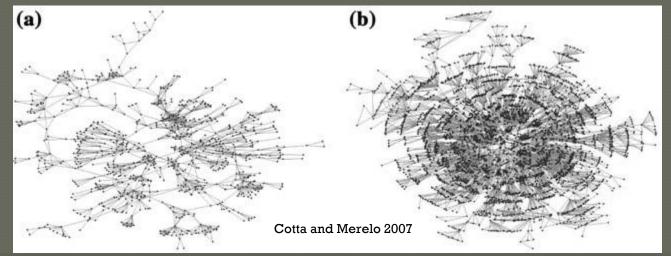
2

Heuristics and evolutionary computation

Cedric Gondro

The Centre for Genetic Analysis and Applications University of New England



Before we get started

- Evolutionary computation (EC) is the field of study
- Evolutionary algorithm (EA) is a method

• EC is a large field of research

- 2837 authors in 2000
- 6555 authors in 2005 and growing

Is it about the destination or is it about getting there?

- It's great to be on the road, but this week we will focus on getting where we are going!
- First question: are EAs the best alternative?
- Most (technical) problems involve some form of optimization
 - Optimization is the process of searching for improved solutions in the search space

Heuristics

- From the Greek "heuriskein" to discover
- Pertains to the process of gaining knowledge or some desired result by intelligent guesswork rather than by following some pre-established formula
- Describes an approach to learning by trying without necessarily having an organized hypothesis or way of proving that the results proved or disproved the hypothesis
- Trial-by-error learning

When to use heuristics

- Heuristics are effective when:
 - The number of possible solutions in the search space impedes exhaustive search
 - The problem is so complicated that they demand such simplified models that any results are essentially useless
 - The evaluation function is noisy or varies with time
 - The solutions are heavily constrained

Deterministic x stochastic methods

• Deterministic

- Always the same output for a given input
- e.g. mathematical function

y=x^2

In computer terms, it's a description of the steps (states) to execute

Exhaustive search – always the same answer (almost an heuristic)

Stochastic

- The output cannot be predicted from the input
- Final state does not depend on the initial state

Deterministic x stochastic - pitfalls

• Deterministic

- Methods tend to be specific to a certain problem
- Lack of generality
- Most real world problems don't come with a formula

Stochastic

- Slower than deterministic methods
- Cannot prove or disprove results
- Repeatability

Short version:

if there's a deterministic solution to your problem, use it!

Optimization strategies how to solve a problem

- I ask the guy next door!
- 2 the hard way. Solve it yourself!
 - Define the problem as an optimization problem
 - Define what class of problem you have
 - Assignment
 - Model parameterization
 - Model discovery
 - Combinatorial
 - Choose a method, but remember the *No-free-lunch* theorem

Complete and partial solution methods

Complete

- Exhaustive search
- Gradient methods
- Linear programming

Partial

- Greedy algorithms
- Dynamic programming
- Branch-and-bound
- It all boils down to exploring the solution space
- The topography of your solution spaces defines which methods are suitable
- perfect world
- <u>smooth sailing</u>
- jagged
- no visibility
- welcome to Nepal!
- bend the world to your needs!

Non EC stochastic methods

- Random search
- Random walk
- Hill climbing
- Simulated Annealing

EC (at last!)

 Computer-based problem solving systems that use computational models of evolutionary processes as the key elements in design and implementation.

Natural Computation ->
Computational Intelligence ->

Evolutionary Computation

• Evolutionary Computation Branches:

- Genetic Algorithms (GAs)
- Evolutionary Programming (EP)
- Evolution Strategies (ES)
- Classifier Systems (CFS)
- Genetic Programming (GP)

Evolution of evolutionary computation

- De Jong divided EC into epochs
 - Catalytic 60s
 - Explorative 70s
 - Exploitative 80s
 - Unifying 90s

Types of evolutionary algorithms

- Evolutionary Programming (EP)
- Evolution Strategies (ES)
- Genetic Algorithms (GAs)
- Genetic Programming (GP)
- Classifier Systems (CFS)

... and Differential Evolution (DE)!

Which one do I use?

• NFL theorem applies!

- Rule of thumb:
 - GA discrete problems: sorting, ranking, allocation
 - EP, ES continuous problems: model parameterization
 - GP model discovery

Considerations:

- Ease of implementation
- Computational and convergence speeds
- Repeatability and spread
- Parameterization (soft-spot of EAs)

Advantages of EAs

- Simplicity
 - The concept and the implementation of EAs are simple
- Broad applicability
 - Virtually any problem can be addressed by EAs
- Hybrid methods
 - EAs allow integration with other methods
- Parallelism
 - The structure of EAs makes them particularly well suited for parallelization
- Robust to changes
 - Changes in the target system do not render the algorithm useless
- Self adaptation
 - The parameters of the EA can evolve alongside the solutions
- Solve problems with no known answers
 - Probably the greatest advantage of EAs; if an evaluation of goodness of fit of a solution is possible, EAs can be used

But EAs are not a magic bullet

- You will still have to think about the problem
 - Problem representation is critical to solving it
 - On the bright side you and the computer will teach each other!

University of New England

