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 Multicriteria optimization 

 

 Parallelization 

 

 Self-evolving parameters 

 

 Hybrid evolutionary algorithms 

 

 



 Independent problems  

• Scaling 

 

 Dependent problems 

• Scaling 

• Co-evolution (concurrency) 

•  integration of objective functions in a single fitness function 

 

 Real multicriteria problems 

• Trade offs  - cannot eat and have the cake at the same time! 

• But can decide how much to eat and how much to keep! 

 

 



 No unique solution -> a set of equivalent solutions 

 

 Pareto optimal  

• An improvement in any criterion will result in loss of fitness of 

other criteria 

• Set of all possible solutions at the Pareto optimal 

 

• Tip: calculate and keep the Pareto set for downstream decisions 

 

 

 

 





 Most common: weighting 

 

• Self-evolving 

 accounts for how far can you go in each direction 

 can reach higher fitness than achievable with a predetermined 

fitness  

 

• Manual 

 user controlled 

 

 

 Simple scaling function 
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 EAs are embarrassingly parallel 

• Ideal for multi cores and low cost clusters 

• Main difficulty is to get the processors talking 

• Main bottleneck is the network lag 

 

 Simplest parallelization 

• Run the same job independently on different machines 

 

 More exciting 

• Master-slave model 

• Island model 

 

 



 Can be tricky to manually adjust the parameters 

 

 Evolve problem and EA parameters concurrently 

• DE inherently evolves parameters 

• Common in ES and EP 

• Less common in GA and GP 

 

 Simple strategy (GA/GP) 

• Evolve the EA parameters using ‘real’ fitness gain as fitness 

 

 





 Different classes of EAs 

• Explore the best properties of each 

• Current trend is to blur the line 

 

 EAs with other optimizers 

• e.g. hill climbing, gradient search… 

 

 EAs with other techniques 

• e.g. expert systems, neural networks, self organizing maps… 

 



Initialize random values for variables within a set of constraints 

Do until (termination criterion) 

{ 

Iteration i 

{ 

  GEP 

  Initialize random population of models 

 Replace chromosome 0 with best model  

  Do until GEPGeneration = GEPMaxGenerations  

    

   { 

      Select 

      Crossover 

      Mutate 

      Evaluate 

      Replace 

  Generation++ 

   } 

 If (GEP Best Model Improves Fitness) 

   Replace model with best model from GEP 

 Else Keep original model 

   

  Bloat Reduction Method 

 DE 

 Use Best Model to optimize variables 

 Initialize random population of variables within constraints 

 Replace chromosome 0 with best variables  

  Do until DEGeneration = DEMaxGenerations  

    

   { 

      Select 

      Crossover 

      Mutate 

      Evaluate 

      Replace 

  Generation++ 

   } 

 If (DE Best Values Improve Fitness) 

   Replace variables with best values from DE 

 Else Keep original variables 

  i++ 

} } 

 



 Uses each method within it’s specific domain 

 

 Allows the use of a different fitness function for structure 

discovery and parameterization  

 

 Increases variability of the population, avoiding premature 

convergence 

 

 Greatly improves model discovery  

 



 

 


