Lab 3 - BLUPF90 family of programs

Prepared by I. Aguilar & D. Lourenco

Estimation of breeding values and reliabilities

- 1. Documentation for BLUPF90 program in the wiki: http://nce.ads.uga.edu/wiki/doku.php?id=documentation#tutorial
- 2. Browse through FAQ for blupf90 programs (http://nce.ads.uga.edu/wiki/doku.php?id=faq). Read information on frequent mistakes in data, pedigree, and parameter files.
- 3. Using the following example (from Mrode and Thompson, 2005 *Linear Models for Predicting Animal Breeding Value*), create data, pedigree, and parameter file to run **renumf90**. Run **renumf90**, check the log (screen), and the output files created by the program.
- 4. Run **blupf90+** to obtain solutions and reliabilities based on SE using Unix tools, and then with OPTION store_accuracy.

Reliability for animal i can also be calculated as: $Rel_i = 1 - PEV_i/VarA$ Where:

PEV is the prediction error variance (S.E. = sqrt(PEV)) VarA is the additive genetic variance

Example 3.1

Consider the following data set (Table 3.1) for the pre-weaning gain (WWG) of beef calves.

The objective is to estimate the effects of sex and predict breeding values for all animals. Assume that $\sigma_a^2 = 20$ and $\sigma_c^2 = 40$; therefore $\alpha = \frac{40}{20} = 2$.

Table 3.1. Pre-weaning gain (kg) for five beef calves.

Calf	Sex	Sire	Dam	WWG (kg)
4	Male	1	Unknown	4.5
5	Female	3	2	2.9
6	Female	1	2	3.9
7	Male	4	5	3.5
8	Male	3	6	5.0
	Iviale			3.0

The model to describe the observations is:

$$y_{ij} = p_i + a_j + e_{ij}$$

where: y_{ij} = the WWG of the *j*th calf of the *i*th sex, p_i = the fixed effect of the *j*th sex, a_j = random effect of the *j*th calf, and e_{ij} = random error effect. In matrix notation the model is the same as that described in equation [3.1].

Solutions from the example are:

Effects	Solutions	
Sex*		
1	4.358	
2	3.404	
Animal		
1	0.098	
2	-0.019	
3	-0.041	
4	-0.009	
5	-0.186	
6	0.177	
7	-0.249	
8	0.183	

*1 = male, 2 = female (throughout chapter)

The r^2 , r and SEP for animals in Example 3.1 are:

Animal	Diagonals of inverse	r ²	r	SEP
1	0.471	0.058	0.241	4.341
2	0.492	0.016	0.126	4.436
3	0.456	0.088	0.297	4.271
4	0.428	0.144	0.379	4.138
5	0.428	0.144	0.379	4.138
6	0.442	0.116	0.341	4.205
7	0.442	0.116	0.341	4.205
8	0.422	0.156	0.395	4.109

Variance components estimation

- 5. Read documentation for **blupf90+** program in the wiki: http://nce.ads.uga.edu/wiki/doku.php
- 6. Parameter files for the following exercises are on the website. Use curl to download it to your Linux or Mac device:

curl

```
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=lab3_une.zi
p -o lab3 une.zip
```

After downloading the file, unzip it using the following command: unzip lab3_une.zip

7. Files with *99 contain data for up to 14 traits. Parameter file exmr99s1 uses these files for a single-trait model, exmr99s2 uses for a two-trait model, and exmr99s for a three-trait model.

Estimate variance components by EM-REML and AI-REML in **blupf90+** using the parameter file exmr99s1.

Record the number of rounds and CPU time using the following command:

time blupf90+ renf90.par | tee reml.log

The CPU time will be printed on the screen after the program stops.

Extend the model to 2 traits by adding the observations in column 4 (parameter file exmr99s2).

Estimate variance components for the two-trait model using EM-REML and AI-REML in **blupf90+**. Add the option to get SE for heritability and genetic correlations when running AI-REML. Look at wiki to add OPTIONS.

How much slower is REML and how longer are the computations in the two-trait case?

- 8. Run **gibbsf90+** for the single trait example; use the number of samples 1000 and burn-in 0. Run **postgibbsf90** with burn-in of 0; try burn-in of 200. For graphical output, **postgibbsf90** requires a plotting package GNUPLOT and X Windows (e.g., as provided by X emulation packages: Xming) or XQuartz (MacOS).
- 9. Estimate breeding values using **gibbsf90+**. Initial values should be replaced by posterior means. Check the manual to find the correct option to get EBV and SE. Use 1000 samples and burn-in of 200.

OPTIONAL

Random regression models using renumf90 and blupf90+
 Parameter, data, and pedigree files (renrr.par, datrr.leg, pedrr) for this exercise are in the directory lab3_une

This data is for a random regression model using Legendre polynomials from example 7.2 of Mrode and Thompson, 2005 - *Linear Models for Predicting Animal Breeding Value*, Example 7. Look at the parameter file and identify components in the **renumf90** parameter file. Run **blupf90+** to obtain solutions.