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4. Dealing with epistatic
interactions and non-linearities

gene x gene
gene x gene x gene

gene x gene x gene x gene
………….

(Alice in Wonderland)

Statistical Interaction
(fixed effects models)

yijk    Ai  Bj  ABij  eijk

Eyijk |Ai,Bj,ABij    Ai  Bj  ABij

E yijk − yij ′k′ |Ai,Bj,ABij,Ai ′ ,Bj,ABi′j    Ai  Bj  ABij

−   Ai ′  Bj  ABi′j

 Ai − Ai′  ABij − ABi′j

Difference between levels of factor A depends on level of B

If factor A has a levels and factor B has b levels, the degrees of freedom are:
- (a-1)
- (b-1)
- (a-1)(b-1) [assuming no-empty cells]
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Multi-SNP Fixed effects models?
(unraveling “physiological epistasis” a la Cheverud)

• Lots of “main effects”
• Splendid non-orthogonality
• Lots of 2-factor interactions
• Lots of 3-factor interactions
• Lots of non-estimability
• Lots of uninterpretable high-order 

interactions
• Run out of “degrees of freedom”

Analysis of SNPs with random effects models?

MEUWISSEN et al. (2001)

GIANOLA et al. (2003)

XU (2003)

--Use all SNP markers in statistical models
--Mechanistic basis to mixed effects linear model
(genetic effects treated as random variables)

--Highly parametric models
--Strong assumptions made

“Ridge regression-
type”

Will talk about this later
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What are ridge and Bayesian regression?
(given some variance components or tuning parameters)

Bayes model assumes, a priori   N0,B2 


OLS  X′X−1X′y


RIDGE  X′X  I−1X′y


BAYES  X′X  B−1 e

2

2

−1

X′y  e
2

2
B−10

Typically assumed 0 Typically identity matrix.
However, can be given
structure

Large values of λ “shrink” regressions
towards 0 (induces bias, but higher
precision than OLS)

Special case of
Bayesian linear regression

ORDINARY LEAST-SQUARES

y  X  e

 X11  X22  e

1

2


X1
′ X1 X1

′ X2

X2
′ X1 X2

′ X2

−1
X1
′ y

X2
′ y

 X ′X−1X ′y

E

|X  X ′X−1X ′Ey

 X ′X−1X ′X  

y  X11  e

E

1|X1  X1

′ X1 
−1Ey

 X1
′ X1 

−1X11  X22 

 1  X1
′ X1 

−1X1
′ X22

“Full model”

“OLS” estimator

“OLS” is biased If full model holds and one fits “smaller” model (e.g., single marker
Regressions)
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Ridge  X ′X  I−1X ′y

 I  X ′X−1
−1
X ′X−1X ′y

 I  X ′X−1
−1
OLS

E

Ridge|X  I  X ′X−1

−1
E

OLS

 I  X ′X−1
−1


RIDGE REGRESSION

Can assess by cross-validation

Biased estimator but more precise

Shrinkage towards 0

BAYESIAN REGRESSION
(ASSUMING KNOWN VARIANCE COMPONENTS)

  N0,B
2 


Bayes  X ′X  B−1 e

2


2

−1

X ′y  e
2


2

B−10

E

Bayes|  X ′X  B−1 e

2


2

−1

X ′X  e
2


2

B−10

 I  BX ′X−1 e
2


2

−1

X ′X−1 X ′X  e
2


2

B−10

 I  BX ′X−1 e
2


2

−1

  e
2


2
BX ′X−10

Prior

Conditionally biased
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ILLUSTRATION OF SOMEPOINTS

Standard analysis (fixed X)

y  f  e  X  e

  N0, I2 

Ey|X  X

Vary|X  Varf  Vare

 XX ′2  Ie
2

Genotype

but random β

X ′X  e
2

2
I

  X ′y

I  e
2

2
X ′X−1 

  X ′X−1X ′y


  I  e

2

2
X′X−1

−1
OLS  SHRINKAGE

P re d ic t io n o f s ig n a l X   to p h e n o ty p e

Prediction of marker effects: BLUP
(iid marker effects)

VarX|y  XVar|yX ′

 X I  e
2


2
X ′X−1

−1

X ′e
2
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Prediction of future record

y∗  X∗  e∗

EX∗  e∗|y,X,X∗   X∗E|y,X

 X∗ I  e
2

2
X ′X−1

−1
OLS

VarX∗  e∗ |y,X,X∗   X∗Var|y,XX∗  I∗e
2

GAUSSIAN PROCESS ANALYSIS
(IID MARKER EFFECTS)

y  f  e  X  e

  N0, I
2 

X  F

Ey|X,  X

Ey|  EXEy|X,  EX

Ey  EEX  EXE  0

Assume X and β are independent
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Vary  Varf  Vare  Varf   Ie
2

Varf  VarX

 EXVarX|X  VarXEX|X

 EXXVarX ′   VarXXE

 EXXX ′
2   VarX0

 2 EXXX ′,


f  BPf

1
e

2
I  Var−1f


f  1

e
2

y

I  e
2

2
EX
−1XX′ 


f  y

EX
−1XX ′ EXXX ′  e

2


2

I

f  y

EXXX ′  e
2


2

I

f  EXXX ′y

BP= “best predictor”
(MULVN assumed)

Varf|y  Varf − Covf,yVar−1yCov ′f,y

 Varf − VarfVarf  Ie
2−1Varf

 2 EXXX ′ − 
2EXXX ′ 2EXXX ′   Ie

2 −12EXXX ′ 

 2 EXXX ′ − 
2EXXX ′ 

EX
−1XX ′
2

I  e
2

2
EXXX ′ 

−1

2 EXXX ′

 I − I  e
2

2
EXXX ′

−1

2EXXX ′ .

Under multivariate normality

-1

-1
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f∗  X∗  e∗

Ef ∗|f  Ef ∗  CovX∗,X ′Var−1ff

Ef ∗|y  Ef|yEf∗ |f,y  Ef|yEf∗|f 

 Ef|yCovX∗,X′Var−1f f

 CovX∗,X′Var−1f

f

CovX∗,X ′  EX,X∗ CovX∗,X ′|X,X∗

 CovX,X∗ EX∗,EX′ |X,X∗ 

 2 EX,X∗X∗X′   CovX,X∗ 0, 0

 2 EX,X∗X∗X′ 

Future record:

Dealing with interactions (“statistical epistasis”): much of this
took place in inspiring Iowan landscapes…

gotyou  as pigsmany  as/)( 22
ijkllkjiijkllkji pigpig 

MORE
PIGS HERE

SOME CORN

PIGS AGAIN

O  K

Bayesians, 
keep out!

C. C. C
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RANDOM EFFECTS MODELS 
FOR ASSESSING EPISTASIS REST ON:

Cockerham (1954) and  Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominance,
additive x additive, etc. ONLY if

No selection                                        
No inbreeding                                                   
No assortative mating
No mutation
No migration
Linkage equilibrium 
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N0,a
2 

N0,d
2 

N0,aa
2 

N0,ad
2 

N0,dd
2 

. . . .

N0,ddd...d
2 

The degrees of freedom of the distribution are NOT GIVEN by the number of levels.

There is now 1 df for each type of genetic effect.

Matrix representation

Variance-covariance

Decomposition
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RANDOM EFFECTS MODELS 
FOR ASSESSING EPISTASIS REST ON:

Cockerham (1954) and  Kempthorne (1954)

--Orthogonal partition of genetic variance into additive, dominance
additive x additive, etc. ONLY if

No selection                                        
No inbreeding                                                   
No assortative mating
No mutation
No migration
Linkage equilibrium 

DO THESE ASSUMPTIONS HOLD?

ALL 
ASSUMPTIONS
VIOLATED!

Just consider
Linkage disequilibrium

My 
girlfriend is 

a bitch

Digression: linkage disequilibrium
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A VIEW OF LINEAR MODELS
(as employed in q. genetics)

Mathematically, can be viewed as a “local” approximation of a complex process

Linear approximation

Quadratic approximation

nth order approximation
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Example

y  gx  e

Response variate
Model residual

Some function of a covariate x

Suppose gx  sinx  cosx

Second-order Taylor series expansion about 0

d
dx
sinx  cosx

d
dx
cosx  − sinx

d
dx
sinx  cosx  cosx − sinx

d
dx
cosx − sinx  −cosx − sinx

d2

dx 2
sinx  cosx  −cosx − sinx

sinx  cosx ≈ sin0  cos0  cos0 − sin 0x − 0  1
2 
−cos0 − sin 0x − 02

 1  x − x2

2

How good are the linear and quadratic approximations? Recall that a Taylor
series provides a local approximation only…
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1. Sin and cosine function 3. Quadratic approximation

2. Linear approximation

4. Approximations
are good at x=0…
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Finding structure from noisy data
we have environmental noise…: 

evaluate function sin(x)+cos(x) at x=0, 0.5 and 1

True values are:

> sin(0)+cos(0)
[1] 1

> sin(0.5)+cos(0.5)
[1] 1.357008

> sin(1)+cos(1)
[1] 1.381773

VERY CLOSE TO EACH OTHER
NOISE CAN MASK SIGNALS!

Create an R data set (N=300) from adding 100 N(0,1) residuals to each of the 3 values

> y0<-sin(0)+cos(0)        +rnorm(100,0,1)
> y05<-sin(0.5)+cos(0.5)+rnorm(100,0,1)
> y1<-sin(1)+cos(1)        +rnorm(100,0,1)
> y<-c(y0,y05,y1)

MEASURING MACHINE 1
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> y0<-sin(0)+cos(0)            +rnorm(100000,0,1)
> y05<-sin(0.5)+cos(0.5)    +rnorm(100000,0,1)
> y1<-sin(1)+cos(1)            +rnorm(100000,0,1)
> y<-c(y0,y05,y1)

Create a larger R data set (N=300000) by adding 
100000 N(0,1) residuals to each of the 3 values

CANNOT SEE UNDERLYING STRUCTURE.
LARGE NOISE (ERROR VARIANCE)

Can we have
Outliers here?

> y0<-sin(0)+cos(0)             +rnorm(100000,0,.05)
> y1<-sin(1)+cos(1)             +rnorm(100000,0,.05)
> y05<-sin(0.5)+cos(0.5)     +rnorm(100000,0,.05)

Now we get a more precise measuring instrument with variance 0.05

STRUCTURE IS REVEALED BUT
WE CANNOT DIFFERENTIATE
BETWEEN TWO OF THE UNDERLYING
VALUES

MEASURING MACHINE 2
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…SO WE BUY ANOTHER INSTRUMENT WITH VARIANCE 0.001!

> y0<-sin(0)+cos(0)           +rnorm(100000,0,.001)
> y1<-sin(1)+cos(1)           +rnorm(100000,0,.001)
> y05<-sin(0.5)+cos(0.5)   +rnorm(100000,0,.001)
> y<-c(y0,y05,y1)

STILL CANNOT DIFFERENTIATE
BETWEEN THE

> sin(0.5)+cos(0.5)
[1] 1.357008

> sin(1)+cos(1)
[1] 1.381773

MEASUREMENT MACHINE 3
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HOWEVER, NON-PARAMETRIC DENSITY ESTIMATES DEPEND ON SOME
BANDWIDTH PARAMETER. BY REDUCING IT, WE CAN SEE THE ENTIRE
STRUCTURE OF THE PROBLEM…

Outlier
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We are given (x,y) data (n=10,000). It looks like this and we run a linear regression
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yhat= 0.07936+0.24814*x

> cor(x,y)
[1] 0.8064256

> cor(y,yhat)
[1] 0.8064256
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RESIDUALS DISPLAY
SINUSOIDAL BEHAVIOR

FINDING “STRUCTURE” WITH A LINEAR  MODEL

TRUE MODEL
> e<-rnorm(10000,0,sqrt(9))
> x<-runif(10000,-30,30)
> a<-0.10
> b<-0.25
>y<-a+b*x+sin(x)+cos(x)+e

> model<-lm(y~x+sin(x)+cos(x))

>Coefficients:
>(Intercept)            x       sin(x)       cos(x)  
> 0.1030       0.2489       0.9518      0.9433 
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RESIDUALS LOOK RANDOM
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WE GENERATE A NEW SAMPLE AT THE SAME VALUES OF X

> enew<-rnorm(10000,0,sqrt(9))
>ynew<-a+b*x+sin(x)+cos(x)+enew

CALCULATE PREDICTIVE MEAN SQUARED ERROR 
> msepredbadmodel<-sum((ynew-yhat)**2/10000)
> msepredbadmodel
[1] 9.725709

> msepredgoodmodel<-sum((ynew-yhatgood)**2/10000)
> msepredgoodmodel
[1] 8.729272 

CALCULATE PREDICTIVE CORRELATIONS

> cor(yhat,ynew)
[1] 0.8070097
> cor(yhatgood,ynew)
[1] 0.828854

MSE(Good)/MSE(Bad)=0.8975
MSE(Bad)/MSE(Good)=1.1141

Cor(BAD)/Cor(GOOD)=0.9736
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> lm(yhat~yhatgood)
Coefficients:
(Intercept)     yhatgood  

0.005653     0.953468 

DO NOT TRUST CORRELATIONS!
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Heal Thyself: Systems Biology Model Reveals How Cells Avoid Becoming 
Cancerous. ScienceDaily (May 21, 2006) 

How one
Would model
something like this?

RECALLING COMPLEXITY…

What to do in genomic-assisted 
analysis of complex genetic signals?

• Include all markers, model all possible interactions? 
Unrealistic…

• Select sets of influential markers via model selection
 Huge search space
 Frequentist methods “err” probabilistically 
 Bayesian model selection (RJMC) difficult to tune

• Use LASSO (least absolute shrinkage and selection 
operator): Tibshirani (1996). What about interactions?

• Explore model-free techniques that have been used 
successfully in many domains
 semi-parametric regression
 machine learning: focus on prediction, learning  

mappings from inputs to outputs
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DEFINITION OF MACHINE 
LEARNING
(Wikipedia)

Machine learning: subfield of artificial intelligence concerned with 
design and development of algorithms that allow computers (machines) 

to improve their performance over time (to learn) based on data, 

A major focus of machine learning research is to automatically produce 
(induce) models, such as rules and patterns, from data. Hence, 

machine learning is closely related to fields such as data mining, 
statistics, inductive reasoning, pattern recognition, and theoretical 

computer science.


