4. GENOME-ENABLED PREDICTION
BAYES A, BAYES B, LASSO

Standard analysis (fixed X)

Genotypic value (signal from genome) Assumption
\y:f te= Xﬁﬁ
Bayesi(?ofgllztee(i;lentist? ‘ ﬁ|6% N N(O’ IG%)
E(YIX,B) = XP
E(y[X) =0
Var(y|X,o2,0%) = XX'05 + lo’3




Example 1 (Ridge regression from Bayesian and frequentist points of view)
Suppose the conditional prior of the regressions has the form

D—'Z
I2 0
{ gl } o? Hg~ N { 21 } Nara %3 o* |, Erequentist: random
2 2 0 I effects model

so the two sets of coefficients are independent, a priori. Then the
mean of the conditional posterior distribution of the regression coef-

fictents, using (1.30) and (1.32), is Ereguentist: conditional

— ] o2 ' -1 ; o2 distribution
[:’81 1 ) [X1X1+I;%T X/ X, ] [X1y+ml;ﬂ

= a0
B, [ XX, XX+ I;f;; J { Xy + n12§£— J
B2 B2

When there is a single set of regression coefficients and when the

prior mean is a null vector, this reduces to Freqguentist: mean of conditional
N 4 distribution (BLUP here)
B=(X'X+Ik)” X'y, Bayesian: mean of conditional
posterior distribution

where 2 Frequentist: estimate var. comp by, e.g., REM

k=—  Bayesian: use posterior distributions

Prediction of marker effects: BLUP
(iid marker effects)

2|
|:X/X+ G;I:|[3 - Xly

Op

/ Assume inverse exists

|:I + Zg(X/X)l }ﬁ = (X'X)IXly

-1

N 2

B = [| + zg(x’X)—lJ Bols = SHRINKAGE
B

Prediction of signal (Xg) to phenotype

Var(Xply) = XVar(Bly)X'
-1

2
=X| 1+ Z2XX)" | X'o3

(o2
B




Prediction of future record

E(XX*p +erly, X, X*) = X*E(Bly, X)
-1
2
* o 1N\~ 7

Var(X*B +e*ly,X,X*) = X*Var(Bly, X)X* + 1 *c3

1. Standard BLUP of signal (f)
y=f+e=Xp+e
f ~ N(O,Var(f)) Var(f) = XX'Var(B)
Var(y|X) = XX'Var(B) + lo?
BLUP(f) = Cov(f,y")[XX'Var(B) + lo2]"ty
= XX'Var(B)[XX'Var(B) + lo3]ty

= [l + (xx’)*lﬁiﬁ)]fly

X is fixed here

-1 o2 _
[l O 2 ]BLUP(f) -y

2. Morph into genomic BLUP a la Van Raden

G = KEQDXEX) _ xex-!
P Vi rw Center using allelic
. 2 ) pi-p) i i
X is random here, ng: i(1-pj frequency information

but sois
=] o} } _
|:I +G Var(B)N mHw g =Y

IS THIS METAMORPHOSIS DONE CORRECTLY? | DO NOT THIK SO




GAUSSIAN PROCESS ANALYSIS (IID MARKER EFFECTS)

y=f+e=Xp+e
B N(O,lG% ) - [Read Falconer and Mackay IQG]
X ~F - [Genotypes vary at random: population Genetics]
EWX,B) = XB
E(/IB) = EXEQIX. ) = E)B }
E(y) = EB[E(X)B] = ECOE(B) = 0

i

Are frequencies effect-dependent? Are effects frequency dependent?
TURELLI, ZHANG&HILL, MACKAY WITH MARKERS AND ‘

Var(y) = Var(f) + Var(e) = Var(f) + lo3

Var(f) = Var(Xp)
= Ex(Var(Xp|X) + Varx[E(XBI|X)]
= Ex[XVar(B)X']) + Varx[XE(B)]

= Ex[XX'c%] + Varx(0) BP= “best predictor”
Covariance ‘ — G2E[XX (MULVN assumed)
matrix of signal = opEx[XXT],
T =BP()
[%I +vari(f) |f = Ly
O¢ _ O¢
5 - Looks like
|:| + ZERIXXT |F =y genomic BLUP
Op _ (it is not)
, -
Exl[XX’]|:Ex[XX/] + 20T =y
p
2 .
|:EX[XX’] + 281 T = Ex[XX'ly
Op




Under multivariate normality

Var(fly) = Var(f) — Cov(f,y)Var-(y)CoV'(f,y)
= Var(f) — Var(f)[Var(f) + Iag]‘1Var(f)

&

GAEX[XX'] = G2EX[XX']

2
o
+ 22 Ex

Op

2
Op

-1
[XX'] J }o%Ex[XX’].

= 63EX[XX'] - 2Ex[XX'J[02Ex[XX'] + 162] 63EX[XX']

EXIXX [ o2
=XWAA T L Ce E
+ O'% X

-1
[xx’]} GAEX[XX']

Proper assessment of posterior uncertainty requires knowledge
of the genotypic distribution

X

ind,marker —

XX’

X11 X1p
X21 . X2p
Xn1 - Xnp
X11 X1p

X11 X21
X21 X2p

X1p X2p
Xn1 - Xnp




Under HW

p p p
E{ D %3 | = D Var(xy) + X E2(xj)
=1 j=1 j=1
p p
=D 20505+ > (py— )’
j=1 =1
p p
=D (L-2pja) = p— D, 2p;q
j=1 =1

p p p
E(Z X11X21> = Z Cov(xy;Xz) + Z E(x1;)E(X2;))
j=1

j=1 =1
P P

=" 20pia; + ;- 9;)°
i1 i1

p
= pf+a7 - 2piqi(L-¢)
j=1

Cov(xyxz,) = P} +0f - 2p;05(1 - ¢) — (pj — )
= 2pq¢
-How to obtain sensible estimates? Is XX’ a good estimate of E(XX")?

-Should we assume HW and use estimates of allelic frequencies and
of @ (i,j) as if there were no selection, etc.?

Future record:
f*=X*B+e*
ETE)  E(F[f) = E(f*) + Cov(X* B, BX)\VarL(f)f
n@ E(f*ly) = EqyE(f*If,y) = EqyEE[)
l@ = Eqy[Cov(X*B, BX")Var *(F)f]

Cov(X*B, BX') = Cov[E(X*B, BX'|X*, X)] + E[Cov(X* B, BX)IX*, X]
GIE[X*X']

EEE) gty

Eqy| 63E[X"X'J(XX 03 + 102) 1 |
GFEX*XJE[ (XX'0F +102) ™ |T

m» DOES ANYBODY KNOW HOW TO COMPUTE THE ABOVE?
(CALCULATING THE PEV IS EVEN MORE INVOLVED)




Reliability: standard formulae

‘ PEV = Var(( — u) = Varg[E(G — u)[a] + Eq(Var[(@ — u)[a])
= Eg(Var[(G—uw)a])
= Eg(Var[u|a])
Var(u) = Eg(Var[u|a]) + Varg(E[u[0])
Eg(Varu|]) < Var(u)
Under MULVN = Eg(Var[u|0]) = Var[u|G]

IN SOME NON-GAUSSIAN MODELS, POSTERIOR VARIANCE CAN BE SOMETIMES LARGER THAN PRIOR
VARIANCE, LEADING TO NEGATIVE RELIABILITY , AND POSITIVE UNRELIABILITY.

POINT 3:  WHAT WE CALL “RELIABILITY” IS VERY MUCH TAILORED FOR NORMAL DISTRIBUTIONS
AND LINEAR MODELS

IS MY MODEL “RIGHT”?

TAKING MODEL UNCERTAINTY INTO ACCOUNT BY MODEL AVERAGING

p(Aly) = > p(8ly, M)p(Mly)
= Y p(@ly, M)p(Mly)dM

THE PUNCH LINE: VARIANCE OF PREDICTION ERRORS TAKING MODEL
UNCERTAINTY INTO ACCOUNT

Var(fly) = Em[Var(6ly,M)] + Var[Ey[6ly,M]]

Average PEV Variance among predictions
from different models




CROSS-VALIDATION

(take model uncertainty into account:
never did this in the BLUP era)

=>A. Prediction and goodness of fit are
different ball games: a model that fits well to
training data may have atrocious predictive
ability

=>B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution

THIS IS THE DISTRIBUTION THAT MATTERS AND NOT
A MODEL DERIVED QUANTITY, THAT IGNORES

GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING=TST)
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HUMAN STATURE: MAKOWSKY et al. , Plos Genetics 2011




REASONABLE BAYESIAN MODEL

» For any parameter, must be able to “kill” the
prior asymptotically

* For any parameter, statistical distance between
prior and posterior (and therefore conditional
posterior) must go to infinity

« If this distance has a finite upper bound, it
means that the prior is influential

* Must be able to reduce statistical entropy as
conveyed by the prior by a sizable amount. If the
reduction is tiny=>» prior very influential

CROSS-VALIDATION UNCERTAINTY
(Erbe et al. 2010)

correlation(TBV,GEBV) - trait: milk yield (kg)

4 SO . L B

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
number of animals in the validation set (n total=2294)

03.08.2010 WCGALP Leipzig 13




THE CURSE OF THE BAYESTAN
ALPHABET

Sarah Palin
sings
“To Russia with
love, a view from

Featuring

Kim-Jong Il
as “Bayes”

A

wmr BORIS KARLOFF AND... Scarlett Johansson
as ‘B’

Halle Berry,
as “A”

RECALL FROM EARLY
PART OF COURSE
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STATE OF KNOWLEDGE
(in a finite sample)
Minimum=> Prior
Maximum=> Conditional posterior

Intermediate=»  Marginal posterior

THE PROCESS OF
DECONDITIONING CONSUMES
INFORMATION ABOUT THE
FOCAL POINT

Meaning: conditional posterior is
the best world to live in

11



BAYES A + BAYES B

(as | understand them)

Code for genotype
f SNP j:
Linear model proposed by Meuwissen et al. (2001) §= .1,0,11
7
Vi=pu +injbj + €j,
j=1
. . Additive
SCALAR I = 1121"'an1 n<<p I~ effect of
SNPj
p
yilu, xi,b,05 ~ N| u+ Z Xijbj, o2
j=1
y=1u+Xb +e,

MATRIX yli, X, b ~ N(1x + Xb, I62)

12



The priors

1 ~ uniform

bj ~

Hyper-parameters, specified arbitrarily

BAYES A (Meuwissen et al., 2001)

bjlo? ~N(0,6?)  J=12...p

2 2 2,,-2
Oj |l), S% ~ S Av Note: each SNP has a variance
(think of a sire model in which
each sire effect has a variance)

Marginal prior

o0
p(bylv,$?) = [NKD, 07 )p(vS2:?)dor?
These hyper-parameters
will control the extent

P 1 b? (w2 2
Joy enn( -2 ) (o) (o] 252 Jo
0 %] %]

of shrinkage. Question:

o
L b? +vS?
does their influence vanish mI(O'jz) 2 exp(— ] 5 do?
0]
0

asymptotically?
v
« T(10) (b} + 087)
b]? -5 The prior of a marker
« | l+—=5 t(0,v,52) effect is a t-distribution
vS with known scale and df

MARGINALLY: IN BAYES A ALL MARKERS HAVE THE SAME VARIANCE

13



Bayes B is Bayesianly “STRANGE"

Bayes B

point mass at some constant k if 67 = 0

bilo? ~
oy N(0,6?) if 62 > 0

2 0 with probability =
oi|T =
! 5252 with probability 1 —

3. Recall: if a prior variance
is 0, this means complete
certainty 1. Meuwissen takes the constant = 0

2. Meuwissen assumes 1T is known, e.g., 0.95

Joint density:

bj = kand o7 = 0 with probability
p(bj,o?lr) = . .
N(0,0? )p(vS2x;?) with probability 1 — =

Marginal prior

bj = k with probability =
[N(0,62)p(S? 1,2)do? with probability 1 -
0

p(bj|z) =

14



Further
< 1 2 v+2
[y Foo 25 )(oD) () e -2 Jof
0 0j Oj
< _Levs2 b? + vS2
- [ oo -2 oo
0

]

= 1“(1L2”>(bj2 + v82>7%

v+l

b2 \ %
« 1+? = 1(0,v,52)
v

PRIOR = MIXTURE OF A POINT MASS AND OF A t-DISTRIBUTION. BAYES B PUT{

Then: / THE MASS AT 0 (IF NOT 0, THIS GETS ABSORBED INTO THE GENERAL MEAN)
‘[ b; = k with probability =
p(bjlx) = L .
t(0,v,S¢) with probability 1 — =

MARGINALLY: ALL MARKERS HAVE THE SAME DISTRIBUTION

Mean and variance of a mixture (e.g., Gianola et al. 2006, Genetics)

The first and second moments, and the vanance of a
finite mixture of K Gaussian distributions, with parame-
— —_p > 2 27 T s
ters O =[P, ... . Px. Ly, ... sk, 07, ... 0%, where

. . K
the mixture proportions Py are such that Zk_l P, = 1,are

K K
) 01 - -*'[Zf’r*'(-‘f i "“]“”'ZZ%-. (A1)
k=1 k=1
K K
E(y"|9) =j,v‘ {zi’w\"(}' s U;)] dy=> " P(pi +03),
k=1 k=1

‘ Var(y|0) = ZP;(UE + ZI’H_LZ - (Zi’kuk) .
k=1 k=1 k=1

15



In Bayes B:

E(bj|lr) = nk + (1 —7)0 = 7k
= 0ifk =0

Var(bjlr) = 7 x 0+ (1= )32+ 7k + (1 - m)0? - (ak)?

=1-n) SZVZ +k?(1-n)

VvV —

1SV oo
= - ifk =0

ALL MARKERS HAVE THE SAME VARIANCE IN BAYES B!

BAYES A IS A SPECIAL
CASE OF BAYES B (11=0)

Meaning: if Bayes A has a flaw,
this carries to Bayes B

16



A Gibbs sampler for Bayes

(element-wise sampling)

Note: the form of the implementation it
is just an algorithmic matter: it is
immaterial with respect to the issues

A

Sampling the mean

>

p
u|ELSE ~ N| 1 yi— Y Xibj |,

=1 =1

Flat prior for the mean (or for the fixed effects) is not influential

17



Sampling the residual variance

62|ELSE ~(n(1 + L)

- \ J

Goes to n

The prior can be “killed” simply by incyeasing sample size

This will dominate the weighted average
as nincreases

Sampling the marker effects

- p _
X Yi— =Y Xibj
= ™ 2
bi|ELSE ~ N| ——> L o
2 X5+ a doxg+
i=1 bj i=1 i
J = 1121' ’p

Kill the prior simply by increasing sample size. The effect of the shrinkage ratio vanishes

n
2
2 Oe E 2
j i=1

2
i=1 b

n

18



Sampling the variance of the marker effects

bj2+vS2
1+v

o |ELSE ~ v(1+ 1)

Prior df: very influential —, ‘
= 52

j=12,...,p

Typically very small

*Prior cannot be killed here. One can increase the number of data or of
markers ad nauseum and gain only one degree of freedom, always
*Recall that, in the conditional posterior,

« all other parameters are known (i.e., they are assigned values)

«Since one must de-condition, actually the true posterior moves less than
one degree of freedom away from the prior

STATE OF KNOWLEDGE

Minimum=> Prior
Maximum=> Conditional posterior
Intermediate=»  Marginal posterior

For any parameter & of the model, Bayesian learning must be such that the posterior
W/ VariB[DATA)
E{f{DAT A)
aves B for o o In Bayes A the prior coetficient of variation is

coeflicient of variation, that i €'V . tendz to (), asymptotically, This does not

happen in Bayes A or

1

FEY |
Vet ) =/

Vi =)

ent of variation of the fully conditional posterior distribution is

v

whereas

et LS | 2
OV (o, |ELSE) 1‘; T
50 that f'H'::jnﬁl|.'_'f._‘1'.l"_':n _.f"l':::r.-ﬁl:u /1 = —=. This ratio goes to | rapidly as the degrees

of freedom of the prior mcrease (meaning that the prior "dominates" inference), as illustrated

in Figure 1. For example, if v 1.1, 1+ = 5.1 and » = 6.1, the ratio between the coeflicients of

19



- LD
Ratio

0o + + + +
4 é B 1a 12

Begrets of fréedori’

Figure 1. Ratio between coetlicients of variation €'V [rr:‘w FLSE) Ut [rr:‘w ] | ...I:;.

i+ of the conditional posterior and prior distributions of the variance of the marker effect, a=a

function of the degrees of freedom v of the prior.

For df>6, the relative variability of the posterior distribution of the variance of
a SNP effect is essentially COPYING that of their prior distribution

ENTROPY CALCULATIONS

) Variance of marker effect
Prior entropy (sorry, change of notation)

H{[03,/0,52])
~ [ 1oglp(o3, Iv, $2)Ip(03, v, $)da3,

_% _ |og|:VT52F<%) } + (1 + %) d(d;) IogF(%).

Entropy of the conditional posterior

H{[o,[ELSE]}
= [ log[p(c3, |ELSE)Ip(03, [ELSE)do,

_vaLl _|Og|:(v822+aﬁ>r(v;1 :|+<1+ v;1>d<%l> IogF(V’ZLl

Learning from data: reduces entropy
(cannot calculate entropy of posterior)

20



Relative information gain

e

Fora, =0, S=1and v =100, RIG = 9.60 x 103

Fora, =0,S=1andv =10, RIG = 6.51 x 1072

Foray,=0,S=1andv =4, RIG =0.125

Metaphorically: the prior is totalitarian in Bayes A (B) ﬁ

STATISTICAL DISTANCE BETWEEN CONDITIONAL POSTERIOR AND PRIOR
(KULLBACK-LEIBLER)

Specific distance at a given variance

K L |eonditional, prior| / F. Uj* -
“~

where prior

i {r/rj*|4'. 57}

Lv,v+ p S5 e, o) [t ’
. i ms T, | = log plol |ELSE)

=|F KL IS LARGE, THEN LEARNING BEYOND THE PRIOR HAS
TAKEN PLACE.

=KL SHOULD GO TO INFINITY AS DATAACCUMULATE IN ANY
REASONABLE BAYESIAN MODEL

21



KULLBACK-LEIBLER DISTANCES
BETWEEN CONDITIONAL
POSTERIOR AND PRIOR

1)7.33x102forv=4,S=1p=1anda, =0
2)2.64x 102 forv = 10,S=1,p = 1 and a, = 0

3)2.52x 103 forv =100,S=1,p=1anda, =0

If 10 markers are allowed to share the same variance, KL= 4.47
Relative to (1), KL distance increases 61 times...

Effect of the scale parameter of the prior

A pertinent question i= whether or not the learned marker effect (Le., a draw from its

conditional posterior distrbation! hias an important impact on KL via modification of the
. 7 . 52 Lad . . .

scale parameter from 57 into 4. Let .- the realized value of the marker effect in

units of the "prior standard deviation” 5w ¢ = 0,0.01, 0.5, 1 and 2; the last two cases

wonld be representative of markers with huge effects. The density of the conditional posterior

distribution of a7 is then

.-I:I.”._..IJ‘_‘-'\. T
oy o L z J oy siiia T

The KL distance between the conditional posterior and the prior for each of these live situ-
ations, assuming 5 = 1 and v = 4 are: 1) KL{e =0) = 7.33 = 1079, 2) KL{e = 0.01) = 7.
32107, 3) KL{z = (L5} = 4. 67« 1074, 4) KL« 1} = 1.54x10-% and 5] KL{e = 2} = 0.34.
Ewven though marker effects are drastically diferent, the conditional posteriors are not two
different (in the KL sense] from each other, meaning that the exent of shrinkage in Bayes A

[or B} continues to be dominated by the prior.

22



Density oo ]

Prior (open boxes)

t
4 L &
Marker variance

Migure 3. Ellect of scale parameter on the conditional posterior distribution of the variance

of the marker effect. Prior distribution mearked with boses; conditional |'l":-|l'l'fll!'

diztribution for ¢ = 2 {standardized marker elfect| in dots. The other three distnbutions

are barely distingmsable from the prior,

BAYES A (B)

* The prior always matters

» The effect of the prior is via the extent of
shrinkage of marker effects

» The extent of shrinkage can be
manipulated, with the data essentially
providing no control

« Statistically greedy models (same will
apply for any model assigning marker-
specific variances)

23



SIMULATION

(never take a simulation too seriously)

RESURRECTION OF BAYES
A

(If additive model holds, it may give
sensible inferences about marker effects)

24



Description for slides 1, 2 and 3

+ Bayes A was fitted on a simulated data of 50 observations.
— True linear relationship between response and SNP (x1 x2 x3) effects
Y =W+ 2N+ K - 2y + 5% + error (~N{0, sd=1.2))
- Model fitted:
« Y = WE + Xg + error
« Wis incidence matrix for two nuisance parameters.
« X is incidence matrix for SMP effects. Besides x1, x2 and x3, five additional

irrelevant SMPs (x4 to x8) added. SNP value is allele copy numbers, ie. 0,
1or2

+ Slide 1—Posterior distributions of SNP effects g, (i = 1, 2....,8) when using five
different priors on o2, scale determined by estimated residual variance .5)
— Black: g ~ unifi0, 100)
— Red: ggiE-.. scaled inversa ¥? (df=4, scale=1.5)
- Blue: 0,7~ scaled inverse x? (df=4, scale=3)
- Green: 0,7~ scaled inverse y? (df=8, scale=1.5)
— Pink: crpz—- scaled inversa y2 (df=8, scale=3)

+  Slides 2 and 3—Puosterior distributions of 8 SNP specific variances under
above five priors. Because the uniform prior leads to a very different posterior
of SNP variance as compared to the other four ﬁrlors, it was plotted separately

(slide 2). Slide 3 is for the four scaled inverse chi-square priors, with same
color representations in slide 1.

POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER UNIFORM PRIOR

L4 o3 L4 L5
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204
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Qoos 0.0010
) z &z .
£ E 2 el
& nooto & o 4e-04 3
0.0005 _
00005 L 2e-04-
0.0000 0.0000 De+d0 0=+00
T 2000 G000 100 T 2000 o0 10000 72000 G000 1000 T 2000 EO0g - aang
H 1 H 2
Tgz O Tg7 g
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0.0015
00010 0.0025
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0.0008 0.0020
. i oo _ 00008
F 0.0006: g'o.oms Z §
a 3 & 3
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! : 0.0005]
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25



% Tg3 Rt
0.20
06 s 08
05
04 015
04| ] 04
z =03 z =
2 £ 210 Ena
5 | & & &
021
0z || h 02
| | 0.0:
I.II 0.1 k 01 k
0.0 k‘*— 00 L 0.00 00 -
T 20 30 W 20 30 40 W 20 50 W 20 30 40
H 1 1
g2 O Tg7 Ogg
08
0 o 06 .
04
=04 - 204 =04
a 03 A e
3 ] 3 ]
b i
02| 02 0z)| 02
[- 0.1 k ‘
0.0 \L — on \\ 0.0 \L — | op{ e
EL ] W20 30 40 20 3 @ FL T R 7]

POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER FOUR S.INV. CHI-SQUARE PRIORS

THE GOOD NEWS

Posterior distribution of SNP effects

26



92 3 g4
20 n A A
/| |Bayes A[picks Up the 3 relevant SNPs :‘\ 20 i
I3 4 | |
( | 1.5 [ 15 {1 I
e A B /\
: \i ] ‘,J 15 j' |
3 = [ > [ 1 2z |
a Z1.0 P 10 i @
E1.0 = I c i c |
] & - 3 I &0
P | 1 |
1 ]
. |
05 | 08 | 05 |
/ \ / \
00 00 p- 00 J
00 05 10 15 40 4% 50 55 60 -10 05 00 05 10
95 9e g7 9z
A i
i | [ 15 Al
1.5 (1 15 | 15 [ [
bt | | I [
a - [ ||
| . | A | | i
8 | |
1.0 f |‘ 210 { \ Z10 F \ L “EW‘U J‘J ]|
E & | \ 5 |
i [ 3 4‘ & [ 3 |
\ i [ f
\ 1 / \ |
05 \ 05 | 05 / b 05 / ‘
\ { I \ | \
\ ! / \
\ \ ,v" \
\ \ / !
00 4 ~ 0.0 00 A 0.0 /
-10 -05 00 05 10 -10 -05 00 05 85 00 05 10 ~10 05 00 05 10

DEATH-RESURRECTION-DEATH

Bayes A may give a distorted

picture if there is non-linearity or

non-additivity
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Description for slides 5,6 and 7

« Bayes A was fitted on a simulated data of 50 observations.
- True nonlingar relationship between response and SNP (x1 x2 x3) effects
o Y =W+ PG+ explx, ) singxg-0.5) %57 + error (~N(0, sd=0.25))
= Model fitted:
« Y =W + Xg + error
+ Wis incidence matrix for two nuisance parameters.
+ X s incidence matrix for SNP effects. Besides x1, x2 and %3, five additional

irrelevant SNPs (x4 to xB) added. SNP value is allele copy numbers, i.e., 0,
1or2

«  Slide 5—Posterior distributions of SNP effects g, (i = 1, 2,...,8) when using five
different priors on 0,2, scale determined by estimated residual variance 42)
- Black: o ~ unif{0,100)
- Red .:,9'?_, scaled inverse x? (df=4, scale=42)
- Blue: 0,2~ scaled inverse y? (df=4, scale=84)
— Green: 0,2~ scaled inverse 37 (df=8, scale=42)
- PFink: 09-21 scaled inverse y2(df=8, scale=84)

Slides 6 and T—Posterior distributions of 8 SNP specific variances under the
above five priors. Because the uniform prior leads to a very different posterior
of SNP variance as compared to the other four Erlors, it was plotted separately

(slide 6). Slide 7 is for the four scaled inverse chi-square priors, with same
color representations in slide 5.
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BAYES A vs. BAYES L

(Bayes L= Bayesian Lasso)

In the Bayesian Lasso, marker effects are assigned double exponential distributions

p s
p(B) = H%ﬂe_ A

i
=]

04

Density
0.3

02

0.1

0.0

Density of a Normal and of a Double-Exponential Distribution

EACH MARKER HAS THE SAME D.E DISTRIBUTION
NO HETEROGENEOUS VARIANCE EITHER
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Graphical Representation of the hierarchical structure of the Bayesian LASSO
and Bayes A

Bayesian LASSO

(ﬂ\a Tl"l (yl||3,0'2)
p(2) % I plo”)
ﬁ oz ply. |B.o%)

(ﬂl‘o-/f Uﬂ‘df S (y1|[¥,0'2)

Bayes A

ply, 1B.o?)

(ﬁ ‘Uﬁ, 0'/3 ‘df S

:> Assume exponential distribution of variances
22 A262 :
p(adl4) = exp( d )
|:> Mix (as in t-model)

i 2 1262
POl ) = [ N(yilui.asg%exp( - )d :
0

— ),2 % 1 (yl |) 2 2 2. -
B Zm .(')‘(6e exp{ [ Ggi +l Gei daei’ I = 1121---,n.

|:> Assume

A?la,b ~ Gamma(a, b)
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Implementation is as in a t-model but transform T

2
21ELSE) « (2) 7 expd ——— 2 72 — 22
Ps )= (e2) p{ zrgi( ,12,)2 T v
Yi—Xjp-zju

Inverse Gaussian (Wald) distribution

E(z2|ELSE) = |—24
(Tell ) (yi—XQB—Zé“)Z

()
3(e2 )’
Var(r3 JELSE) - SRS A

ANOTHER SIMULATION

(never take simulation too seriously,

although it is great for checking ideas
and code)

DE LOS CAMPOS ET AL. (2009)
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280

Vi =D % B, + ¢ i =1,...300.
j=1

280 markers. Residuals assumed N(0,1)

Pearson’s correlation between marker genotypes

(average across markersand 100 Monte-Carlo simulations)

by scenario (X,: low LD; X, high LD).

Adjacency between markers

Scenario 1 2 3 4
X, 0.007 0.002 -0.002 0.013
X, 0.722 0.567 0.450 0.356

Only 10 markers had effects=» 270 had no effect on the trait simulated

03

Chromosome 1 i Chromosome 2 EChrumosn:rne3 iChrurnnsomed

02
I

1

01

Effect
0.0

I
T T T T T T

0 50 100 150 200 250

Marker number

Positions (chromosome and marker number) and effects of markers
(there were 280 markers, with 270 with no effect)
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NINE SPECIFICATIONS OF
BAYES A

Prior df Prior Scale
105 \ 109 5x102
0 (1) (2) (3)
% @) ®) ®)
1 7) (8) (9)

PRIORS 1, 2, 3 ARE IMPROPER
PRIORS 7, 8, 9 WOULD LEAD TO CAUCHY PRIOR DISTRIBUTION OF
MARKER EFFECTS IF SCALE WERE 1

Table 3. Posterior estimates of residual variance (o) and correlation between the

true and estimated value for several items (v, phenotypes; X, true genomic value;

B, marker effects; all quantities averaged of 100 MC replicates).

o’ (‘(u'r(y.Xﬁ) C'm'r(XB. \B) C()J'r(ﬁ. ﬁ)
Meart  SD Meard SD Mean® SD¥ Mean SD
Low linkage disequilibrium between markers (X;)

Bayes A:
(1 0.518 | 0.062 0.839 0.027 0.580 0.063 0.102 0.048
(2) 0.941 0.089 0.577 0.028 0.721 0.092 0.200 0.022
(3) 1.074 | 0.105 0.496 0.032 0.701 0.106 0.199 0.020
(4) 0.394 | 0,053 0.895 0.022 0.531 0.060 0.079 0.051
(5) 0.824 | 0.077 0.652 0.025 0.699 0.079 0.183 0.028
(6) 0.950 | 0.089 0.578 0.027 0.722 0.088 0.201 0.021
(7) / 0.053 0.966 0.015 0.455 0.057 0.042 0.043
(8) 0.056 0.813 0.019 0.606 0.066 0.116 0.044
(9) 0.066 0.728 0.020 0.659 0.072 0.152 0.037
BL 0.886 | 0.080 0.623 0.028 0.708 0.081 0.191 0.024

1/: Mean (across 100 MC replicates) of the posterior mean. 2/: Between-replicate standard

deviation of the estimate. 3/:

Mean (across MC replicates) of the correlation evaluated at

the posterior meanof B.

33



Table 3. Posterior estimates of residual variance (_G:} and correlation between the
true and estimated value for several items (y, phenotypes; XB3, true genomic value;

f, marker effects; all quantities averaged of 100 MC replicates).

g’ ("m'r(y. \B] Cm'r(Xl}. \B) C'm'r(l}. B]
Meant SD¥ Meards SD* Mean SD¥ Mearr SD¥

High linkage disequilibrium between markers (X;)

Bayes A:
(1) 0.535] 0.069 0.824 0.029 0.580 0.070 0.121 0.045
(2) 0.938 | 0.076 0.609 0.033 0.677 0.083 0.210 0.026
(3) 1.093 | 0.085 0.528 0.034 0.650 0.086 0.211 0.025
(4) 0.404 | 0.067 0.888 0.025 0.533 0.067 0.094 0.048
() 0.800 [ 0.069 0.670 0.030 0.659 0.076 0.200 0.030
(6) 0.948 | 0.075 0.616 0.031 0.676 0.081 0.211 0.026
(7) 0.195 | 0.056 0.960 0.015 0.462 0.060 0.062 0.048
(8) 0.566 | 0.058 0.809 0.021 0.593 0.070 0.132 0.042
9 0.689 | 0.062 0.734 0.024 0.629 0.072 0.173 0.036

BL 1.004 | 0.088 0.610 0.042 0.668 0.079 0.211 0.025

1/: Mean (across 100 MC replicates) of the posterior mean. 2/: Between-replicate standard

deviation of the estimate. 3/; Mean (across MC replicates) of the correlation evaluated at

the posterior meanof B.

Ability to uncover relevant genomic
regions

*For each method and replicate, markers ranked on absolute values of posterior means
*For each effect, dummy variable created

Dummy was 1 if marker (or any of its 4 flanking markers) ranked on top 20. O.W=0
*Average over markers and replicates=» Index of “retrieved regions”

Table 4. Fraction of retrieved regions by model (BL.=Bayesian LASSO) and scenario

of linkage disequilibrium (LD).

Bayes A
(S ) I &) “ 35 © €] 8) (€]
Low LD (Xo) 024 043 047 022 036 043 022 026 029 039
High LD (X)) 021 034 033 019 031 034 0.8 022 026 034

BL

Bayes A affected by priors:
=>Worse performance in Settings 1,4 and 7
=>Bayes A (settings 2, 3, 6) and Lasso almost doubled ability
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Simple fixes of Bayes A

 Assign the same variance to

all markers (trivial Bayesian regression
problem)

 Assign the same variance to groups of
markers (e.g., chromosomes or genomic
regions): model comparison issue

 Assign non-informative priors to S and to
the degrees of freedom v

=» can be done. Just an algorithmic matter

Issues and questions

+ Bayes A can be “fixed”, but may not the best
thing to do. Open question...

« Bayes A, as is, may still have a good predictive
(out of sample) behavior, even though it is not
completely defensible

+ Bayes B is Bayesianly ill-posed. If you do not
believe me, check with local Bayesian
statisticians...

» More reasonable: mixture at the level of the
effects (not of the variances): | believe this is
what the Dutch did (and lowa people with beef
cattle, mainly Fernando and Garrick)




