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High throughput technologies: omics data

genetic variants
gene expression
epigenetic modifications

proteins and metabolites
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measuring different phenotypic traits

unprecedented opportunities to uncover the genetic
architecture underlying phenotypic variation
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Main challenge:

decipher the flow of biological information

o integrate multiple sources of biological information in
order to reveal the causal biological networks that
underlie complex traits

Why do we want to infer Causal Biological Networks?

* to befter understand the biology of the traits
* to predict the behavior of complex systems
* to optimize management practices and breeding strategies

Biological Networks
(undirected graphs)

genes and gene products do not work in isolation; rather
they are connected in complex networks




Correlation Networks

= networks constructed based on correlation values
* main goal: to explain the observed correlations between
gene measurements by the presence of other genes

main challenge: how deeply correlations are resolved

FROM correlation networks (most simple)
TO Bayesian networks (most sophisticated)

Gene coexpression networks

= correlation networks based on gene expression values

| Genes | Sample 1| Sample 2| Sample 3| - | Sample N

Gene 1 g9en 9e12 g9e3 g9ein
Gene 2 g9e.; gez. 9€z3 9éan
Gene 3 9es; ges. 9es3 9es3n
Gene M 9emi 9emz 9ems gemn

gene coexpression network: it is a graph where nodes
correspond to genes and (undirected) edges represent
pairwise expression similarities




Gene coexpression networks

= correlation networks based on gene expression values

Cenes L Sample L Sample 2_sample 3 sanple N

Gene 1 g9en g9er. 9€13 9ein
Gene 2 g€z gez. 9€z;3 gean
Gene 3 9es; 9es; ges3 9és3n
Gene M 9emi gem 9ems 9emn

How to measure pairwise expression similarities?

standard method: Pearson correlation

Gene coexpression networks

= correlation networks based on gene expression values

—

Gene 1 gey ger gess gen
Gene 2 ge,; ges, gess gen
Gene 3 ges; ges, gess N
Gene M gem gems 9ems gemn
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Gene coexpression networks

= correlation networks based on gene expression values

unweighted network
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matrix with entries are 1 or 0
A= ay]
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rule:

a;j = {1 if 75} 2 Tenreshora; 0 otherwise}

a;j = {1 if rijis significant;0 otherwise}

Gene coexpression networks

correlation matrix adjacency matrix
A B C D E ABCDE

A 1.000 0.244 0.801 0.149 0.752 A10101

B 0.244 1.000 0.735 0.154 0.621 BO1101

C 0.801 0.735 1.000 0.186 0.885 c11101

D 0.149 0.154 0.186 1.000 0.575 DOOO 11

E 0.752 0.621 0.885 0.575 1.000 E11111

a;j = {1 if rij is significant; 0 otherwise}

T~ taf=n—2




Gene coexpression networks

correlation matrix adjacency matrix
A B C D E ABCDE

A 1.000 0.244 0.801 0.149 0.752 Al10101

B 0.244 1.000 0.735 0.154 0.621 B01101

C 0.801 0.735 1.000 0.186 0.885 c11101

D 0.149 0.154 0.186 1.000 0.575 DOOO11

E 0.752 0.621 0.885 0.575 1.000 E11111

coexpression network
(unweighted network)

Gene coexpression networks
graphical model: 6 = (V, &)

V: set of random variables (nodes)
describing the quantities of interest

&: set of edges representing the
dependency structure of the nodes

mO)

G can be undirected or directed;
acyclic or cyclic

coexpression networks are undirected graphs




Gene coexpression networks

Motivation: if two genes show similar
expression profiles, they are probably
involved in the same processes

coexpression hints coregulation

—

Application: compare networks between
conditions (hormal vs disease) and
identify changes in the topology

Coexpression Network Topology

Gene connectivity: row sum of the adjacency matrix
* number of direct neighbors (unweighted networks)

Connectivity can be used to identify important genes

three highly connected nodes (hubs)
(they keep the network together)

Ravasz et al. (2002) Science 297: 1551-1555




Coexpression Network Topology

Gene connectivity: row sum of the adjacency matrix
* number of direct neighbors (unweighted networks)

Connectivity can be used to identify important genes

four highly interconnected modules
(modules connected by a few links)

PN

Ravasz et al. (2002) Science 297: 1551-1555

Coexpression Network Topology

modules: subset of nodes that are tightly connected

defining gene modules
1. define a dissimilarity measure between 2 genes

dij =1- abs(rij)

2. hierarchical clustering using dissimilarity and define
modules as branches of the hierarchical clustering tree

3. visualize the modules (clustering results) in a heatmap plot




Coexpression Network Topology

modules: subset of nodes that are tightly connected

hierarchical clustering ; i ii%‘ ‘W

heatmap

Gene coexpression networks

How to measure similarity of expression?
standard method: Pearson correlation

* 1 = 0 implies statistical independence
+ easy to interpret
* can be accurately estimated even if p >» N

o hon-linear dependencies are not necessarily identified

other similarity measures:
Spearman’ s rank correlation
Mutual information




Gene coexpression networks

correlation matrix

A B C D E
A 1.000 0.244 0.801 0.149 0.752
B 0.244 1.000 0.735 0.154 0.621
C 0.801 0.735 1.000 0.186 0.885
D 0.149 0.154 0.186 1.000 0.575
E 0.752 0.621 0.885 0.575 1.000

adjacency matrix

moNw>
PR OR >
PORRPRO®
RPORRREPN <X
[l S ESE SN e
PRPRPRPREPM

dichotomization leads to loss of information

weighted networks: the adjacency matrix reports
the connection strength between node pairs

Gene coexpression networks

correlation matrix

A B C D E
A 1.000 0.244 0.801 0.149 0.752
B 0.244 1.000 0.735 0.154 0.621
C 0.801 0.735 1.000 0.186 0.885
D 0.149 0.154 0.186 1.000 0.575
E 0.752 0.621 0.885 0.575 1.000

coexpression network
(weighted network)

adjacency matrix

mMoANw>

PO OR >
PR RFPO®
PORRPRRPAM
PRS0
PRPRPPPEPM
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Marginal Independencies

gene coexpression networks

—

relevant results are represented not in
the links but, rather, in the missing links

* an edge indicates the possibility of direct connection
* amissing edge represents a claim of zero relationship

Marginal Dependencies

expression similarity tells us little about
the underlying biological mechanism

mO)

how can we distinguish between
direct and indirect dependencies?
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Gene Coexpression Gene Regulation
ORiORdO
/®\
©

marginal dependencies ‘

/1\
@5 ©

Conditional independencies

3 random variables: @ @ @

X is conditionally independent of YgivenZz (X LY |Z)
PY=y|X=xZ=2)=PY =y|Z=2)

knowing Z, then X offers no more information about Y

D—~@—@ ®/@\@

(XL1Y|Z) XL1Y|Z)
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Gene coexpression networks

using conditional independence measures

(XLY|Z)

Is the expression of gene X independent of the
expression of gene Y given the expression of Z?

beyond coexpression: try to recover regulatory relationships

Z=@ coexpression networks
X1Y|Z Z = single third variable

Z = all other variables except X and Y

Gene coexpression networks

using conditional independence measures
X1Y|Z

Z = all other variables except X and Y

Full Conditional Models (Markov Networks)

Can the correlation observed between X and Y be
explained by all the other genes in the model?
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Full Conditional Models
Xi 1 Xj | Xrest

assume that X~N(p, X)

K = X7 1is the concentration matrix or precision matrix

partial correlation coefficient

XiJ-lexrest@kij:O

Gaussian 6raphical Models
Xi L Xj | Xrest & kij =0

undirected graph

X;and X; are connected if and only if k;; # 0

i.e. edge set is defined by non-zero partial correlations
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Gaussian Graphical Models

correlation matrix adjacency matrix
A B C D E ABCDE
A 1.000 0.244 0.801 0.149 0.752 Alo101
B 0.244 1.000 0.735 0.154 0.621 BO1101
C 0.801 0.735 1.000 0.186 0.885 c11101
D 0.149 0.154 0.186 1.000 0.575 DOOO11
E 0.752 0.621 0.885 0.575 1.000 E11111
partial correlation matrix adjacency matrix
A B C D E ABCDE
A 1.000 -0.842 ©.594 -0.210 0.249 A11100
B -0.842 1.000 0.705 -0.049 0.075 B11100
C 0.5%4 0.705 1.000 -0.534 0.589 11111
D -0.210 -0.049 -0.534 1.000 0.906 DOO111
E 0.249 0.075 0.589 0.906 1.000 EQO0111
Alternative Graphical Models _
coexpression
. . G
correlation matrix network

A B C D E
A 1.000 ©0.244 0.801 0.149 0.752
B 0.244 1.000 0.735 0.154 0.621
C 0.801 0.735 1.000 0.186 0.885
D 0.149 0.154 0.186 1.000 @.575
E 0.752 0.621 0.885 0.575 1.000

partial correlation matrix

A B C D E
00 -0.842 ©.594 -0.210 0.249
42 1.000 0.705 -0.049 0.075
94 0.705 1.000 -0.534 0.589
10 -0.049 -0.534 1.000 0.906

A1l
B -0
c o
D -0
E 49 0.075 0.589 0.906 1.000

.0
.8
.5
.2
.2

0

Markov
network
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Alternative Graphical Models

coexpression network
(marginal dependencies)

true network

Markov network
(conditional dependencies)

Gaussian 6raphical Models

= full conditional relationships can only be accurately
estimated if the N > p

* if N < p then the correlation matrix does not have full
rank and hence cannot be inverted

* N < p is true for almost all genomic applications

16



Gaussian Graphical Models

Approaches to estimate G6Ms in N < p situation

» Empirical Bayes approach (Schafer & Strimmer 2005)
» Graphical lasso (Friedman, Hastie & Tibshirani 2007)

GGMs: can the correlation between X and Y be
explained by all the other genes in the model?

Can the correlation between X and Y be
explained by a single third variable?

(low-order conditional independence models)
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