9

Improving performance

Cedric Gondro

The Centre for Genetic Analysis and Applications
University of New England
The best of the rest

- Multicriteria optimization
- Parallelization
- Self-evolving parameters
- Hybrid evolutionary algorithms
Multicriteria optimization

- Independent problems
 - Scaling

- Dependent problems
 - Scaling
 - Co-evolution (concurrency)
 - Integration of objective functions in a single fitness function

- Real multicriteria problems
 - Trade offs - cannot eat and have the cake at the same time!
 - But can decide how much to eat and how much to keep!
No unique solution -> a set of equivalent solutions

Pareto optimal
- An improvement in any criterion will result in loss of fitness of other criteria
- Set of all possible solutions at the Pareto optimal
- Tip: calculate and keep the Pareto set for downstream decisions
Pareto or frontier?
Most common: weighting

- Self-evolving
 - accounts for how far can you go in each direction
 - can reach higher fitness than achievable with a predetermined fitness

- Manual
 - user controlled

Simple scaling function

\[
f = -1 \times \sum_i^n \frac{\sum_j^m (x_{ij} - y_{ij})^2}{\sigma^2 x_i}
\]
EAs are embarrassingly parallel
• Ideal for multi cores and low cost clusters
• Main difficulty is to get the processors talking
• Main bottleneck is the network lag

Simplest parallelization
• Run the same job independently on different machines

More exciting
• Master-slave model
• Island model
Self-evolving parameters

- Can be tricky to manually adjust the parameters

- Evolve problem and EA parameters concurrently
 - DE inherently evolves parameters
 - Common in ES and EP
 - Less common in GA and GP

- Simple strategy (GA/GP)
 - Evolve the EA parameters using ‘real’ fitness gain as fitness
Effect of parameters on fitness
Different classes of EAs
- Explore the best properties of each
- Current trend is to blur the line

EAs with other optimizers
- e.g. hill climbing, gradient search…

EAs with other techniques
- e.g. expert systems, neural networks, self organizing maps…
Initialize random values for variables within a set of constraints
Do until (termination criterion)
{
 Iteration i

 GEP
 Initialize random population of models
 Replace chromosome 0 with best model
 Do until GEPGeneration = GEPMaxGenerations

 Select
 Crossover
 Mutate
 Evaluate
 Replace
 Generation++

 }
 If (GEP Best Model Improves Fitness)
 Replace model with best model from GEP
 Else Keep original model

 Bloat Reduction Method
 DE
 Use Best Model to optimize variables
 Initialize random population of variables within constraints
 Replace chromosome 0 with best variables
 Do until DEGeneration = DEMaxGenerations

 Select
 Crossover
 Mutate
 Evaluate
 Replace
 Generation++

 }
 If (DE Best Values Improve Fitness)
 Replace variables with best values from DE
 Else Keep original variables
 i++
}
Advantages of the HDE-GEP

- Uses each method within its specific domain
- Allows the use of a different fitness function for structure discovery and parameterization
- Increases variability of the population, avoiding premature convergence
- Greatly improves model discovery