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Overview

Key concepts in Bayesian Inference

Bayesian conjugate models
I beta-binomial
I normal-normal

Conjugate analysis for stochastic SIR models

Bayesian and Frequentist inference: a comparison
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Bayesian inference: the key ideas

In Bayesian inference, all that is known about the possible values of a
parameter is represented by a probability distribution: the prior
distribution

where does prior information come from?

expert opinion about the likely values a parameter

previous experiments

After data are observed, the beliefs about a parameter is updated by
combining the prior information and the available data (the likelihood):
the resulting distribution is called the posterior distribution

The posterior combines two sources of information about θ:
the subjective prior beliefs about θ, and information about θ
contained in the data.
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Bayesian inference in a nutshell:

data: x1, x2, . . . , xn - i.i.d observations from a random variable X
with probability distribution indexed by parameter θ (usually a
vector of parameters)
likelihood: f (data|θ) =

∏n
i=1 p(xi |θ)

prior distribution: initial beliefs about θ: g(θ)

posterior distribution: combination of initial beliefs with
observed data using Bayes theorem

g(θ|x) = kg(θ)f (x|θ)

(where k is a constant which doesn’t depend on θ)

alternatively, g(θ|x) ∝ g(θ)f (x|θ)

g(θ|x) and ∝ g(θ) are probability distributions
inference is done using the posterior distribution g(θ|x)

parameters are random variables in Bayesian inference
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Posterior distributions are the key
to Bayesian inference

the posterior distribution summarizes all information about parameters
after data are observed

posterior distribution g(θ|x)

θ (scalar!!!)

a point estimate can be the mean or the mode of g(θ|x)

interval estimates are obtained using the quantiles of the posterior
distribution
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Crucial task in Bayesian inference:
choice of prior

the prior distribution should reflect the knowledge about the
parameters before data are observed

different priors lead to different posteriors (practical)

priors can also reflect the lack of information about parameters:
these are called non-informative priors and are extensively used
in applications
depending on the distribution assumed for the data, some
posteriors have the same “shape” as the prior distribution -
conjugate priors
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conjugate priors

if posterior g(θ|x) is from the same family of distributions as the prior
g(θ) - g(θ) is a conjugate prior

Why are conjugate priors useful?

As it comes from a standard distribution, the posterior in a
conjugate model is easily summarized and understood
Since the posterior is from the same family of distributions as a
conjugate prior, it is very easy evaluate the effects of the observed
data on inference (practical).
Conjugate priors can help defining priors in more complicated
inference problems where conjugacy is not possible.
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conjugate prior examples (I)
The beta-binomial model

example: Suppose we wish to estimate the prevalence of infected fish
in a lake based on a sample of size n

parameter: θ: prevalence (proportion) of infected individuals
data: binary status (infected/healthy) for each fish i in the sample,
i , . . . ,n

practical question: what are the plausible values for θ based on the
infection data?

Inference questions
Is there any preliminary information about the value of θ? How to
represent it in terms of probabilities?
What’s the probability model for the data? How to represent the
randomness in the sample?
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conjugate prior examples
The beta-binomial model

prior for θ
Since prevalence lies between 0 and 1, we can use a beta distribution
to define a prior for θ

θ ∼ beta(a,b)

choice of hyperparameters a and b defines the prior uncertainty
about the parameter θ

Probability model for the data
Suppose X is a random variable representing the number of
infected animals in a sample of size n
X is modelled as a binomial distribution with parameters N and θ -
θ ∼ bin(N, θ)

P(X = x) =

(
n
x

)
θx (1− θ)n−x ,

P(X=x) is the likelihood function
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The beta-binomial model
posterior for the prevalence θ

data: x observed number of infected fish
likelihood: P(X = x) =

(n
x

)
θx (1− θ)n−x

prior distribution: beta(a,b) (a and b must be defined!)
posterior distribution: combination of initial beliefs with
observed data using Bayes theorem:

posterior ∝ prior× likelihood
it can be shown that

θ|x ∼ beta(a + x ,b + n − x)

θ|x means distribution of θ given the data x
posterior distribution belongs to the same family of distributions

as the prior - beta is a conjugate prior for the proportion θ
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Bayesian conjugate analysis for the parameters of a normal
distribution (the normal-normal model)

Example: midge wing length
(Grogan and Wirth, 1981, Hoff, 2009)

goal: learn about of mean and variance
of wing length of a midge species based
on a sample

Assume that wing length follows a normal distribution

the normal distribution has two parameters:
I θ: represents the mean wing length of the population (the species)
I σ2 represents the wing length variation in the population
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Multivariate distributions

we have only considered univariate distributions so far
multivariate distributions are required when dealing with random
vectors

Examples:
If (X1,X2) is a discrete random vector, a bivariate distribution
defines a probability for each combination of possible values of
(X1,X2)

If (X1,X2) is a continuous random vector, a bivariate distribution
defines a probability for each combination of ranges of (X1,X2)

In this case,

P[a1 ≤ X1 ≤ b1,a2 ≤ X2 ≤ b2] =

∫ b1

a1

∫ b2

a2

f (x1, x2)dx1dx2
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Example: the bivariate normal

these data follows a bivariate
normal distribution
histograms and densities
represent marginal
distributions of X1 and X2

darker regions in the
scatterplot represents regions
with more frequency (or
density)
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bivariate density function of a standard normal

P[a1 ≤ X1 ≤ b1,a2 ≤ X2 ≤ b2] =

∫ b1

a1

∫ b2

a2

f (x1, x2)dx1dx2

In this case, probability represents the volume under the surface
delimited by (a1,b1), and (a2,b2)
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prior distribution for (θ, σ2)

To define a prior bivariate distribution for (θ, σ2), we can use the fact
that

f (θ, σ2) = f (θ|σ2)f (σ2),

and then set a conditional distribution for θ (given σ2) and a marginal
distribution for σ2

The normal distribution is a conjugate prior for θ|σ2

For the example, previous studies suggest that midge wing lengths are
typically around 1.9mm therefore a conjugate prior for θ|σ2 is

θ|σ2 ∼ N(θ0 = 1.9, σ2)
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Prior distribution for σ2

σ2 should be positive, so its prior should consider values on (0,∞)
only.

A gamma distribution is a conjugate prior for the inverse of σ2:
1/σ2

1
σ2 ∼ gamma(

ν0

2
,
ν0

2
σ0)

1/σ2 is called the precision of the normal distribution

the parameters ν0 and σ0 represent, respectively, the sample size
and sample variance of observations collected before the sample
under study (prior observations)

if 1/σ2 ∼ gamma(ν0
2 ,

ν0
2 σ0), then σ2 ∼ inverse-gamma(ν0

2 ,
ν0
2 σ0)
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for the midge wing length example
Studies on other population suggest that the the standard
deviation of midge wing length is around 0.1 mm

since the species of interest may be different from other midge
species, the prior should be weakly centered around that value.

This is achieved by using gamma(a = 0.5,b = 0.5× 0.01) as a
prior for the precision 1/σ2. In this case, ν0 = 1
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The likelihood

X1,X2, ...,XN are i.i.d random variables representing the
measurements (e.g midge wing length) of a random sample of
size N

the random variable X follows a normal distribution: X ∼ N(θ, σ2)
(sampling model)

therefore, the likelihood is

L(θ, σ2) = f (x1, . . . , xn|θ, σ2) =
n∏

i=1

f (xi |θ, σ2)

in the midge wing length example
N=9 (9 measurements of wing lengths in the sample)
measurements (data): 1.64, 1.70, 1.72, 1.74, 1.82, 1.82, 1.82,
1.90, 2.08
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Posterior Inference for the mean θ

priors: θ|σ2 ∼ N(θ0, σ
2) and σ2 ∼ inverse-gamma(ν0

2 ,
ν0
2 σ0)

sampling model : X1,X2, ...,XN ∼ i .i .d N(θ, σ2)

As done with the prior, the posterior distribution can be decomposed :

f (θ, σ2|x1, x2, ..., xN) = f (θ|σ2, x1, x2, ..., xN)f (σ2|x1, x2, ..., xN)

Using Bayes theorem, it can be shown that the posterior for θ is:

θ|σ2, x1, x2, ..., xN ∼ N(θn, σ
2/κn)

where

κn = ν0 + n and θn = (θ0 + nx̄)/κn
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Posterior Inference for the variance σ2:

For the posterior distribution of σ2, we need to calculate
f (σ2|x1, x2, ..., xN) (via integration)
Then, it can be shown that

σ2|x1, x2, ..., xN ∼ inverse-gamma(νn/2, νnσ
2
n/2)

(see Hoff, page 75 for details about νn and σ2
n)

Posterior distributions of mean and variance of wing length
θ|σ2, x1, . . . , x9 ∼ N(1.814, σ2/10)

σ2|x1, . . . x9 ∼ inverse-gamma(10/2,10x0.015/2)
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Visualising the posterior distribution of θ, σ2

As the parameter vector has only two dimensions, the posterior for
θ, σ2 can be visualised by

setting a grid of possible values for θ, σ2

calculating f (θ, σ2|x1, . . . x9) = f (θ|σ2|x1, . . . x9)f (σ2|x1, . . . x9) for
each point of the grid
plotting f (θ, σ2|x1, . . . x9) for the range of values of θ, σ2 from the
grid

contour plot of the posterior:

darker regions indicate higher
probabilities
contours are more peaked as
a function of θ for low values of
σ2 than high values
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What if we are interested in the mean only??

The posterior of the mean depends on the variance:
f (θ|σ2x1, . . . x9)

different values of σ2 provides different posteriors for the mean θ

the marginal distribution of θ can be obtained:

I analitically (by integration - rarely the case in complex models)
I by simulation (see Monte Carlo Lecture)

for the normal-normal model it can be shown that, the marginal of
θ follows a t-distribution
in this case, σ2 is called a nuisance parameter
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Tutorial 10: Bayesian inference for the
beta-binomial model (fish infection data)
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Conjugate Bayesian analysis of stochastic SIR models

assumptions
Infection and removal times are exactly observed
epidemic observed until its end
i1 is an artificially infected animal or was infected prior to the start
of observation time

data:
infection times: i = (i2, i3, . . . in)

removal times: r = (r1, r2, . . . rn)

likelihood: L(i , r |β, γ, i1)

Inference problems
How to calculate the posterior distributions f (β|i , r) and f (γ|i , r) ?
How to estimate R0 ?

The gamma distribution is a conjugate prior for Bayesian inference on
β and γ when assuming complete epidemic data under a SIR model
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Conjugate Bayesian analysis of stochastic SIR models

(independent) prior distributions:

β ∼ gamma(a,b) and γ ∼ gamma(c,d)

The hyperparameters a,b, c,d must be defined such that these priors
encode subjective beliefs, previous information of ignorance about the
parameters

The likelihood L(i , r |β, γ, i1) can be split into infection and removal
parts
It can be shown that the posteriors β and γ also follow gamma
distributions, with parameters as functions of hyperparameters
and the data (details omitted).
Therefore, inference for β and γ can be easily done by calculating
the mean, medians and quantiles of gamma distributions (using R,
for example)
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How about inference for R0 ?

Two alternatives for making inference about R0 assuming complete
data and Bayesian conjugate analysis for β and γ
(i) by analytically calculating the posterior distribution of R0 based on
the posteriors of β and γ (using probability theory)
(ii) by obtaining samples from the posterior of R0 using the following
algorithm:

do k=1, M

sample β(k) from β|i , r
sample γ(k) from γ|i , r

calculate R(k)
0 = β(k)

γ(k)

end do

This algorithm gives a sample of size M of the posterior of R0 based
on the (gamma) posteriors of β and γ (M should be large enough to
provide a small simulation error)

26/29



required ingredients for Bayesian data analysis

1 model specification: a probability distribution to represent the
data (the sampling model)

2 prior spectification: a probability distribution to represent
someone’s information about the parameter values that are likely
to describe the sampling distribution

3 posterior summary: description of the posterior distribution by
using means, medians and quantiles (for credibility intervals /
regions)

the big problem: for many models, the posterior dis-
tribution is very complicated to deal with (intractable)

solution: simulation methods to approximate the posterior
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Bayesian and Frequentist inference:
a comparison

“ The frequentist approach evaluates the accuracy of an esti-
mate of an unknown value in terms of how different that esti-
mate could have been. The Bayesian approach updates per-
sonal beliefs about the unknown true value. ”

David Hand, Dennis Lindley’s Obituary, The Guardian (16/Mar/2014)

Frequentist inference
parameters are fixed
inference interpretation
depends on the idea of
repeatable experiments
can be heavily dependent on
sample size

Bayesian Inference
parameters are random
variables
beliefs about parameters are
updated in the light of
available data
complex models may
require complex simulation
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