
Bayesian Inference using MCMC:
An introduction

Osvaldo Anacleto
Genetics and Genomics, Roslin Institute

osvaldo.anacleto@roslin.ed.ac.uk



Dealing with intractable posteriors

it can be very difficult to calculate point and interval estimates
depending on the density of the posterior distribution

in this case, stochastic (random) simulation methods are
required

stochastic simulation provides approximate solutions to problems
considered far too difficult to solve directly

stochastic simulation
To develop and study a random experiment that mimics a
complex system too difficult to deal with

Example: Monte Carlo simulation



The Monte Carlo method
A simple example

How to calculate the grey area under the curve?
Calculus can be applied to calculate the area (integration)

A Monte carlo alternative:

1 surround the area under the
curve with a rectangle (with
area A)

2 simulate a large number of
points at random positions
within the rectangle (number
of points=N)

3 calculate the proportion (p) of
points lying under the curve

Monte Carlo estimate for the area under the curve = p ∗ A
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How to apply the Monte Carlo method in Bayesian Statistics?

the problem: Conjugate Bayesian analysis
is usually not possible for complex models

However, a sample from the posterior distribution can be used to
make inferences about the parameters (e.g. by calculating means,
modes, medians and quantiles from the Monte carlo sample)



The Monte Carlo method in Bayesian Statistics: An example

In the previous normal-model (Lecture 10), we could have used the
following algorithm to sample values from the posterior distribution of
mean and the variance (θ, σ2) of a random variable:

do k=1, M

sample σ2(k) from σ2|data ∼ inverse-gamma(νn/2, νnσ
2
n/2)

sample θ(k) from θ|σ2(k),data ∼ N(µn, σ
2/κn)

end do

(θ(1), σ2(1)), . . . , (θ(M), σ2(M)) is a sample
from the posterior distribution of (θ, σ2)

(the dots in the plot)

θ(1) . . . , θ(M) is a sample of the marginal
posterior distribution of θ given only the
data

In this case, sampling from the posterior is very easy
(two lines of code in R, no loop required)
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What if we can’t sample from the posterior?
One way to generate Monte Carlo samples from the posterior is to
use a Markov chain which is related to the posterior distribution

A Markov chain is a sequence of random variables (a stochastic
process) in which the distribution of the next random variable
depends only on the value of the current one (i.e. independent of
the past)

Monte Carlo
method

+ Markov
chain

= Markov chain Monte Carlo
(MCMC)

seminal MCMC methods were developed and applied well before their
use in Bayesian Statistics. (see references in Gamerman and Lopes,
2006)
Early MCMC applications: Physics and Chemistry, Spatial statistics
and missing data imputation.



Tutorial 11: Markov Chains
Explained Visually:

http://setosa.io/ev/markov-chains/



The paper that revolutionised Bayesian Statistics

Gelfand and Smith (1990) showed how the MCMC can be used to
obtain samples from posterior distributions



MCMC: the basics
In the previous examples (website) the Markov Chains were
simulated by setting a transition matrix
If a Markov chain satisfies some properties, its values follows a
stationary (or equilibrium) distribution after sampling many times
from it
A Markov chain can be built such that its stationary distribution is
the posterior distribution of interest

How to approximate posterior distributions using MCMC?
1 Set up a Markov chain that has the posterior distribution as its

stationary distribution
2 Sample from the Markov chain
3 Use the sampled values to make inferences about the unknown

quantities of interest (the parameters)

there are several MC methods for approximating posteriors:
importance sampling, Gibbs sampling, Metropolis-Hastings, reversible
jump MCMC, slice sampling, hybrid MC, sequential MC, INLA, ....



Gibbs Sampling: an example

in the conjugate normal-normal model (Lecture 10), the prior for
the mean θ depended on the variance σ2

this dependence may not always hold
I a non-informative prior for θ may not be possible when σ2 is very

small

to specify the prior uncertainty about θ independently of σ2, we
need

f (θ, σ2) = f (θ)f (σ2)

for example θ ∼ N(µ0, τ0) and σ2 ∼ inverse-gamma(ν0
2 ,

ν0
2 σ0)

problem: when θ and σ2 are independent a priori, the posterior of
σ2 doesn’t follow any known distribution (not the inverse-gamma
as in the normal-normal model of Lecture 10)

σ2|data ∼??????



However, if we assume we know the value of θ, it can be shown
that the posterior distribution of σ2 is

σ2|data, θ ∼ inverse-gamma(
νn

2
,
νn

2
σ2

n(θ))

(details omitted)
from the conjugate normal-normal model, we also know that

θ|σ2,data ∼ N(µn, σ
2/κn)

(θ|σ2,data) and (σ2|data, θ) are called full conditional distributions
(conditional distribution of a parameter given everything else)

So in this example is easy to sample from the full conditional
distributions

can we use the full conditional distributions to sample the joint
posterior distribution?



given initial conditions, we can sample from the full conditional
distributions (θ|σ2,data) and (σ2|data, θ) to approximate the joint
posterior of (θ, σ2) (Hammersley-Clifford theorem)

Then the marginal posterior distributions of θ and σ2 are obtained
from the joint posterior (θ, σ2)

This is the core idea of the Gibbs Sampling algorithm



Gibbs sampling: the algorithm
Suppose a vector of parameters θ = {θ1, . . . , θp} whose information is
measured by a probability distribution f (θ) = f (θ1, . . . , θp) (the target
distribution). Given a starting point θ(0) = {θ(0)1 , . . . , θ

(0)
p }, the Gibbs

sampler generates θ(s) from θ(s−1) as follows:

1. sample θ(s)1 from f (θ1|θ
(s−1)
2 , θ

(s−1)
3 . . . , θ

(s−1)
p )

2. sample θ(s)2 from f (θ2|θ
(s)
1 , θ

(s−1)
3 . . . , θ

(s−1)
p )

...
p. sample θ(s)p from f (θp|θ(s)1 , θ

(s)
2 . . . , θ

(s)
p−1)

the algorithm generates a dependent sequence of vectors
θ(1), . . . ,θ(S)

this sequence is a Markov chain because θ(s) depends only on
θ(s−1)

under some technical conditions and for a large number of
samples (large S), the distribution of θ(S) follows the target
distribution



The Metropolis Hastings Algorithm

Recap: Bayesian Inference
likelihood: f (data|θ) =

∏n
i=1 p(xi |θ)

prior distribution: initial beliefs about θ: g(θ)

posterior distribution: combination of initial beliefs with
observed data using Bayes theorem

The density of the posterior distribution is

g(θ|x) = kg(θ)f (x|θ)

where k is a constant which doesn’t depend on θ: the normalising
factor

calculating the normalising factor is often very difficult in practice



The Metropolis Hastings Algorithm
Suppose we want to approximate the posterior distribution of a single
parameter

As with any MCMC method, the Metropolis-Hastings algorithm
generates a sequence (Markov chain) of sample values, such that
the distribution of values closely approximates the posterior
distribution as sequence gets longer.
at each iteration s, the algorithm generates a candidate value of
the sequence based on a proposal distribution, which is easy to
sample from.
then, with some (acceptance) probability, the candidate is either

I accepted: candidate value is the next the value of the sequence
I rejected: the candidate is discarded and the current value becomes

the next one in the sequence

the acceptance probability depends on ratio of the posterior
density evaluated at the candidate value and the posterior density
evaluated at the current value (the normalization factor cancels
out in the ratio)



The Metropolis Hastings Algorithm

The Gibbs sampling is a special case of the Metropolis Hastings
algorithm (acceptance probability is always 1)

The Metropolis-Hastings algorithm can be applied to generate
vectors of parameters

A crucial step of the algorithm is to define a suitable proposal
distribution to minimize the length of the chain (therefore the
computational effort) and the “quality” of the chain values



Dealing with samples from MCMC

MCMC methods generate a sequence of values which are samples
from the posterior distribution, if the sequence is long enough

How to evaluate whether the Markov chain has converged to the
posterior distribution?

I there are several strategies for assessing convergence (see Geyer,
1992)

I but usually, only lack of convergence can be assessed

I samples generated before reaching convergence must be
discarded (the burn-in period)



Dealing with samples from MCMC

If the Markov chain has converged, does it produce a
representative sample of the posterior?

I an efficient MCMC algorithm must produce a representative sample
of the parameter space (good mixing)

I careful choice of the initial values of the chain makes the algorithm
more efficient

I correlation between parameters can severely affect efficiency (eg.
hierarchical models, stochastic epidemic models)

I MCMC generates dependent samples from the posterior: affects
MC error (thining is required)



Some software for applying MCMC to “standard” statistical
models

in R: CRAN Task View: Bayesian Inference:
cloud.r-project.org/web/views/Bayesian.html
(lists many packages to implement MCMC for Bayesian inference)

Winbugs:
mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/

Stan: http://mc-stan.org/



MCMC for stochastic epidemic models

It was assumed so far that epidemic data was complete:

infection times: i = (i2, i3, . . . in)

removal times: r = (r1, r2, . . . rn)

However, epidemic data are usually partially observed.

Examples of incomplete epidemic data

only removals observed

Infection times observed at fixed time periods (see talk tomorrow)
(e.g an individual infected between week 1 and 2)

Also, inference might be needed before epidemic finishes.



MCMC for stochastic SIR models: example
Assumptions:

removal times are known
epidemic is observed until its end at time T
livestock data, I1 = 0 (artificial infection)
(it is straightforward to adapt the MCMC otherwise)

As in the complete observation case, gamma priors are
considered for the transmission rate β and recovery rate γ
then, full conditional distributions of the transmission rate and
recovery rate are gamma distributions
Since the infection times i = (i2, i3, . . . in) are unknown, they are
treated as parameters (renamed as (φ1, φ2, φ3, . . . φn)) and are
also estimated from the available data
However, due to the complex structure of the likelihood, the full
conditional distributions of the infection times do not follow any
standard distribution



MCMC for stochastic SIR models (O’Neill & Roberts, 1999)

In this case, the Metropolis-hastings and Gibbs Sampling algorithms
can be combined to generate samples from the joint posterior
distribution of the parameters

Therefore, given initial values for all parameters, the following MCMC
algorithm can be applied:

do k=1, M

1 sample β(k) from a gamma distribution

2 sample γ(k) from a gamma distribution

3 chose a infection time φj and sample it using
metropolis hastings

end do

see details in O’Neill & Roberts, 1999
the algorithm can be extended to the case when the epidemic is
not observed until its end



Seminal papers on MCMC for stochastic epidemic models

Gibson, Gavin J. ”Markov chain Monte Carlo methods for fitting
spatiotemporal stochastic models in plant epidemiology.” Journal
of the Royal Statistical Society: Series C (Applied Statistics) 46,
no. 2 (1997): 215-233.

Gibson, G. J., & Renshaw, E. (1998). Estimating parameters in
stochastic compartmental models using Markov chain methods.
Mathematical Medicine and Biology, 15(1), 19-40.

ONeill, P. D., & Roberts, G. O. (1999). Bayesian inference for
partially observed stochastic epidemics. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 162(1),
121-129.
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