
Cedric Gondro

The Centre for Genetic Analysis and Applications

University of New England

 Multicriteria optimization

 Parallelization

 Self-evolving parameters

 Hybrid evolutionary algorithms

 Independent problems

• Scaling

 Dependent problems

• Scaling

• Co-evolution (concurrency)

• integration of objective functions in a single fitness function

 Real multicriteria problems

• Trade offs - cannot eat and have the cake at the same time!

• But can decide how much to eat and how much to keep!

 No unique solution -> a set of equivalent solutions

 Pareto optimal

• An improvement in any criterion will result in loss of fitness of

other criteria

• Set of all possible solutions at the Pareto optimal

• Tip: calculate and keep the Pareto set for downstream decisions

 Most common: weighting

• Self-evolving

 accounts for how far can you go in each direction

 can reach higher fitness than achievable with a predetermined

fitness

• Manual

 user controlled

 Simple scaling function

n

i

m

j ijij

x

f

i

yx

2

2)(
*1

 EAs are embarrassingly parallel

• Ideal for multi cores and low cost clusters

• Main difficulty is to get the processors talking

• Main bottleneck is the network lag

 Simplest parallelization

• Run the same job independently on different machines

 More exciting

• Master-slave model

• Island model

 Can be tricky to manually adjust the parameters

 Evolve problem and EA parameters concurrently

• DE inherently evolves parameters

• Common in ES and EP

• Less common in GA and GP

 Simple strategy (GA/GP)

• Evolve the EA parameters using ‘real’ fitness gain as fitness

 Different classes of EAs

• Explore the best properties of each

• Current trend is to blur the line

 EAs with other optimizers

• e.g. hill climbing, gradient search…

 EAs with other techniques

• e.g. expert systems, neural networks, self organizing maps…

Initialize random values for variables within a set of constraints

Do until (termination criterion)

{

Iteration i

{

 GEP

 Initialize random population of models

 Replace chromosome 0 with best model

 Do until GEPGeneration = GEPMaxGenerations

 {

 Select

 Crossover

 Mutate

 Evaluate

 Replace

 Generation++

 }

 If (GEP Best Model Improves Fitness)

 Replace model with best model from GEP

 Else Keep original model

 Bloat Reduction Method

 DE

 Use Best Model to optimize variables

 Initialize random population of variables within constraints

 Replace chromosome 0 with best variables

 Do until DEGeneration = DEMaxGenerations

 {

 Select

 Crossover

 Mutate

 Evaluate

 Replace

 Generation++

 }

 If (DE Best Values Improve Fitness)

 Replace variables with best values from DE

 Else Keep original variables

 i++

} }

 Uses each method within it’s specific domain

 Allows the use of a different fitness function for structure

discovery and parameterization

 Increases variability of the population, avoiding premature

convergence

 Greatly improves model discovery

