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Overview

@ Key concepts in Bayesian Inference

@ Bayesian conjugate models

» beta-binomial
» normal-normal

@ Conjugate analysis for stochastic SIR models

@ Bayesian and Frequentist inference: a comparison
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Bayesian inference: the key ideas

In Bayesian inference, all that is known about the possible values of a
parameter is represented by a probability distribution: the prior
distribution

where does prior information come from?
@ expert opinion about the likely values a parameter

@ previous experiments

After data are observed, the beliefs about a parameter is updated by
combining the prior information and the available data (the likelihood):
the resulting distribution is called the posterior distribution

The posterior combines two sources of information about 0:

the subjective prior beliefs about ¢, and information about ¢
contained in the data.
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Bayesian inference in a nutshell:

@ data: xq, X, ..., X - i.i.d observations from a random variable X
with probability distribution indexed by parameter 8 (usually a
vector of parameters)

o likelihood: f(data|0) = [, p(x;|0)
@ prior distribution: initial beliefs about 8: g(0)

@ posterior distribution: combination of initial beliefs with
observed data using Bayes theorem

9(0)x) = kg(6)f(x|6)
(where k is a constant which doesn’t depend on 6)

alternatively, g(0|x) « g(0)f(x|0)

@ g(0|x) and o g(0) are probability distributions
@ inference is done using the posterior distribution g(0|x)

parameters are random variables in Bayesian inference
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Posterior distributions are the key
to Bayesian inference

the posterior distribution summarizes all information about parameters
after data are observed

posterior distribution g(0|x)

6 (scalar!!l)

@ a point estimate can be the mean or the mode of g(6|x)

@ interval estimates are obtained using the quantiles of the posterior
distribution
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Crucial task in Bayesian inference:
choice of prior

@ the prior distribution should reflect the knowledge about the
parameters before data are observed

@ different priors lead to different posteriors (practical)

@ priors can also reflect the lack of information about parameters:
these are called non-informative priors and are extensively used
in applications

@ depending on the distribution assumed for the data, some
posteriors have the same “shape” as the prior distribution -
conjugate priors
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conjugate priors

if posterior g(0|x) is from the same family of distributions as the prior
9(0) - g(0) is a conjugate prior J

Why are conjugate priors useful?
@ As it comes from a standard distribution, the posterior in a
conjugate model is easily summarized and understood

@ Since the posterior is from the same family of distributions as a
conjugate prior, it is very easy evaluate the effects of the observed
data on inference (practical).

@ Conjugate priors can help defining priors in more complicated
inference problems where conjugacy is not possible.
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conjugate prior examples (I)
The beta-binomial model

example: Suppose we wish to estimate the prevalence of infected fish
in a lake based on a sample of size n

@ parameter: 6: prevalence (proportion) of infected individuals

@ data: binary status (infected/healthy) for each fish i in the sample,
i n

practical question: what are the plausible values for # based on the
infection data?
Inference questions

@ Is there any preliminary information about the value of #? How to
represent it in terms of probabilities?

@ What'’s the probability model for the data? How to represent the
randomness in the sample?
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conjugate prior examples
The beta-binomial model

prior for ¢
Since prevalence lies between 0 and 1, we can use a beta distribution
to define a prior for ¢

0 ~ beta(a, b)

choice of hyperparameters a and b defines the prior uncertainty
about the parameter ¢

Probability model for the data

@ Suppose X is a random variable representing the number of
infected animals in a sample of size n

@ X is modelled as a binomial distribution with parameters N and 6 -
6 ~ bin(N, 9)

P(X = x) = <)’(’> 0¥ (1 — 0)",

P(X=x) is the likelihood function
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The beta-binomial model
posterior for the prevalence 6

@ data: x observed number of infected fish
@ likelihood: P(X = x) = (})6*(1 — 6)"*
@ prior distribution: beta(a, b) (a and b must be defined!)

@ posterior distribution: combination of initial beliefs with
observed data using Bayes theorem:

posterior o prior x likelihood
it can be shown that

0|x ~ beta(a+ x,b+ n— x)
0|x means distribution of 6 given the data x

posterior distribution belongs to the same family of distributions
as the prior - beta is a conjugate prior for the proportion 6
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Bayesian conjugate analysis for the parameters of a normal
distribution (the normal-normal model)

Example: midge wing length
(Grogan and Wirth, 1981, Hoff, 2009)

goal: learn about of mean and variance
of wing length of a midge species based
on a sample

@ Assume that wing length follows a normal distribution

@ the normal distribution has two parameters:

» ¢: represents the mean wing length of the population (the species)
» o2 represents the wing length variation in the population
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Multivariate distributions

@ we have only considered univariate distributions so far
@ multivariate distributions are required when dealing with random
vectors
Examples:

@ If (Xy, X2) is a discrete random vector, a bivariate distribution
defines a probability for each combination of possible values of
(X1, X2)

@ If (X1, X2) is a continuous random vector, a bivariate distribution
defines a probability for each combination of ranges of (Xj, X2)
In this case,

by b
Pla; < Xy < bj,a2 < Xo < bo] = / / f(x1, X2)dxq dxz
ai as
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Example: the bivariate normal

@ these data follows a bivariate
normal distribution

@ histograms and densities

represent marginal

distributions of X; and X5
@ darker regions in the

scatterplot represents regions . <]

«

with more frequency (or

density)
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bivariate density function of a standard normal

10 10

by b
Pla; < Xy < bj,a2 < Xo < bp] = / / f(x1, x2)dxq dxz
ai as

In this case, probability represents the volume under the surface
delimited by (ay, by), and (az, b»)
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prior distribution for (¢, 0?)

To define a prior bivariate distribution for (6, 0?), we can use the fact
that

1(8,0%) = £(8]0%)f(o?),

and then set a conditional distribution for ¢ (given ¢2) and a marginal
distribution for o2

The normal distribution is a conjugate prior for 6o

For the example, previous studies suggest that midge wing lengths are
typically around 1.9mm therefore a conjugate prior for 6|02 is

0)o® ~ N(6p = 1.9, 02)
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Prior distribution for o2

@ o2 should be positive, so its prior should consider values on (0, co)

only.
@ A gamma distribution is a conjugate prior for the inverse of o2:
1/0’2
1 Vg g
o2~ 9amma(y, 5 o)

@ 1/02 is called the precision of the normal distribution

@ the parameters vy and o represent, respectively, the sample size
and sample variance of observations collected before the sample
under study (prior observations)

e if 1/0% ~ gamma(*2, L0y), then o2 ~ inverse-gamma(, Lao)
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for the midge wing length example

@ Studies on other population suggest that the the standard
deviation of midge wing length is around 0.1 mm

@ since the species of interest may be different from other midge

species, the prior should be weakly centered around that value.

@ This is achieved by using gamma(a=0.5,b=0.5 x 0.01) as a
prior for the precision 1/02. In this case, vy = 1
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The likelihood

@ Xy, Xo, ..., Xy are i.i.d random variables representing the
measurements (e.g midge wing length) of a random sample of
size N

@ the random variable X follows a normal distribution: X ~ N(8,0?)
(sampling model)

@ therefore, the likelihood is

n
L(0,0%) = f(x1,...,xn|0,0%) = [ [ f(xil0,0?)
i=1

in the midge wing length example
@ N=9 (9 measurements of wing lengths in the sample)

@ measurements (data): 1.64, 1.70, 1.72, 1.74, 1.82, 1.82, 1.82,
1.90, 2.08
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Posterior Inference for the mean ¢

@ priors: 6|o ~ N(bp, 0?) and o2 ~ inverse-gamma(2, L o)
@ sampling model : X;, Xz, ..., Xy ~ i.i.d N(6,02?)

As done with the prior, the posterior distribution can be decomposed :

f(ea 0-2’)(1’)(27 ---aXN) = f(9|0'2,X1,X2, "'7XN)f(U2|X17X27 ---aXN) J

Using Bayes theorem, it can be shown that the posterior for @ is:

0]02, X1, X, ..., Xn ~ N(6n, 02 /i) ]

where

19/29



Posterior Inference for the variance +2:

@ For the posterior distribution of o2, we need to calculate
f(o?|xq, X2, ..., xy) (via integration)
@ Then, it can be shown that

02|X1, X2, ..., Xy ~ inverse-gamma(v,/2, vpo2/2)

(see Hoff, page 75 for details about v, and ¢2)

Posterior distributions of mean and variance of wing length
o 0‘0‘2,X1,. .., Xg ~ N(1 .814,0‘2/10)

@ 02|xq,...Xg ~ inverse-gamma(10/2,10x0.015/2)
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Visualising the posterior distribution of ¢, o2

As the parameter vector has only two dimensions, the posterior for
6, 02 can be visualised by
@ setting a grid of possible values for 6, o2
@ calculating f(@, 0’2’X1 y e .Xg) = f(0|0'2’X1 s Xg)f(Uz‘X1 yeon Xg) for
each point of the grid
@ plotting f(6, 02| xy, . . . Xg) for the range of values of 4, o2 from the
grid

contour plot of the posterior:

probabilities

o2 than high values

0.00 0.01 0.02 0.03 0.04
| | | | |

@ darker regions indicate higher

@ contours are more peaked as
‘ a function of 4 for low values of
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What if we are interested in the mean only??

@ The posterior of the mean depends on the variance:
f(9|02X1, . Xg)

e different values of o2 provides different posteriors for the mean 6

@ the marginal distribution of # can be obtained:

» analitically (by integration - rarely the case in complex models)
» by simulation (see Monte Carlo Lecture)

@ for the normal-normal model it can be shown that, the marginal of
0 follows a t-distribution

@ in this case, o2 is called a nuisance parameter
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Tutorial 10: Bayesian inference for the

beta-binomial model (fish infection data)
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Conjugate Bayesian analysis of stochastic SIR models

assumptions
@ Infection and removal times are exactly observed
@ epidemic observed until its end

@ / is an artificially infected animal or was infected prior to the start
of observation time

data:
@ infection times: i = (ip, I3, . . . ip)
@ removal times: r = (r1,r2,...1n)
likelihood: L(i,r|3,~, i)
Inference problems
@ How to calculate the posterior distributions f(5|i, r) and f(~|i, r) ?
@ How to estimate Ry ?

The gamma distribution is a conjugate prior for Bayesian inference on

B and v when assuming complete epidemic data under a SIR model
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Conjugate Bayesian analysis of stochastic SIR models

(independent) prior distributions:

B ~ gamma(a, b) and ~v ~ gamma(c, d)

The hyperparameters a, b, ¢, d must be defined such that these priors
encode subjective beliefs, previous information of ignorance about the
parameters

@ The likelihood L(i, r|3, 7, i1) can be split into infection and removal
parts

@ It can be shown that the posteriors 8 and ~ also follow gamma
distributions, with parameters as functions of hyperparameters
and the data (details omitted).

@ Therefore, inference for 5 and v can be easily done by calculating
the mean, medians and quantiles of gamma distributions (using R,
for example)
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How about inference for Ry ?

Two alternatives for making inference about Ry assuming complete
data and Bayesian conjugate analysis for 5 and ~

(i) by analytically calculating the posterior distribution of Ry based on
the posteriors of 5 and v (using probability theory)

(i) by obtaining samples from the posterior of Ry using the following
algorithm:

do k=1, M
@ sample A% from Bli,r
@ sample 7*) from ~|i,r
@ calculate F%k)::gg

P
end do

This algorithm gives a sample of size M of the posterior of Ry based
on the (gamma) posteriors of 5 and v (M should be large enough to
provide a small simulation error)
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required ingredients for Bayesian data analysis

@ model specification: a probability distribution to represent the
data (the sampling model)

@ prior spectification: a probability distribution to represent
someone’s information about the parameter values that are likely
to describe the sampling distribution

© posterior summary: description of the posterior distribution by

using means, medians and quantiles (for credibility intervals /
regions)

the big problem: for many models, the posterior dis-

tribution is very complicated to deal with (intractable)

solution: simulation methods to approximate the posterior
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Bayesian and Frequentist inference:
a comparison

“ The frequentist approach evaluates the accuracy of an esti-
mate of an unknown value in terms of how different that esti-
mate could have been. The Bayesian approach updates per-
sonal beliefs about the unknown true value. ”

David Hand, Dennis Lindley’s Obituary, The Guardian (16/Mar/2014)

Bayesian Inference

Frequentist inference e parameters are random

@ parameters are fixed variables

@ inference interpretation @ beliefs about parameters are
depends on the idea of updated in the light of
repeatable experiments available data

@ can be heavily dependenton @ complex models may
sample size require complex simulation
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