¢

4. Deadling with epistatic
interactions and non-linearities
gene X gene
gene X gene X gene
gene X gene X gene X gehe

(Alice in Wonderland)

Statistical Interaction
(fixed effects models)
Vik = 1 + Aij + Bj + ABjj + €ij
E(yiklAi,Bj,ABjj) = u+ Ai + Bj + ABj
E(yik — Yij|Ai, Bj, ABij, Ay, Bj,ABy; ) = u +Ai + Bj + ABjj
— (u+Ai +Bj+ABj;)
= Ai — Aj + ABjj — ABy;

Difference between levels of factor A depends on level of B

If factor A has a levels and factor B has b levels, the degrees of freedom are:
- (a1)

- (b-1)

- (a-1)(b-1) [assuming no-empty cells]




Multi-SNP Fixed effects models?

(unraveling “physiological epistasis” a la Cheverud)

 Lots of “main effects”

» Splendid non-orthogonality
 Lots of 2-factor interactions
» Lots of 3-factor interactions
 Lots of non-estimability

 Lots of uninterpretable high-order
interactions

« Run out of “degrees of freedom”

Analysis of SNPs with random effects models?

MEUWISSEN et al. (2001) |:> Will talk about this later

GIANOLA et al. (2003) . ,
Ridge regression-
type”
XU (2003)

--Use all SNP markers in statistical models
--Mechanistic basis to mixed effects linear model
(genetic effects treated as random variables)
--Highly parametric models
--Strong assumptions made




What are ridge and Bayesian regression?
(given some variance components or tuning parameters)

Large values of A “shrink” regressions

') _ towards O (induces bias, but higher
BOLS - precision than OLS)
AN
B = y <:| Special case of
RIDGE Bayesian linear regression
-1
2
AN
_ vy %e p-1
l‘:SBAYES_ Xy+ ZB l30
Op
Bayes model assumes, a priori |:> B ~ N (BO’ BG%)
Typically assumed 0 Typically identity matrix.
However, can be given
structure

ORDINARY LEAST-SQUARES

“Full model” ‘ y=Xp+e
= xlﬁl + xZﬁz + €

« ” . N -1
OLS” estimator B, ) XIXy X\Xa XLy
' B, X5X1 XpXo X5y

= [X'X]7XYy
E(BIX) = [X'X]'X'E(y)
= XX]X'XB = B

“OLS” is biased If full model holds and one fits “smaller” model (e.g., single marker

Regressions) X,
y=AXip1+e
‘ E(B,X:) = (XX EW)

= (XiX1) T[X1B1 + X2 f2]
= B1 + (XiX1) X} X282




RIDGE REGRESSION

Can assess by cross-validation

/

3Ridge = [X'X+14] XYy

= [1+ (XX ™2 ] T XX) XYy
= :l =+ (X/X)_ll:_lﬁol_s Shrinkage towards 0
A~ - 1.7-1 ~
E<ﬁRidge|X> = |1+ (X'X) 1)“_ E(ﬂow}
=1+ X)) 78

Biased estimator but more precise

BAYESIAN REGRESSION

(ASSUMING KNOWN VARIANCE COMPONENTS)

Prior ‘ ﬁ - N(O,BO'%})

~

Op

N

= -1
i~ 2
E(ﬁBayes|ﬁ> - | x'x+B12¢ :| (X/Xﬂ-q- GZ

N

L Op Op

L B

L Op

Conditionally

-1
2 2

Baayes = | XX+ B“’—;} (X’y + %B%)
B

Blﬁo)

B 2 7t 2
= I+(BX’X)1G—§:| (X’X)1<X’Xﬂ+ G—ga%)

(o2 o

B

- =1
= I+(BX’X)1G—§:| (ﬁ+ Z—g(BX’X)lﬂo>
B

biased




ILLUSTRATION OF SOMEPOINTS
Standard analysis (fixed X) but random 3

Genotype

y=f+e=Xp+e

B ~ N(0,lc%)
E(yX) = XB
Var(y|X) = Var(f) + Var(e)
= xx’og + 103

Prediction of marker effects: BLUP
(iid marker effects)

|:X’X+ % | }ﬁ = Xy
o

|:I + Zl;j(x/X)l }ﬁ = (X'X)'Xy

-1
. 2
B = |:I + (‘?(X'X)*J Bos = SHRINKAGE
B

Prediction of signal (Xg) to phenotype

Var(Xply) = Xvar(Bly)X'

-1

2

= X[I + G—g(x’xyl} X'o2

(o2
B




Prediction of future record

E(XX*p +erly, X, X*) = X*E(Bly, X)

-1
2 ~
_ X*|:I + Z—%(X’X)l} BoLs

Var(X*B +e*ly,X,X*) = X*Var(Bly, X)X* + 1 *c3

GAUSSIAN PROCESS ANALYSIS
(ID MARKER EFFECTS)

y=f+e=Xp+e
B~ N(0,lo3)
X~F
EYIX,B) = XPB
E(yIB) = ExE(y[X, B) = E(X)B
E(y) = Es[E(X)B] = E(X)E(B) = 0

:|> Assume X and B are independent




Var(y) = Var(f) + Var(e) = Var(f) + lo3

Var(f) = Var(Xp)
= Ex(Var(XB|X) + Varx[E(XB|X)]
= Ex[XVar(B)X']) + Varx[XE(B)]

= Ex[XX'c3] + Varx(0) BP= “best predictor”
MULVN d
= GBEXIXX'], /( assumed)
T =BP(()
1 ey [F 2 L
|:o§ I +Var (f)_f 0gy

05 -1 ! 1z
I+§EX[XX] f=y
B _

—+)
Il
<

Exl[XX’]|:Ex[XX’] +

—h)
1]
m
>
x
=
<

|:EX[XX/] +

Under multivariate normality

Var(fly) = Var(f) — Cov(f,y)Var-1(y)Cov'(f,y)
= Var(f) - Var()[Var(f) + 162] *Var(f)
= 63EX[XX'] — G3EX[XX'1[63EX[XX'] + 168] " GFEX[XX']

, 1 EXDXX 2 et | ,
= 63EX[XX] - 03Ex[XX ]X([7§]|:I + Z—%Ex[xx ]] G2EX[XX']

_ 4 | o2 .1, - 2 I
—d- +07%Ex[xx1 oFEX[XX'].




Future record:
f* = X*B+e*
E(f*[f) = E(f*) + Cov(X*B, BX')Var-L(f)f
E(f*ly) = EqE(f*|f,y) = EqyE(f*|F)
= Eqy[Cov(X*B, BX")Var~1(f)f]
— Cov(X*B, BX")Vart(f)f

Cov(X*B, BX") = Exx+[Cov(X*B, BX")|X, X*]
+ Covyx+ [E(X*B), EXXB)' X, X*]
O'%Ex,x* [X*X,] + COVx,x* (0, 0)

O'%Ex’x*[x*x,]

Dealing with interactions (“statistical epistasis”): much of this
took place in inspiring Iown landscapes...

= E= Bayesians,
\ 7 % gt 0 keep out!
e = ~ T: e - =
S ' /] D g -

SOME CORN

PIGS AGAIN

MORE
PIGS HERE

C.C.C

%5 2,5, pigl, — (2,22, pig,)? /as many pigs as you got




RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominance,
additive x additive, etc. ONLY if
/.

UNo selection

UNo inbreeding

UNo assortative mating
UNo mutation

UNo migration
ULinkage equilibrium

|:> A standard decomposition of phenotypic value in
quantitative genetics (Falconer & Mackay, 1996) is

v=ut+a+d+ite,

where «, d and i are additive, dominance and epistatic
effects, respectively, and e is a residual, reflecting
memvrae s snsma nsmtnl feanidainall srneialailidsr Mhin lHanne Aa

> The i

effect can be decomposed into additive x additive,
additive x dominance, dominance x dominance, etc.,
deviates. In what has been termed “statistical epista-
s1s” (Cheverud & Routman, 1995), these deviates are
assumed to be random draws from some distributions




The degrees of freedom of the distribution are NOT GIVEN by the number of levels.

There is now 1 df for each type of genetic effect.

N(0,c3)
N(0,03)
N(0,0%)
N(0,0%4)
N(0, o§y)

N(O,Gédd...d)

Matrix representation

Variance-covariance

Decomposition

Il

:'._xﬁ+(a+d+iuu+i:m‘+idd)+e
=Xf+g+e, (1

where f is some nuisance location vector (equal to u if

it contains a single element); X i1s a known incidence
maltrix; a and d are vectors of additive and dominance
effects, respectively; iy, 1oy and i are epistatic effects,
and g=a+d +i,, +i,,+ 1,18 the "total” genetic value.
Assuming that g and e are uncorrelated, the vari-
ance—covariance decomposition is

V, =V +V.. (2)

where V,.Vg, and V, are the phenotypic. genetic and
residual variance-covariance maltrices, respectively.
Further,

V= ;—\Ui + DUi, + (A ;—\)U?M + (A D)ufm, +(D# D)Ui,“,.
(3)

Here, A is the numerator relationship matrix; D is a
matrix due to dominance relationships which can
be computed from entries in A, and the remaining
matrices involve Hadamard (element by element)
products of matrices A or D. Thus, under CK, all

10



‘ DO THESE ASSUMPTIONS HOLD?

RANDOM EFFECTS MODELS
FOR ASSESSING EPISTASIS REST ON:
Cockerham (1954) and Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominanc

additive x additive, etc. ONLY if

UNo selection

UNo inbreeding

UNo assortative mating
UNo mutation

UNo migration
ULinkage equilibrium

ALL Just consider
ASSUMPTIONS Linkage disequilibrium
VIOLATED!

My
girlfriend is
abitch,

Q)

Digression: linkage disequilibrium

Let the genotyvpes at the first locus be A; Ay, Ay Ay and Ay As and BBy, B1 By
and BBy at the second locus. Let the frequency of the Ay allele be py,. of the Ay allele
be pa,, (pa, +pa, = 1) and at the B locus the equivalent frequencies are pp, and pg,,
(pB, +pe. = 1). The four possible gametes are Ay By, Ay Bs, AaBy, AsBs, with respective
fl‘(‘('lll(‘ll{'i(‘h PALBy PALBas PAaBy . PAaBa and PaB, + DA By PAsE T Paap, = L. Notice that

Par = Payp+Pags.
PAs = PAaBy + PAsBa-
PB. = PaB FPass, s
PB: = PA Byt PAsBs-

[ the allelic state at locus A is independent of that at locus B, one expects pay, g, = pa,Pn,.
PayBa = Pa Py, and so on. The system is said to be in linkage equilibrivim: the alleles at
loci A and B are independent and their joint frequency is given by the produect of their

11



marginal frequencies. If this is not the case, the dependence between alleles al loci A and
B is measured by their covariance, known as lin

e disequilibrium and symbolised by D.
Define the random variable X which takes the value 1 il in gametes, A; is present at locus
A and zero otherwise, and the random variable ¥ which takes the value 1if B is present
at locus B zero otherwise. The expected value of X is pa, and that of ¥ is pp;. The
expected value of (XY is py,p, and the covariance between X and ¥ is by definition
D Cov (X,Y)
E(X)Y)-E(X)EY)
PAB; — PADPE;- (1)

For example, il we set arbitrarily ¢ — 1, j — 1, then

PAB, paPE 0, (2)

and

D PAB, — PAPB,
PayB (Pay Bt Pa By P PaB tPayR,) — (PayB T PAB) (PaB, DA,
PaiBiPasBs — PABPAB (3)

the difference hetween the product of the frequencies of the coupling and repulsion gametic
phases. Choosing ¢ = 1, 7 = 1 resulted in (2) and in

PA By pape, — D,
PABy PAPB, — D,
PAsBy PasPp, D.

Evolution of linkage disequilibrium
as a function of recombination rate

D:=(1-r)'Do

r=0.01

0.15

0.10

0.05

0.00 t t i
30 35. 40
No. generations t
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Figure 5 Three-dimensional surface plot depicting the decay of linkage

disequilibrium vs. inter-marker distance and minor allelic frequency
interval
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A VIEW OF LINEAR MODELS
(as employed in g. genetics)

Mathematically, can be viewed as a “local” approximation of a complex process

TT 7 1" (@ A ) " " (a)
f=fla+ f@k=-a)+ —— (x=a) + — k=ay +...4 — x=a +
& n:
Linear approximation
- /)
e
Quadratic approximation
— _

—~—

nth order approximation

13



/:

Suppose g (X ) =

Second-order Taylor series expansi

[sin(x) + cos(x)] = [sin(0) + cos(0)]
=1+x- %

Response variate
Example

Model residual
g(x) +e -

N

Some function of a covariate x

sin(x) + cos(x)

sin(x)] = [cosX]

[
[cos(x)] = [—sinX]
il
[

ola o
\Qx\nx\ﬂ

sin(x) + cos(x)] =
COSX —sinx] =

[cosx —sinx]
[-cosx —sinX]

(d )2 [sin(x) + cos(x)] =
on about 0

[-cosx — sinx]

+[cos0 —sin0](x — 0) + %[70050 —sin0](x — 0)2

How good are the linear and quadratic approximations? Recall that a Taylor
series provides a local approximation only..

y

1. Sin and cosine function

147
1271/

3. Quadratic approximation

X L

4. Approximations
are good at x=0...

14



Finding structure from noisy data
we have environmental noise...:

evaluate function sin(x)+cos(x) at x=0, 0.5 and 1

True values are:
> sin(0)+cos(0) Y
[1]1

> sin(0.5)+cos(0.5) VERY CLOSE TO EACH OTHER
[1]1.357008 NOISE CAN MASK SIGNALS!

> sin(1)+cos(1)
[1]1 1.381773

Create an R data set (N=300) from adding 100 N(0,1) residuals to each of the 3 values

> y0<-sin(0)+cos(0) +rnorm(100,0,1)
> y05<-sin(0.5)+cos(0.5)+rnorm(100,0,1)
> y1<-sin(1)+cos(1) +rnorm(100,0,1)
> y<-c(y0,y05,y1)
density.default{x = y)

MEASURING MACHINE 1 /

Density
T
~—_
/’

M =300 Bandwidth = 02358

15



Create a larger R data set (N=300000) by adding
100000 N(0,1) residuals to each of the 3 values

> y0<-sin(0)+cos(0)

+rnorm(100000,0,1)

> y05<-sin(0.5)+co0s(0.5) +rnorm(100000,0,1)

> y1<-sin(1)+cos(1)
> y<-c(y0,y05,y1)

CANNOT SEE UNDERLYING STRUCTURE.
LARGE NOISE (ERROR VARIANCE)

+rnorm(100000,0,1)

density.default{x = vy}

[

naity
[

g © K.\Can we have
{ Outliers here?
| )

W= 300000 Bandwidth = 007331

Now we get a more precise measuring instrument with variance 0.05

> y0<-sin(0)+cos(0)
> y1<-sin(1)+cos(1)
> y05<-sin(0.5)+cos(0.5)

MEASURING MACHINE 2

STRUCTURE IS REVEALED BUT

WE CANNOT DIFFERENTIATE

BETWEEN TWO OF THE UNDERLYING

VALUES

+rnorm(100000,0,.05)
+rnorm(100000,0,.05)
+rnorm(100000,0,.05)

density.defauli{x = v}

Density
2
.

16



...SO WE BUY ANOTHER INSTRUMENT WITH VARIANCE 0.001!

> y0<-sin(0)+cos(0) +rnorm(100000,0,.001)
> y1<-sin(1)+cos(1) +rnorm(100000,0,.001)
> y05<-sin(0.5)+cos(0.5) +rnorm(100000,0,.001)
> y<-c(y0,y05,y1)

MEASUREMENT MACHINE 3 density.default(x =)

STILL CANNOT DIFFERENTIATE

BETWEEN THE e ﬂ I \

> sin(0.5)+cos(0.5) z | lf \ | l

[1] 1.357008 g o 1 | / \

> sin(1)+cos(1) 1 \] J' \

[1]11.381773 « | [
NPAR J

N = 300000 Bandwadth = 0.0126

HOWEVER, NON-PARAMETRIC DENSITY ESTIMATES DEPEND ON SOME
BANDWIDTH PARAMETER. BY REDUCING IT, WE CAN SEE THE ENTIRE
STRUCTURE OF THE PROBLEM...

density.default(x = y) density.default(x =y, bw = 0.0(

12

Dersity
6
|
Dersity
0
|

q Outlier
. _
N e
o - - [ N
T T T T T T T T T T
1.0 1.2 1.4 1.0 1.1 1.2 1.3 1.4

N = 300000 Bandwidth =0.0126

N = 300000 Bandwidth =0.002
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FINDING “STRUCTURE” WITH A LINEAR MODEL

We are given (x,y) data (n=10,000). It looks like this and we run a linear regression

yhat= 0.07936+0.24814*x

> cor(x,y)
[1] 0.8064256 =

> cor(y,yhat)
[1] 0.8064256

y-yhat

RESIDUALS DISPLAY
SINUSOIDAL BEHAVIOR

TRUE MODEL

> e<-rnorm(10000,0,sqrt(9))
> x<-runif(10000,-30,30)

> a<-0.10

> b<-0.25
>y<-a+b*x+sin(x)+cos(x)+e

> model<-Im(y~x+sin(x)+cos(x))

>Coefficients:
>(Intercept) X sin(x) cos(X) o |
>0.1030 0.2489 0.9518  0.9433

y - yhatgood

RESIDUALS LOOK RANDOM

-
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WE GENERATE ANEW SAMPLE AT THE SAME VALUES OF X

> enew<-rnorm(10000,0,sqrt(9))

>ynew<-a+b*x+sin(x)

+cos(x)+enew

CALCULATE PREDICTIVE MEAN SQUARED ERROR
> msepredbadmodel<-sum((ynew-yhat)**2/10000)

> msepredbadmodel
[119.725709

> msepredgoodmode
> msepredgoodmode
[1]18.729272

I<-sum((ynew-yhatgood)**2/10000)
|

CALCULATE PREDICTIVE CORRELATIONS

> cor(yhat,ynew)
[1] 0.8070097

> cor(yhatgood.ynew) MSE(Bad)/MSE(Good)=1.1141

[1] 0.828854

MSE(Good)/MSE(Bad)=0.8975

Cor(BAD)/Cor(GOOD)=0.9736

> Im(yhat~yhatgood)
Coefficients:

(Intercept) yhatgood
0.005653 0.953468

DO NOT TRUST CORRELATIONS!

yhatgood
0
|

19



RECALLING COMPLEXITY...

How one
Would model
something like this?

ey e

Heal Thyself: Systems Biology Model Reveals How Cells Avoid Becoming
Cancerous. ScienceDaily (May 21, 2006)

What to do in genomic-assisted

analysis of complex genetic signals?

* Include all markers, model all possible interactions?
Unrealistic...

» Select sets of influential markers via model selection
= Huge search space
= Frequentist methods “err” probabilistically
=>» Bayesian model selection (RJMC) difficult to tune

» Use LASSO (least absolute shrinkage and selection
operator): Tibshirani (1996). What about interactions?

» Explore model-free techniques that have been used
successfully in many domains

= semi-parametric regression
= machine learning: focus on prediction, learning
mappings from inputs to outputs

20



DEFINITION OF MACHINE
LEARNING
(Wikipedia)

Machine learning: subfield of artificial intelligence concerned with
design and development of algorithms that allow computers (machines)
to improve their performance over time (to learn) based on data,

A major focus of machine learning research is to automatically produce
(induce) models, such as rules and patterns, from data. Hence,
machine learning is closely related to fields such as data mining,
statistics, inductive reasoning, pattern recognition, and theoretical
computer science.
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