homozygous at that
locus and thus can be used to declare the pha#®e durrogates that are one degree
removed from the current individual cannot be usedeclare phase, eg they are
heterozygous, surrogates of the surrogates arectedl, and so on, until a
homozygote is found, Figure 3. Hickey et al. (20ddmonstrated that using a
modified long range phasing algorithm in livest@dpulations led to extremely
accurate phasing, in reasonable computing times iSHikely because livestock
populations have relatively small Ne, so large sepsiof chromosome are shared

between individuals.
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00010011110010101100110011

Figure 3. From Hickey et al. (2011). lllustrationof the long range phasing

process.

As demonstrated by Daetwyler et al.(2011), and elydpers com), the principle of
comparing long stretches of chromosomes betweeawidgls to identify common
segments can also be used to impute and phaseghggsiotypes. They
demonstrated this approach gave more accurate atnputesults than fastPHASE in
a dairy cattle population, in a fraction of the garting time.3.
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4.5 Results of imputation in livestock populations.

In dairy cattle, accurate imputation from low déypsnarkers to 50K SNPs has been
described by a number of authors. Weigel et &l1Q2 evaluated the accuracy of
imputing up to 43,385 SNP in Jersey cattle, wheh, i, 5, 10, 20, 40, or 80% of
these loci were genotyped in a target populatidath IMPUTE2.0 and fastPHASE
were used for imputation. They found the accudynputation was low (<0.80)
when fewer than 1,000 SNP are used, but when £00®were used the accuracy of
imputation was 0.95. Weigel et al (2010) also ass@she effect of imputation on the
accuracy of genomic estimated breeding values (GEBWey concluded that
provided the target population was genotyped féeagt 3000SNP, with imputation
to 43,000 SNP, GEBV were predicted with an accutd@®5% of what was possible
with the real 43,000 SNP. They also demonstrdtatiusing the imputed genotypes
resulted in GEBV that were approximately 5% moreusate than using the 3000

SNP alone, without imputation.

Similar results for the accuracy of imputing 3,NP to approximately 50,000 SNP
have been found in Holstein-Friesian dairy cat@dang and Druet (2010) reported
error rates of 3-4% in this situation using DAGPHA®ruet & Georges 2010),
though their main conclusion was that the accucdaésnputation was dependent on
the genetic relationship between the target indi@icnd the reference population
(discussed below). Dassonneville et al.(2011ngighe same method observed
similar error rates when imputing 3K to 50K in Epean Holstein cattle, and went on
to demonstrate that the loss in accuracy of GEBWguthe imputed genotypes rather
than 50K genotypes was only 0.02. Daetwyler gt28111) reported slightly higher
error rates with their implementation of the loagge phasing algorithm, although
the used as smaller reference population, andigoeithm outperformed fastPHASE.

Using BEAGLE in the same population gave errorgatie5%.

Another interesting potential application of impida was demonstrated by Druet et

al. (2010), where two populations, each genotypeddparate panels of
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approximately 28,000 SNP, and overlapping by apprately 9,000 SNP were
imputed up to 60,000 SNP with very low error rdteste that in this study all animals
were actually genotyped with 60,000SNP, but thalteslo demonstrate the
possibility of meta-analysis of populations geneypvith different SNP panels.

In pig and chicken breeding, moderate sized fblifamilies are the norm. In such
populations, another imputation strategy is possihereby parents are genotyped
for a dense (say 50K) marker panel, and the ofigpare genotyped with a very low
density marker panel (say 384 SNP), as outlineHddyier et al.(2009). Given the
limited number of recombinations that occur betwparents and offspring, this very
limited number of markers is sufficient to determinhether progeny have inherited
maternal or paternal chromosomes from each paidm.rest of the markers can then
be “imputed” if the haplotypes of the parents amewn. Habier et al. (2009)
demonstrated this very low cost strategy couldltésyrediction of genomic
breeding values with accuracies nearly as hightag iprogeny had been genotyped
for the full 50K SNP. This strategy is now beirgged in pig and chicken breeding

programs (Dekkers, pers com).

In sheep, few results have been published. Hayals @011) reported fairly low
accuracies of imputation in three sheep breedsijtadlith very small reference
populations (80 to 200). Accuracies of imputing0@® SNP from 5,000 SNP was
80% for Poll Dorsets, White Suffolks and Borderdesters. For Merino sheep, even
though a much larger reference set was used, turagy of imputation was only
71%, likely due to the very large effective popidatsize for this breed (see below).
While imputation is likely to be an important segy in crop species, no results have

been published to date.

4.6 Factors affecting accuracy of imputation

4.6.1 Size of the reference population.
It is critical that the reference population isgarenough to capture all the haplotypes

in the population. If a target haplotype is endewed which has not been previously
observed in the reference population, the imputatiomissing genotypes is unlikely
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to be accurate. The size of the reference isialportant for other consideration — in
fastPHASE for example, haplotype (actually clustexdjuencies are used in the
model, and these will be inaccurately estimateth witow number of markers. In
BEAGLE, the accuracy of imputation is very deperdenthe size of the reference
population as this determines how well the direetegtlic graph (DAG) describes
the population. If the reference is too smally¢hmay be haplotypes in the target
which are not represented in the reference, saltbles on these haplotypes will be
poorly imputed. Browning and Browning (2009) dersivated that increasing the
size of the reference had a large impact on theracyg of imputation, as was larger

than the differences between methods.

4.6.2 Density of markers and effective population size.

If the markers are not sufficiently dense thatehisrsubstantial linkage
disequilibrium between them, the methods using [aijfmn level algorithms (eg
MACH, BEAGLE, IMPUTEZ2.0, fastPHASE), will performevy poorly. This is
because haplotypes encountered in the referencleagbotypes encountered in the
target population, although they have a limited banof alleles in common, could be
identical by chance rather than identical by chasoehe identity of the missing
marker alleles in the target does not match thos$lea full genotyped animals. In
dairy cattle population, linkage disequilibriumsisfficiently high (due to the low
effective population size) that 3K SNP can be usddthpute 50K with low error
rates, provided the reference population is séffity large. However in a number of
sheep breeds, the same number of markers cansatbessfully used for imputation
using population based methods, as the level k&tje disequilibrium is too low, a
result of higher effective population size tharairy cattle (e.g. Hayeat al. 2011).
Even if the marker density is too low for succeksfiputation using the population
algorithms, within family linkage can still be exgld in some situations to obtain
accurate imputations (e.g. Habetial. 2009).

4.5.3 Genetic distance from the reference population.
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Particularly when imputing from low marker denssti@g 3K to 50K), the accuracy
of imputation is likely to be highly dependent ¢we igenetic distance of the target
individual from the reference population (e.g. Ztp&Druet 2010). If for example
the individual has a sire in the reference, hisar3K marker haplotypes will be
readily identifiable among the 50K haplotypes. Hwer if the individual does not
have a sire, or a more distant relative in theregfee, the chance his or her 3K
haplotype has previously been observed (withoetrvweining recombination)
diminishes rapidly. In a sheep population, Hayesl.2011) demonstrated that 64%
of the variation in accuracy of imputation amongyéd individuals was accounted for

by average genetic relationship to the reference.

Allele frequency. Another reason for using a large reference il is to ensure
rare alleles are captured, and can be accurat@lyted into the target individuals.

For rare alleles, the probability of imputing the@rect genotype by chance is high, as
the majority of the individuals will be homzogygoadias the common allele. However
if the accuracy of imputation is corrected for Hmmzygosity of the markers, it is
clear that the accuracy of imputation is actuallyér for rare alleles, Figure 4.
Another way of interpreting this is to think of thensequences for GWAS
association study. If an allele is rare, the nundfg@phenotype observations on that
allele is low. If a significant proportion of theesare actually incorrect due to the

imputation, the already limited power will be gigatduced.
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Figure 4. From Hayes et al. (2011). Proportionfaonaximum possible
imputation accuracy that was achieved (50K to higlilensity genotypes) by minor
allele frequency, in a terminal sire sheep breedThe proportion of maximum
possible imputation accuracy was calculated as treeccuracy of imputation that
was achieved minus the accuracy of imputation thavould be achieved by
chance, that is random sampling of genotypes condinal on genotype
frequencies for each marker divided by one minus th accuracy of imputation

that would be achieved by chance.

4.6.4 Why does imputation lead to more statistical power?

An obvious question is, if there is already enourgbrmation in haplotypes of low
density markers to accurately impute up to higlesrsity markers, why would the
imputed genotypes add any power to genome wideias®m studies or increase the
accuracy of genomic estimated breeding values? e@planation is that while testing
the haplotypes themselves would require a facttdr multiple levels, with degrees of
freedom lost corresponding to the number of haplegyl, testing a SNP with two

alleles leads to the loss of only one degree @ftfoen.
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Further, if the GWAS is done across breeds, th&kenatensity may be such that
imputation is from the sparse markers is only gmeswithin breeds (eg the
haplotypes only persist within breeds), this catl the same SNP allele being
imputed across breeds, such that an across braechtebe carried out.
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5. Genome sequencing for genomic selection and
Genome wide association studies

This short chapter suggests some potential advesitaigusing whole genome
sequence in genome wide association studies arahgeselection. As there are
very papers or results with full genome sequente, diae suggestions here should be
considered hypothesis for testing, rather thanltebased on evidence. This area is
unfolding very rapidly, so some of the ideas pragbselow may well be out of date

shortly after the time of writing (2012)!

5.1 Motivation

If all the individuals in a population could be seqced, all the genomic variants in
the population would be captured. This include$SNsmall insertions and deletions,
and copy number variants (CNVs). Why would thiedfé genome wide association

studies and genomic selection?

For genome wide association studies, the advamsag®vious. If full sequence data
is used rather than a panel of SNP markers, treeadtual mutation affecting the trait
will be present in the data. So potentially, th& &S could lead to direct
identification of the causal variant. In practigegre may be other variants in
complete LD with the causal variant, so that fumeal information has to be used to

refine the candidates.

For genomic selection, the advantage of usinggelome sequence data is less
obvious. If genomic predictions are already based large number of SNP in high
LD with QTL, using full genome sequence may not adcth to accuracy and may
with some methods in fact decrease accuracy, dherery large increase in the
number of effects that need to be estimated frorhgpes the same number of
phenotypic records. However, the sequence datd amrease the accuracy of
genomic predictions in a number of situations

1) If LD between the QTL and SNP is incomplete. lis gituation, the full QTL

effect is captured only by the sequence data ahyhthe SNP data (as the
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2)

3)

actual causative mutation is now in the data sehjs is especially likely if
some of the QTL alleles are very rare, while thgomitg of the SNP alleles on
the widely used arrays have quite high minor alledgquencies. Meuwissen
and Goddard (2010), using simulation, demonstratgé% increase in
accuracy from using full sequence data over theserSNP panel they
simulated

If genomic predictions are made across breedsnuilii-breed populations,
using full sequence data is likely to be partidyladvantageous, as there is no
longer the need to rely on SNP-QTL associationskvimay not persist across
breeds.

Persistence of accuracy of genomic predictionsth\&rrent marker
densities, for example the 50K SNP array in catitle,accuracy of genomic
predictions decays surprisingly rapidly with eitlgeginerations removed from
the reference set, or genetic distance from trexeate set (Habiet al.

2007). This is because, with SNPs spaced evefikb,@he SNP-QTL
associations break down quite quickly. With fdfsence, the QTL
themselves should underlie the prediction equatiorthat the decay in
accuracy is greatly reduced. In their simulatiovisuwissen and Goddard
(2010) demonstrated there was very little decagcituracy over generations
when full genome sequence was used. This is p&atlg important for
expensive to measure traits, like feed conversificiency and methane
emissions, where the cost of updating the prediatiguation could be

prohibitive.

5.2 Which individuals to sequence?

As sequencing is still expensive compared to tis¢ abgenotyping (though this cost
has declined more than one million fold in ten geas is likely to keep declining), it
is unlikely, at the time of writing at least, thhe entire reference population will be
sequenced. Rather, a likely strategy is that ahfemdred or few thousand individuals
will be sequenced, and imputation used to imputevdriants in the sequence
(including SNP, indels and CNV) into the full redece population (e.g. Meuwissen
& Goddard 2010; Le & Durbin 2011). One obvious wayhoose the individuals
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then is to choose those that will maximise the emmyof imputation, or equivalently,
capture the highest proportion of genetic variatiothe target population. This leads
to sequencing of key ancestors. To choose amtimggiossible ancestors, the
following algorithm could be used (Hayes and Godd#i07).

Let the number of potential key ancestorsitzad letA be annxn matrix which is the
additive relationship matrix among thenimals in the whole population. Lebe an
nx1 vector with thenr animals ordered in the same way a#é jrandc; = the average
relationship between animiaand the whole population. Consider a sub matrii of
(Am) containing the relationship between a subsef the animals, to be sequenced,
and letc,, be the equivalent sub vectorofThenp=An,"cn, is a vector whosg"
element is the proportion of the genes in the wipolgulation that derive only from
animali amongst then key ancestors arll is the total of the elements pfand is
the proportion of genes in the whole population treaive from them key ancestors
(wherel is a vector of 1s). Therefore to select tmancestors that capture the most
genetic variation in the population find the sulibat maximisg’1l. This can be
done either by stepwise regression, which can be 8y finding the single individual
with the largest value of p, choosing the nextvidlial by setting the individual with
the previous highest contribution to Ogp recalculatingy, and so on. A genetic
algorithm can also be used.

An example of the use of this algorithm applieddal data is given in Figure 1 for

the Poll Dorset Sheep breed. Sequencing 50 kegstors would capture 35% of the
genetic variation in this breed.
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Figure 1. Proportion of genetic diversity (as meased by pedigree), captured by

subsets of groups of rams, ranked from the most teast influential.

5.3 Imputation of full sequence data

Once a subset of individuals, perhaps the key éamiseare sequenced, the next task
is to impute the variants that occur in the segeento the reference population for

GWAS or genomic selection.

The first step is to sequence a reasonable nunfilvedigidual, then variants are
identified between the individuals and betweent#ie chromosomes (paternal and
maternal) of the individuals, followed by callin§genotypes in the each sequenced
individual. To identify variants and call genotgpéhe properties of the sequence
data must be taken into account. While it is belythre scope of this chapter to fully
describe these and algorithms that have been oséais purpose, the properties of
the sequence data that must be dealt with areblariaverage of each base in the
genome, and variable quality of the sequence dHte. variable coverage arises
because of the process used to sequence genomels,isvio shatter each genome
into small pieces (perhaps 150bp long), sequereseitand then align the reads to a
reference genome (a genome that has been asseonéNgolisly). The probability

that each small piece of genome is sequenceddonanand many genome locations
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are sequenced multiple times. When the readdligreed to a reference genome, this
results in a depth of coverage (the number of tieeeh base is sequenced) which is
approximately poisson distributed, with mean th@meoverage set by the laboratory
(“the depth of sequencing”). For example, if therage fold coverage is 4, then
1.8% of the genome will not be covered at all @@) = 4e*/0!). One of the major
challenges for calling variants, and genotypetas for truly heterozygous sites, the
probability that both alleles are observed in thguence data is low at low fold
coverage. A further challenge is the high ratsemjuence errors, these occur
approximately one every hundred base pairs withllilvaina technology at least.
Algorithms have been devised to take both sourtesror into account when calling
genotypes from the sequence data. The best dgarigive probabilities of each
genotype (for example AA,AT and TT) at a putatiaiant for each individual,

rather than an absoloute genotype call. Theseapilities take into account the depth
of sequence reads, the quality of the reads atdbation. A recent paper (Danecek
et al. 2011) describes software implementing such arriéihgo. The 1000 Genomes
paper (1000 Genome consortium (2010), supplement¢ading is also recommended

reading here.

Population level information can also be used twaase the accuracy of calling
genotypes from the sequence data. Both MACH antlBEE, described in the
Chapter 4.0, have been modified to take in genopypbabilities calculated from
sequence data, run imputation and therefore expbgtlation level information to
improve the accuracy of genotype calls. Againhlibese approaches are well
described in the 1000 Genomes consortium papeO§28upplementary methods.

Once the genotypes have been called in the sequaticiluals, they can be used as
a reference population for imputing the variantthe sequence into the group of
animals with 50K or 800K genotypes. This can beedasing any of the imputation
programs, provided they are computationally effiti@as the number of variants is
likely to be very large! Note that it may be wanttile to use genotype probabilities

here rather than absolute genotypes, to accouainfpuncertainty in imputation.
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5.4 Methods for genomic prediction with full sequen ce data

Once the variants in the sequence data have bgrrtgchinto the animals with SNP
array genotypes and phenotypes, a prediction equesin be derived. The question
is which genomic prediction method is appropriatethis data? At the time of
writing, this question had not been answered ihdata, so what follows is
speculation. If we assume that quantitative traiescontrolled by perhaps a few
thousand loci, then we would like our genomic pcedn method to attribute effects
to these 1000s of loci, and set the rest of thecedfof the variants (which may be in
LD with the causative mutations, but are not thesesive mutations themselves, to
zero. In this case, a BLUP method, which assumegffect of all variants is small,
non zero, and normally distributed, is inapprogriad method such as BayesB, or
BayesCpi, which allow for a large number of variafiects to be set to zero, would

seem to be a much more appropriate method.

In their simulation of a population with sequenegag with a tens of QTL, and very
large number SNP, Meuwissen and Goddard (2010) dsimraded very considerable
advantage in the accuracy of GEBV for BayesB ovddB (up to 40%). However it
must again be pointed out that this is simulated dath a simple genetic

architecture, and the methods need to be testexhimata set.

5.5 An example of using full sequence data. Ageno me wide
association study in Rice.

An elegant example of the power of a genome widea@ation study with full
sequence data was provided by Huang et al. (2@&h6me wide association studies
of 14 agronomic traits in rice landraces”. A kelyvantage they had was they were
using inbred lines, so there were no heterozygeustypes for any variant in the
data, so very low coverage sequencing could be. uBkdy sequenced 517 rice
landraces (inbred lines!) at only 1x coverage. sEhaes represented ~ 82% of
diversity in the world’s rice cultivars. Each limas well characterised for 14
agronomic traits including grain yield and grow#tes. The sequence from each line

was stacked, or piled up, for the calling of sequgvariants. 3.6 million SNP were
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detected in these pileups. However, with 1x cayer¢éhey could only call genotypes
at ~ 20% of the SNP for each landrace. So impriatias used to fill in the missing
genotype. Then GWAS were performed for each ofriies using the 3.6 million
imputed genotypes in the 517 lines. The authonsohstrated that they found already
known mutations with effects on some of thesedrailace a host of new mutations

with very significant effects for future investiga.
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6. Practical Exercises

6.1 Assessing the extent of linkage disequilibrium in
HaploView

We will use the HaploView program to calculatealues. The data set we will use is
10 SNP markers on a section of chromosome 20 geedty 325 bulls.

The genotype (in linkage format) file for HaploVidwas the following format

Pedigree_ID Individual_ID Sire_ID Dam_ID Sex AffedtMarkerl_Allelel
Marker2_Allele2

You can find out more about the genotype inputifilehe Help tab of haploview
The map file consists of two columns, the marken@and the position, eg

Markerl 19992222
Marker2 23100202

Import the genotype file “325_bulls_genos.txt”. gat the file “map.txt”. Set the
minumum distance to calculateto markers less than 5000kb apart.

Are all the markers in Hardy-Weinberg equilibriukvhich marker has the lowest
minor allele frequency?

Set the HW cuttoff to 0.0000, and click on the boxnake sure they are all included.
Then click on the LD plot tab. To make sure thiiga are 7, click Display -> Show
LD values -> R—squared. The boxes show thalues between the markers from 0
to 100. If the markers are in 100% LD, there Wwéla red box with no number.
Which markers are in the highest LD? Are there rmaykers in perfect LD?

Does the LD decay uniformly across the chromososgengnt (for example look at

marker 1 versus the rest)? How would you descdhbgoattern of LD with distance in
this small chromosome segment?
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6.2 Genome wide association study

Now we will conduct a genome wide association stusing the same data and
phenotypes.

Before we use go further, let’'s take a moment taagquainted with R. We will use a
simple example of multiplication of two matriciesdbtain another matrix. Open the
R graphical user interface by clicking on it. Yshould see the command prompt.

Let’s multiply two matricies a and b to get a thimgtrix c.

The matrix a is a two by two matrix with elements:
11

22

The matrix b is a two by three matrix with elements
122

234

We can input these matricies into the computer ngras:
> a <- matrix(c(1,1,2,2),ncol=2,byrow=TRUE)
> b <-matrix(c(1,2,2,2,3,4),ncol=3,byrow=TRUE)

To check the dimensions of a and be are correet typ
> dim(a)
> dim(b)

You can print a matrix at any time, eg
> print(a)

Now lets multiple matricies a and b to get a nevirixa:
> ¢ <- a%*%b (%*% is the symbol for matrix muligation)

Check the dimensions of ¢ are correct,

> dim(c)

And that the ¢ matrix has the correct elements:

> print(c) (you can compare this to the resukxael for example)

A matrix can be transposed using t(a), eg
>d <-t(a)

For convenience, a genotype file with genotypesoded as 0, 1 or 2 (the number of
copies of the second allele) is given in xvec_day4. For the 325 bulls, phenotypes
for protein % in their daughters milk are giverthe file yvec_day4.inp.

Now we write a small R script to read in the datag fit a regression on the number
of 2 alleles for each SNP.

To start a new script, click file and then New $triRemember to save your script.
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Then read in the data. The easiseast way to dasthd set your work directory to
whever the files are stored first, then read inda& as a table:

setwd("C:/course_piacenza")

phenotypes <- read.table("yvec_day4.inp",header#Rd header on file
genotypes <- read.table("xvec_day4.inp",header=F)

Now for each SNP we are going to fit the model

y =mu +Xb+e

Wherey are the phenotypes, mu is the mefis the design matrix allocating
phenotypes to genotypes for each SNP, b is theteffehe SNP andis a vecot of
random residuals. This can be done in R with thedmmand (for linear model)
Lets fit the first SNP. We can do this as

Im(phenotypes|,1] ~ genotypes|,1])

The [,1] for genotypes tells R to use the firstucoh of genotypes, eg the first SNP
The result gives the intercept (mean), and thees=gon coefficent, which in our case
is the effect of the 2 allele. If you want jusgetiegression coefficent returned,

Im(phenotypes|,1] ~ genotypes[,1])$coeff[2]

Now we would like to know how significant the SN iWe can get this with the
anova command,

anova(Im(phenotypes|,1] ~ genotypes|,1]))

If you want just the P value returned,

anova(lm(phenotypes|,1] ~ genotypes[,1]))$P[1]

Now to run the genome wide association study, lgeetfect of each SNP and it's P

value and store them. This can be done by wrditapp for the number of SNP (10)
and fitting the models above each time.

Now read in the map file (map_10_markers.txt).

Plot —log10(P value) against map position for th#*S Which is the most siginficant
SNP(s). Can you explain this result in terms eflthkage disequilibrium among the
SNP in the previous practical?

Now plot the SNP effects against —log10 of theitaRies. Are the SNP with the

largest effects the most significant? Why/why nétill this always be the case in a
GWAS study? And why do some of the SNP have theeseffect?
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6.3 Power of association studies

As we discussed in section 2, the power of assoniatudies depends on tHe r
between the QTL and the marker we are trying teaéhe QTL with, the frequency
of the rare allele of the marker and the QTL, thmhber of phenotypic records, and
the significance level we are testing the assamiadi.

There is a program which calculates the power adssociation study given all these
parameters called IdDesign. The package is writteéhe R language.

By way of background, R is a free software envirentrfor statistical computing and
graphics. It compiles and runs on a wide varietyNiX platforms, Windows and
MacOS. We will use R in a windows environmentprvides a wide variety of
statistical (linear and nonlinear modelling, claaéstatistical tests, time-series
analysis, classification, clustering, ...) and ¢iapl techniques. There are a very
large number of “packages” available for R, and ohthese is the ldDesign pack.

Hit the “packages” button on the top of the scre€hen click load packages and

click on IdDesign. If the package does not appgau,can install it by typing
> install.packages("I| dDesi gn")

Then the package can be loaded.

The documentation for the IdDesign package cambed here:
(http://bg9.imslab.co.jp/Rhelp/R-2.4.0/src/libradilesign. htm

We will use thduo.ld.power function in the IdDesign package. This function
performs a classical deterministic power calcutafar power to detect linkage
disequilibrium between a bi-allelic QTL and a bietit marker, at a given
significance level in a population level associatsbudy. This is based on the 'fixed
model' power calculation from Luo (1998, Heredi6; 898-208), with corrections
described in Ball (2003).

To run the function:
> |uo.ld.power(n, p, g, D, h2, phi, Vp = 100, alpha

Where:

- n The sample size, i.e. number of individuals ¢goed and tested for the
trait of interest

- p Bi-allelic marker allele frequency

- g Bi-allelic QTL allele frequency

- D Linkage disequilibrium coefficient

- h2 QTL "heritability’, i.e. proportion of total or photypic variance explained
by the QTL

- phi Dominance ratio: phi = 0 denotes purely additpid,= 1 denotes purely
dominant allele effects

- Vp Total or phenotypic variance: and arbitrary vahey be used

- alpha Significance level for hypothesis tests

The function returns the power, or probability etetting an effect, with the given
parameters, at the given significance level.
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One problem we will have is that the program ta®an input D instead of which
is more useful to us. We can run the programdesired level ofrbetween the

marker and QTL by inputting for the value @ = \/ p- p)(ql-qg)r> where p and
g are defined above.

For example, if we want to evaluate power at allef/€ of 0.2, with p=g=0.2, we

would use a value o{/O.Z *(1-02)*02*(1-02) *02 = 0072. Now say we have
n= 500 phenotypic records, the QTL explains 2.5%mefphenotypic variance, the
QTL is purely additive (phi=0), and alpha is 0.05ssume of a value of Vp of 100,

though the value assumed will not affect the caltohs. Then the power of the
experiment is:

> |uo.ld.power(500, 0.2, 0.2, 0.072, 0.025, 0, 1MO5)
Which should return a value of 0.277.

Now run the program with 1000 phenotypic records,
p=g=0.2,h2=0.025,phi=0,Vp=100 an alpha =0.05 febr1,0.2,0.3-1.0.

You can either do this by calculating the valu®ddt each level of r2 and rerunning
the program, or you can write a small “script” winloops through the values of r2.

You can write such a script in notepad. The searnight look like:

# Script to calculate power at different levelsaf

# Script to calculate power at different levels of r2.
n <- 1000
p_val < 0.2
g val < 0.2
h2 <- 0.025
phi <- 0
Vp <- 100
al pha <- 0.05
for (i in 1:10) {
r2 <- i/10
D <- sgrt(p_val *(1-p_val)*qg_val *(1-qg_val)*r2)
luo.ld. power(n, p_val, g _val, D, h2, phi, Vp, alpha)
}

Save your script with a *.R extension, eg powerl®.open the script, click the file
tab and select “open script”. You can run thepgdyy clicking the edit tab and
selection “Run all”.

At what level of f does the power reach 0.9 with these parameteos@efBrmine
this, you can plot the power against the levefar lexcel for example.

Now plot the power with 500 and 2000 records ag.walhat does the level of r2
need to be to get a power of 0.9 if 500 recordsuaesl. If 2000 records are used?
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The next exercise is to determine the number ofptypic records necessary to
detect a QTL with power 0.9 with different levelsd You can do this by looping
through different numbers of phenotypic recordsréments of 100 for example) in
your script and keeping th&constant. Plot the minimum number of records irequ
to reach a power of 0.9 with=0.1,0.2,0.3,0.4....1.0. (efan the x axis, and number
of phenotypic records required to reach a powdr.®fwith this level of Ton the y
axis).

Do the results agree with the statement that tinebew of records must be increased
by a factor of 1/ in order to achieve the same power as observm@ffL itself?
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6.4 Genomic selection using BLUP
In this practical you will perform genomic selectim a small data set using BLUP.

The data set consists of a reference populati@25fbulls with daughter yield
deviations (DYDs) for protein %. This phenotypersaccurate predictor of
genotype, eg the heritability is close to one. Hhls have been genotyped for 10
SNPs.

Then there are a set of 31 calves who are selectindidates for this years progeny
test team. They are genotyped for the same 10ar&arkfour task is to predict
GEBY for these 31 selection candidates. To dowlsvill need to predict the effects
of the 10 SNPs in the reference population, udiegeguations:
O

1n 1n ln X U — 1nly

X1, XX+ 5 X'y
Where g are the SNP effects, 1n is a vector of @5 x 1,X is a design matrix
allocating SNP genotype to recorg@ss the overall mean. We will use R to solve

these equations. Thématrix has already been built for you, and is aored in the

file xvec_day4.inp. The y matrix is contained e file yvec_day4.inp.

What you need to do is write a small R script tvathe equations. This can be done
by starting the script in notepad, then opening the R console.

The first lines should declare the parameters numbmarkers and number of

records. A this point we will also specify the walof lamda as 10.

nmar kers <- 10 #number of markers
nrecords <- 325 #nunber of records
| amda <- 10 #val ue for |anda

Next we will read in the files. Change the pathh® location where you have stored
the files. Note that these statements shouldeatirbone line. Have a look at these
files before opening them.

X <-

mat ri x(scan("d: /i owacourse/ practi cal s/ day4/real Dat aExanpl e/ xvec_day4.
i np"), ncol =nmar ker s, byr ow=TRUE)

y <-

matri x(scan("d: /i owacourse/ practi cal s/ day4/real Dat aExanpl e/ yvec_day4.
i np"), byr ow=TRUE)
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So now we have the matrix x, the vector y. We s&kd a vector of ones and a

identity matrix dimension number of markers x numbfemarkers.....

ones <- array(1,c(nrecords))
i dent _mat <-di ag(nnmarkers)

The next step is to build the coefficient matrikhiis can be done in blocks, eg....

coeff <- array(O0, c(nmarkers+1, nmar kers+1))
coeff[1:1, 1:1] <- t(ones)% %ones
coeff[1:1,2: (nmarkers+1)] <- t(ones) % %

You will need to build the other blocks. You wallso need to build the right hand
side of the equation.

The solutions can be obtained easily by usingribailt function solve,

solution_vec <- solve(coeff,rhs)

Print out this vector of solutions (eg print(sotuti vec)). What is the solution for the
mean? Which SNP has the largest effect?

Next we want to print GEBV for the selection caradas. This is done with the

equation:

m]
GEBV = Xg

The g_hat are the solutions for the SNP effectshaue just solved. The xvector for
the selection candidates is in the file xvec_pmg.iCan you write a small R script to
calculate the GEBV?

Fours years later, all the selection candidatesive@ phenotypic record from a
progeny test. The results are in the file yvecgpnp. What is the correlation
between your GEBV and the TBV? (Don'’t expect thi®e to high with only 10
SNPs).
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6.5 Genomic selection using a Bayesian approach
For the first exercise, we will analyse a smalbdsgt using the method BayesA of

Meuwissen et al. (2003). We will analyse the deta a script written in the R
language, meuwissenBayesA.R. The script consglegie markers rather than
marker haplotypes, but would be easy to extendpbdtypes. The script estimates
single marker effectgj, a variance for each of these effegpgaf), and overall mean
mu and the error variancedre). A description of the program is given here

(descriptions in bold).

R coding of genomic selection from Meuwissen et §2001)

Set the number of markers, the number of markers ad the number of #
iterations

nmar kers <- 3 #nunmber of markers

nrecords <- 25 #nunber of records

num t <- 1000 #nunber of iterations

The next section reads in the data from two filesThe first is the x vector, with -
0 for the 1 1 SNP genotype, 1 for 1 2 and 2 for 2 Zhe second file is a vector of
phenotypic records. Set the path to the locationfgour files.

X <-

mat ri x(scan("d: /i owacourse/practical s/ day5/ smal | Exanpl e/ xvec.inp"), nc
ol =nmar ker s, byr ow=TRUE)

y <-

matri x(scan("d: /i owacourse/ practi cal s/ day5/ snal | Exanpl e/ yvec. i np"), by
r ow=TRUE)

Set up some storage vectors and matricies to stgparameter values across
iterations

gStore <- array(0,c(numt, nmarkers))
gvarStore <- array(0,c(nunit, nmarkers))
vareStore <- array(0,c(numit))

muStore <- array(0,c(numt))

ittstore <- array(0,c(nunit))

The Gibbs cycles begin.

Step 1. Initialization of g and mu, declaration ofother arrays.

g <- array(0.01, c(nmarkers))
m <- 0.1

gvar <- array(0.1,c(nmarkers))
ones <- array(1,c(nrecords))

e <- array(0,c(nrecords))
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Begin the iterations

for (I in Linumt) {

Step 2. Sample vare from an inverse chi-square pi@sior
e <-y - x%% - nu # First calculate the vector of residuals
vare <- (t(e)%W %)/ rchisq(l, nrecords-2)

Step 3 Sample the mean from a normal posterior

mu <- rnornm(1, (t(ones)W% -
t (ones) % %% %g) / nrecords, sqrt (vare/ nrecords))

Step 4. Sample the gvar from the inverse chi squarmposterior

for (j in 1:nmarkers) {

# gvar[j] <- (0.002+g[j]*g[j]l)/rchisq(l,4.012+1) # Meuw ssen
#et al. (2001) prior
# gvar[j] < (9q[jl* /rchisq(1,1) # Xu (2003) #prior

alil)
gvar[j] <- (9g[jl1*9g[j])/rchisqg(l,0.998) # Te Braak et # al
(2006) prior
}

Step 5 Sample the g from a normal distribution
z <- array(0,c(nrecords))
for (j in 1:nmarkers) {
gtenp <- ¢
gtemp[j] <- O
for (i in 1:nrecords) {

z[i] < x[i,]]

}

mean <- ( t(z)%W%-t(z)% W% %gtenp-t(z) %W Y%ones*mu ) /
(t(z)Wwow+vare/gvar[j]) # Calculating the mean of the distribution

o[j] <- rnorm(1, mean,sqrt(vare/ (t(z)%W % +vare/gvar[j])))

The final step in each iteration is to store the pameter values
for (j in 1:nmarkers) {

gStore[l,j] <- 9o[j]

gvarStore[l,j] <- gvar[j]
vareStore[l] <- vare
muStore[l] <- mu
ittstore[l] <- |

}
This is the end of the program.

Consider a data set with three markers. The ddtaas simulated as: the effect of a
2 allele at the first marker is 3, the effect & allele at the second marker is 0, and
the effect of a 2 allele at the third marker was The mu was 3 and the vare was 1.

The data set is:
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Markerl Markerl Marker2 Marker 2 Marker3 Marker 3

Animal Phenotype allelel allele2 allelel allele 2 allele 1 allele 2
1 9.68 2 2 2 1 1 1
2 5.69 2 2 2 2 2 2
3 2.29 1 2 2 2 2 2
4 3.42 1 1 2 1 1 1
5 5.92 2 1 1 1 1 1
6 2.82 2 1 2 1 2 2
7 5.07 2 2 2 1 2 2
g8 8.92 2 2 2 2 1 1
9 24 1 1 2 2 1 2
10 9.01 2 2 2 2 1 1
11 4.24 1 2 1 2 2 1
12 6.35 2 2 1 1 1 2
13 8.92 2 2 1 2 1 1
14 -0.64 1 1 2 2 2 2
15 5.95 2 1 1 1 1 1
16 6.13 1 2 2 1 1 1
17 6.72 2 1 2 1 1 1
18 4.86 1 2 2 1 1 2
19 6.36 2 2 2 2 2 2
20 0.81 1 1 2 1 1 2
21 9.67 2 2 1 2 1 1
22 (.74 2 2 2 1 1 2
23 1.45 1 1 2 2 2 1
24 1.22 1 1 2 1 2 1
25 -0.52 1 1 2 2 2 2

The first step is to make the files yvec.inp andxinp. In the case of yvec.inp, this
is simply the list of phenotypes (no headers ontifiers). For xvec.inp, the number
of 2 alleles at each marker for each animal, & a2 matrix. The first line of this

file would be (for animal 1) 210",

Save these files in a convenient location. Nexojhe R graphical interface, and
open the script “meuwissenBayesA.R”. Check thelmemof markers is set to 3, and
the number of records 25. You will have to chatigepath of the files as well.
Choose a number of iterations, say 1000.

Run the script using the run all command. As tr@sruns, it stores values for g,

gvar, mu and vare for each iteration. After thepsdas run, you can use the plotting
facilities in R to investigate changes in the pagters over iterations.

110



For example, to look at the effect of the third kestracross iterations, you would

enter the command

> plot(ittstore[1:1000],gStore[1:1000,1])

Use this command to investigate each of the paemnet turn, and determine if they

appear to be fluctuating about the correct values.

We can also plot the posterior distribution, foample for the effect of the third

marker. We would discard the first 100 iteratiofshe program as “burn in”:

> plot(density(gStore[100:1000,1]))

Does the distribution appear to be normal? Whatathe distributions of the other

parameters?

To get the mean of the distribution, you would type
mean(gStore[100:1000,1])
Do the means of the parameters agree with thevalue of these parameters?

Now a new set of animals (selection candidatesowitpphenotypes) are genotyped

for the three markers. Their genotypes are:

Markerl Markerl Marker2 Marker2 Marker3  Marker3

Animal allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 TBV
26 2 2 2 1 2 1 4
27 2 1 1 2 2 1 1
28 1 1 1 2 2 2 -4
29 1 2 2 2 2 1 1
30 1 1 2 2 1 2 -2
31 2 1 1 2 2 1 1
32 2 2 2 2 2 2 2
33 2 2 2 2 1 2 4
34 2 2 2 1 1 2 4
35 1 1 1 2 2 2 -4

Calculate the GEBYV for these animals as:

m]
GEBV = Xg
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What is the correlation with the True breeding eal@ (given in the table above,
TBV).

Next we will use the script to estimate SNP effaéctthe reference population in
practical 5.6. So you will need to read in the atrx in xvec_day4.inp, the y vector
in yvec_day4.inp. The number of markers in thegpaon will need to be changed to

10 and the number of records to 325.

Run the script.

The next thing you want to do is extract SNP sohsi After the script has run, you
can do this by typing:

> mean(gStore[100:1000,1])

This will give you the mean value of the SNP effiectSNP 1 from iterations 100 to
1000 (eg, excluding burn in). So for SNP 6 you lddype
>mean(gStore[100:1000,6]).

Compare your SNP solutions from the Bayes progmathdse from BLUP (practical
5.6). One of the reasons for using the Bayesi@noggh is to allow different
variances of SNP effect across chromosome segmbnparticular, the Bayes
approach should set some variances (and so SNit¢ffe very close to zero. Does
this seem to have happened? How many QTL wouldsgguare on the chromosome

segment?

Can you predict GEBV for the selection candidategractical 5.6 using the SNP
solutions from the Bayesian approach? Are theyerhayhly correlated with the
TBV than the GEBV from the BLUP approach?

Now change the R script to use the prior distritmutsf chromosome segment

variances of effects to that of Meuwissen et @00, eg. x> (4012,0002 . Now

re-run the script. How do the SNP solutions cormpeith those when the Xu (2003)
prior is used? Are the accuracy of the GEBV impd%

112



6.6 Bayesian approach a large weight at zero (Bayes B)

In this exercise, we will modify the BayesA scrigim the previous exercise to
sample from a prior distribution for the chromososegment variances with a large
weight at zero. This incorporates our prior knadge that many of the chromosome

segments will not contain any QTL with an effecttba quantitative trait.

The prior of the variance of chromosome segmesetcesfis now

03:‘ = 0 with probability =,

03,- ~ x" % (v, S) with probability (1 — «),

Unlike BayesA, the posterior of the variance ofathosome segment effects does not
have a known distribution and cannot be samplezttyrin the Gibbs chain. We will
therefore implement a Metropolis Hastings (MH) steth the Gibbs chain to sample

gvar andg simultaneously.

To modify the code, you will need first specify thember of MH cycles you wish to

do:

# Paraneters

nmar kers <- 10 #nunber of nmarkers

nrecords <- 325 #nunber of records

num t <- 1000 #nunber of iterations

propSegs <- 0.66 #Prior proportion of segnents having a non zero
ef f ect

numvHCycl es = 20 # Number of metropolis hastings cycles when sanpling
vari ance of segments

The next step is to correct the phenotypic rectodall number of MH cycles when
sampling the gvar and g (Steps 4 and 5). We vatesthe corrected records in a

vector called ycorr:

# Step 4. Sanple the gvar and g using Metropolis Hastings algorithm
(I ndependance sanpl i ng)
for (j in 1:nmarkers) {

# First correct records for all other effects including nmean and
ot her markers

gtenp <- g

gtenp[j] < O

ycorr <- array(0,c(nrecords, 1))

Ival <- array(0,c(nrecords, nrecords))

for (i in 1:nrecords) {

ycorr[i] <- y[i] - nu

Ival[i,i] <- vare

for (k in 1:nmarkers) {

ycorr[i] = ycorr[i] - Xx[i,Kk]*gtenp[Kk]
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In this step we have also built a matrix whichrieaords x nrecords and heare on

the diagonal, as we will need this in the next step

The next step is to calculate the likelihood of da¢a given the current gvar, before
we sample a new one. The formula for the likelthco

L(y* |og = mlleﬁ’ZG_ 1/2(ycorr' V *ycorr) whereV =Xi(l g3 )Xi'+l62) and

|V| is the determinant &f. In R we can do this calculation as:

# Now cal cul ate likelihood with current gvar[j] p(gvar[j]]|ycorr)
going into the chain

V= (x[,jl*gvar[j]) %% (x[,j])+l val

LHL <- 1/(2*pi~(1/ 2*nrecords)*sqrt(det(V)))*exp(-
0.5*t (ycorr) % %gi nv(V) % %corr)

The ginv function calculates the generalised ine@fsV. You will have to load the

R package MASS to get this function. (Load packagehe

It is also useful to calculate the likelihood oéttlata when the gvar is zero, as we will
sample gvar=0 many times in the MH cycles.

# And likelihood if variance is zero

V = lval

LHO <- 1/ (2*pi~(1/2*nrecords)*sqgrt(det(V))) *exp(-
0.5*t (ycorr) % %gi nv(V) % %corr)

Now we can run the MH cycles, sampling a new geamparing the likelihood of the
data with the new gvar to the old gvar. If theelikood improves, we will replace the
old gvar with the new gvar. If it does not improwe will replace it with a

probability LH(newgvar)/LH(old gvar). If we do replace gvar, we will also sample

the effect of the SNP with the new gvar.

for (kk in 1:numvHCycles) {
if (runif(1,0,1)<propSegs) { # sanpl e segnent vari ance

from (1-progSegs)*0 + propSegs*chi-square
# Sample new gvar[j] fromdriver distribution

gvar_new <- 1/rchisq(1,4.012)

V = (x[,j]l*gvar_new) %% (x[,]]) +I val

LH2 <- 1/ (2*pi~(1/ 2*nrecords)*sqrt(det(V)))*exp(-
0.5*t (ycorr) % % i nv(V) % %corr)
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al pha <- mn(LH2/LHL, 1) # replace gvar with prob LH(new
#gvar)/LH(ol d gvar).

if (runif(l)<alpha) {
# Accept ance

gvar[j] = gvar_new
LH1 <- LH2
}
el se { # if zero variance sanpled

al pha <- mn(LHO/LHL, 1)
if (runif(l)<alpha) {
# Accept ance
gvar[j] =0
LH1 <- LHO
}
}

}

if (gvar[j]>0) {
meanval <- ( t(

t(x[,j])%W%nes*mu ) /
aljl <

rnorm( 1, meanval ,sqrt((vare)/ (t(x[,j])%W%[,j]+(vare)/gvar[j])))

X[, 11)9% %~ (x[,]]) % %% %t enp-
(t(x[J1) W[, ] +(vare) /gvar[]])

el se {
gli] <-0

}

Once you have finished coding the method, save Roseript as a new file

(BayesB.R for example).

Now run the script with the small data set fromatical 5.7 (3 markers and 25
records) Use 20 MH cycles. Look at the valuespadifor each of 3 segments
across the Gibbs chain. Do any of thget set consistently to zero? Now choose
different values for the proportion of segmentstsetero and the parameters of the
inverse chi square parameters where gvar new ipledrfrom (both these for the
prior of the gvar). How sensitive are the restdtthe parameters of the prior

distribution of the variances of chromosome segreéfetts?
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6.7 Using Beagle to impute missing genotypes

In this practical you will use the BEAGLE prograBrgwning and Browning 2007)
to impute from sparse genotypes to denser genotgmedata set from a 50K dairy
cattle data set.

Inspect the data. The first file, reference_50drhtains genotypes for 22 animals
that have been genotyped for all markers. Thesetgpes are from chromosome 1,
the first 50 markers. The first line of the fikethe animal ids, from one to 22. There
are two columns for each animal, one column fohedlele at each marker. The
second row is the genotypes for marker one, twadeallper individual. The third row
is the genotypes for the second marker and salre.genotypes are unphased at this
point. The alleles are coded 1,2, and 0, withrGrissing.

The second file to check is target_50.txt. Theesgganotypes for 3 animals for 5
markers, which are an evenly spaced subset oftmeaskers above (eg this would be
an approximately 5K array).

The other file you will need is the map file, tetlithe BEAGLE program the alleles
at each marker. The map file is reference_mapxth@he first three lines of which
are

Hapmap43437-BTA-101873 113641 21
ARS-BFGL-NGS-16466 244698 12
Hapmap34944-BES1 Contig627 1906 369418 12

Now to run the BEAGLE program you will need to omeoommand prompt, and
make sure that the BEAGLE executable beagle.jatladata files are in the same
location.

Change directory
C:>D:

Change folder
D: cd <foldername>

See all files in a directory
dir

The command for running beagle with the data abwitb, a reference and target
population, is

java -Xmx1000m -jar beagle.jar unphased=reference (btxt
unphased=target_50.txt markers=reference_map_50.txhissing=0 out=5K

Note that command is all on one line. The out camawill in this case give all the
out files the prefix 5K.

You will need to use the 7z program to look atahéput files, as they have been
zipped using a program called gzip.
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The file 5K.target_50.txt.phased.gz contains thputad, and phased genotypes.
Again, there are two alleles for each marker, basé are now phased, eg the first
allele of the first marker is on the same chromoseegment as the first allele of the
second marker.

Now we will check how accurately BEAGLE has imputkd missing genotypes.
The file target_true.txt contains the real genosyatall markers for our three “target”
animals.

Compare the true and imputed genotypes to calcalatecuracy of imputation.
There are a few steps to doing this, which candme either in excel or R. For excel,
paste the true genotypes and the imputed genobgsede each other in a
spreadsheet. As the true genotypes are unphagdae(alleles could be in any
order), in order to compare the genotypes youne#d to calculate basically an X
matrix for both three true and imputed genotypEsis matrix has dimensions
number of markers (50) by number of individuals (Bhe elements are the number
of two alleles, which can be calculated from thaeajgpes as allelel + allele 2 — 2.

Eg. If for the first animal at the first markengetgenotype was 1,1, the element of X
would be zero.

Calculate a separate X for both the true genotgpesthe imputed genotypes.

Then count up the number of genotypes that areghe in the imputed and true
genotypes.

For example, for two markers the true and imputeda{rix could be (each column is
an animal)

True Imputed
101 110
121 121

Then the accuracies of imputation for each animal#&=100% for animal one, 1/2
=50% for animal 2 and 1/2 =50% for animal 3. Thenting up can be done with an
IF statement in excel.

What are the accuracies of imputation for our three target animals? What are some
possible reasons for the differences in accuracy of imputation?

Finally, have at look at the file 50 _SNP.refererit®ixt.gprobs.gz. This file gives

for each animal, the probability of each genotymreelach animal. This is a measure
of the uncertainty of the imputation. Each linglwé# file contains the marker name,
the two alleles at the marker (1 and 2 for all neaskn our case), then for each animal
the probabilities of the three genotypes 11, 122#h¢r 0,1,2 in our X matrix).

Can you find maker where thereisa lot of uncertainty in the imputation?

How would you build an X matrix for the genomic selection methods that takes
account of uncertainty of imputation?
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6.8 Validation of Genomic Prediction

In this practical you will combine what you leamtPracticals 6.2 Genome-wide
Association and 6.4 genomic BLUP.

Validating the performance of genomic predictiongmportant to demonstrate that it
works. There are some principles to follow that emsure proper validation. These
are outlined in Section 3.10 of the notes. Thennpainciple is to consider who the
selection candidates are and what information thiéyhave available when we want
to predict their GEBV. In the majority of casdsg selection candidates will have no
phenotypic information.

We then choose a validation population with phepesyand genotypes. However,
we need to make sure that the validation phenotgpesot influencing our results.
There are several validation mistakes that can ugiwaias the genomic selection
accuracy. Here we will do two examples, both ofcltare cases where phenotypic
information of the validation individuals inappraogtely influenced the accuracy of
genomic selection. You will use the same inpuesfias Practical 6.4.

Example 1: Validation individuals’ phenotypes are used ie thference population

You can either use the BLUP with SNP effects orogeic BLUP with a relationship
matrix to predict the GEBVSs. In either case, ydll meed to combine the two
genotype files (xvec_day4.inp and xvec_prog.inm) toe two phenotype files
(yvec_day4.inp and yvec_prog.inp) to create ongelareference population.

To combine them use the commands below after yoe tead them in:
yconbi ned <- rbind(yref, yprog)
xconmbi ned <-rbi nd(xref, xprog)

You can then use the same process as Practical prédict GEBVs and calculate
the accuracies. Compare these accuracies withctheacies in Practical 6.4. Why
are they higher?

Example 2 Choosing a subset of SNP for genomic selectiamnon-independent
GWAS

It is sometimes desirable to reduce the numbeN# B an analysis. For example,
when the genotyping budget is limited. One waghoose a subset of SNP is with an
association study. In Practical 6.2 you ran an@asion study on the same data.
Here you will run the association study in two waysce on the exact same data as
Practical 6.2 and once on the combined files frowva. In both cases, you choose
the best 8 SNP based on p values to take forwéwd/our genomic prediction
analysis.

1. Run association study only with reference genotypes and phenotypes

First, you run the association study with only teierence data (yvec_day4.inp,
xvec_day4.inp) as you did in P6.2. Then you ordg the top 8 SNP based on pvalue.
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You can take a subset of a matrix by sorting thretareof pvalues and creating an
index that selects only the best 8 SNP by pvalue.

p2=sort (pval ues) #sorts pval ues

i ndex=pval ues <= p2[8] #creates TRUE or FALSE i ndex

nmar ker s=l engt h(i ndex[ i ndex==TRUE] ) #sets nmarker to count of TRUE in
i ndex

xnew=ar ray(0, c(nrecords, nmarkers))

xnew , 1: nmar ker s] <- x[, i ndex] #puts subset of SNP into xnew

You then estimate the marker effects using the xewd in the end you validate with
Xvec_prog.inp and yvec_prog.inp

2. Run association study in combined data

Here you run the association study in the combdwd. You can combine the
reference and validation files as you did in Exaspl You then again select the best
8 SNP based on pvalue and put them in a new xmatyigu run the genomic
prediction step with ONLY the reference genotyphe ubset of xvec_day4.inp) and
phenotypes. In the end you validate with xvec_pnpgand yvec_prog.inp.

Compare the accuracies in 1 and 2. Why are tHéreint? Which way is truly
independent?
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