
Cedric Gondro 

 
The Centre for Genetic Analysis and Applications 

University of New England 



 Multicriteria optimization 

 

 Parallelization 

 

 Self-evolving parameters 

 

 Hybrid evolutionary algorithms 

 

 



 Independent problems  

• Scaling 

 

 Dependent problems 

• Scaling 

• Co-evolution (concurrency) 

•  integration of objective functions in a single fitness function 

 

 Real multicriteria problems 

• Trade offs  - cannot eat and have the cake at the same time! 

• But can decide how much to eat and how much to keep! 

 

 



 No unique solution -> a set of equivalent solutions 

 

 Pareto optimal  

• An improvement in any criterion will result in loss of fitness of 

other criteria 

• Set of all possible solutions at the Pareto optimal 

 

• Tip: calculate and keep the Pareto set for downstream decisions 

 

 

 

 





 Most common: weighting 

 

• Self-evolving 

 accounts for how far can you go in each direction 

 can reach higher fitness than achievable with a predetermined 

fitness  

 

• Manual 

 user controlled 

 

 

 Simple scaling function 

 

 


 


n

i

m

j ijij

x

f

i

yx


2

2)(
*1



 EAs are embarrassingly parallel 

• Ideal for multi cores and low cost clusters 

• Main difficulty is to get the processors talking 

• Main bottleneck is the network lag 

 

 Simplest parallelization 

• Run the same job independently on different machines 

 

 More exciting 

• Master-slave model 

• Island model 

 

 



 Can be tricky to manually adjust the parameters 

 

 Evolve problem and EA parameters concurrently 

• DE inherently evolves parameters 

• Common in ES and EP 

• Less common in GA and GP 

 

 Simple strategy (GA/GP) 

• Evolve the EA parameters using ‘real’ fitness gain as fitness 

 

 





 Different classes of EAs 

• Explore the best properties of each 

• Current trend is to blur the line 

 

 EAs with other optimizers 

• e.g. hill climbing, gradient search… 

 

 EAs with other techniques 

• e.g. expert systems, neural networks, self organizing maps… 

 



Initialize random values for variables within a set of constraints 

Do until (termination criterion) 

{ 

Iteration i 

{ 

  GEP 

  Initialize random population of models 

 Replace chromosome 0 with best model  

  Do until GEPGeneration = GEPMaxGenerations  

    

   { 

      Select 

      Crossover 

      Mutate 

      Evaluate 

      Replace 

  Generation++ 

   } 

 If (GEP Best Model Improves Fitness) 

   Replace model with best model from GEP 

 Else Keep original model 

   

  Bloat Reduction Method 

 DE 

 Use Best Model to optimize variables 

 Initialize random population of variables within constraints 

 Replace chromosome 0 with best variables  

  Do until DEGeneration = DEMaxGenerations  

    

   { 

      Select 

      Crossover 

      Mutate 

      Evaluate 

      Replace 

  Generation++ 

   } 

 If (DE Best Values Improve Fitness) 

   Replace variables with best values from DE 

 Else Keep original variables 

  i++ 

} } 

 



 Uses each method within it’s specific domain 

 

 Allows the use of a different fitness function for structure 

discovery and parameterization  

 

 Increases variability of the population, avoiding premature 

convergence 

 

 Greatly improves model discovery  

 



 

 


