
1 

Correlation Networks 
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High throughput technologies: omics data 

§  genetic variants 
§  gene expression 

§  epigenetic modifications 

§  proteins and metabolites 

§  measuring different phenotypic traits 

unprecedented opportunities to uncover the genetic 
architecture underlying phenotypic variation 
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Main challenge: 
decipher the flow of biological information 

o  integrate multiple sources of biological information in 
order to reveal the causal biological networks that 
underlie complex traits 

§  to better understand the biology of the traits 

§  to predict the behavior of complex systems  

§  to optimize management practices and breeding strategies 

Why do we want to infer Causal Biological Networks? 

Biological Networks 
(undirected graphs) 

genes and gene products do not work in isolation; rather 
they are connected in complex networks 
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Correlation Networks 
§  networks constructed based on correlation values 
§  main goal: to explain the observed correlations between 

gene measurements by the presence of other genes 

main challenge: how deeply correlations are resolved 

FROM correlation networks (most simple)  

TO Bayesian networks (most sophisticated) 

Gene coexpression networks 
§  correlation networks based on gene expression values  

gene coexpression network: it is a graph where nodes 
correspond to genes and (undirected) edges represent 
pairwise expression similarities 

Genes Sample 1 Sample 2 Sample 3 … Sample N 
Gene 1 ge11 ge12 ge13 … ge1N 

Gene 2 ge21 ge22 ge23 … ge2N 

Gene 3 ge31 ge32 ge33 … ge3N 

… … … … … … 
Gene M geM1 geM2 geM3 … geMN 
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Gene coexpression networks 
§  correlation networks based on gene expression values  

How to measure pairwise expression similarities? 

standard method: Pearson correlation 

Genes Sample 1 Sample 2 Sample 3 … Sample N 
Gene 1 ge11 ge12 ge13 … ge1N 

Gene 2 ge21 ge22 ge23 … ge2N 

Gene 3 ge31 ge32 ge33 … ge3N 

… … … … … … 
Gene M geM1 geM2 geM3 … geMN 

Gene coexpression networks 
§  correlation networks based on gene expression values 

Genes Sample 1 Sample 2 Sample 3 … Sample N 
Gene 1 ge11 ge12 ge13 … ge1N 

Gene 2 ge21 ge22 ge23 … ge2N 

Gene 3 ge31 ge32 ge33 … ge3N 

… … … … … … 
Gene M geM1 geM2 geM3 … geMN 

matrix (gene x gene) 



5 

Gene coexpression networks 
§  correlation networks based on gene expression values 

unweighted network 

Adjacency Matrix 

rule: 

Gene coexpression networks 
correlation matrix adjacency matrix 
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Gene coexpression networks 
correlation matrix adjacency matrix 

coexpression network 
(unweighted network) 

Gene coexpression networks 

coexpression networks are undirected graphs 
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Gene coexpression networks 

Motivation: if two genes show similar 
expression profiles, they are probably 

involved in the same processes 

coexpression hints coregulation 

Application: compare networks between 
conditions (normal vs disease) and 
identify changes in the topology 

Coexpression Network Topology 
Gene connectivity: row sum of the adjacency matrix 
§  number of direct neighbors (unweighted networks) 

Ravasz et al. (2002) Science 297: 1551-1555 

Connectivity can be used to identify important genes 

three highly connected nodes (hubs) 
(they keep the network together)  
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Coexpression Network Topology 
Gene connectivity: row sum of the adjacency matrix 
§  number of direct neighbors (unweighted networks) 

Ravasz et al. (2002) Science 297: 1551-1555 

Connectivity can be used to identify important genes 

four highly interconnected modules 
(modules connected by a few links) 

Coexpression Network Topology 
modules: subset of nodes that are tightly connected 

defining gene modules 
1. define a dissimilarity measure between 2 genes  
 

2. hierarchical clustering using dissimilarity and define 
modules as branches of the hierarchical clustering tree 

3. visualize the modules (clustering results) in a heatmap plot 
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Coexpression Network Topology 
modules: subset of nodes that are tightly connected 

hierarchical clustering 

heatmap 

How to measure similarity of expression? 

standard method: Pearson correlation 

Gene coexpression networks 

o  non-linear dependencies are not necessarily identified  

other similarity measures: 
Spearman’s rank correlation 

Mutual information 
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Gene coexpression networks 
correlation matrix adjacency matrix 

weighted networks: the adjacency matrix reports 
the connection strength between node pairs 

dichotomization leads to loss of information 

Gene coexpression networks 
correlation matrix adjacency matrix 

coexpression network 
(weighted network) 
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Marginal Independencies 

relevant results are represented not in 
the links but, rather, in the missing links  

gene coexpression networks 

§  an edge indicates the possibility of direct connection  
§  a missing edge represents a claim of zero relationship 

Marginal Dependencies 

expression similarity tells us little about 
the underlying biological mechanism  

how can we distinguish between 
direct and indirect dependencies? 
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Gene Regulation 
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Gene Coexpression 

marginal dependencies 

Conditional independencies 
X Y Z 

X is conditionally independent of Y given Z 

3 random variables:  

X Z Y 
X 

Z 

Y 
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Gene coexpression networks 
using conditional independence measures 

Is the expression of gene X independent of the 
expression of gene Y given the expression of Z? 

beyond coexpression: try to recover regulatory relationships  

Gene coexpression networks 
using conditional independence measures 

Full Conditional Models (Markov Networks) 

Can the correlation observed between X and Y be 
explained by all the other genes in the model? 



14 

Full Conditional Models 

partial correlation coefficient 

Gaussian Graphical Models 

undirected graph 

i.e. edge set is defined by non-zero partial correlations  
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partial correlation matrix 

Gaussian Graphical Models 
correlation matrix adjacency matrix 

adjacency matrix 

Alternative Graphical Models 

partial correlation matrix 

correlation matrix 
coexpression 

network 

Markov 
network 
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Alternative Graphical Models 
coexpression network 

(marginal dependencies) 

Markov network 
(conditional dependencies) 

A B 

C D 

E 

true network 

Gaussian Graphical Models 
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Gaussian Graphical Models 

GGMs: can the correlation between X and Y be 
explained by all the other genes in the model? 

Can the correlation between X and Y be 
explained by a single third variable?  

(low-order conditional independence models) 


