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Structural Equation Models

= Causal structure represented as a Directed Graph
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Example of a causal structure, in which y’ s represent measurements
on three phenotypic traits, x’ s and e’ s represent known explanatory
variables and residual factors affecting y’s, respectively.
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Structural Equation Models

= Graph represented by a set of structural equations

Y, =Bx, +¢
Yo = Ay, +B,X; +e,

Ys = Ay + Ay, +B5X5 + €

« Matrix notation: y=Ay+Xp+e
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Structural Equation Models

= “Reduced Model”:
y=Ay+Xp+e, e~N(0,D)
y-Ay=Xp+e
I-A)y=Xp+e
y=AXp+Ae, A'=(I-A)"
y=p +¢, ¢ =A'e~N(0,A'DA")
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Structural Equation Models

= “Reduced Model”: Toy Example

D 0—0

y=3
z=6
y=3

Example of Application

= Completely randomized experiment to compare two treatments
in terms of their effect on ribeye area in beef cattle

= Data collected on ribeye area (RIB) and body weight (BW)
= Results indicate a significant effect of treatment on RIB
= Results indicate also a significant effect of tfreatment on BW

= However, when BW is included as a covariate in the model for
RIB, the treatment effect on RIB becomes non-significant
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BW RIB BW
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Structural Equation Models

= Competing networks may be compared using
some model selection criteria (e.g., LRT, AIC,
BIC, or Bayesian approaches)

= SEM intensively used in many fields, such as
economics, psychometrics, social statistics, and
biological sciences.

= More recently, in quantitative genetics in the
context of mixed model analysis (e.g., Gianola
and Sorensen 2004)

SEM in Quantitative Genetics

@ oy \ (Gianola and Sorensen, 2004)

U s Y, | U,
I [ Ficure 1.—Standard bivariate model used in
quantitative genetics: Y; and Y; are the phenotypic
E E values; U and U, are additive genetic effects act-
1 2 ing on the traits; E; and E; are residual effects. A

single-headed arrow (e.g., A — B) indicates that

\ / variable A affects variable B.
Causes of environmental correlation
y=Xp+u+e

2
Iy y, = hlherl v, T€C1 & u~ N(0,A0;)

1/20/19



SEM in Quantitative Genetics

/ & e cerieien \ (Gianola and Sorensen, 2004)
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Ficure l.—Standard bivariate model used in
quantitative genetics: Y; and Y; are the phenotypic

E, E, values; U, and U, are additive genetic effects act-
ing on the traits; E; and E; are residual effects. A
single-headed arrow (e.g., A — B) indicates that

\ / variable A affects variable B.

Causes of environmental correlation

y=Ay+Xp+u+e

Example of Application
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FIGURE 2.—Scheme of the recursive relationships between
calving traits (ycp, liability to calving difficulty; ysg, liability to
stillbirth; yg, phenotype for gestation length; the N’s are
structural coefficients).

Maturana EL, Wu X-L, Gianola D, Weigel KA and Rosa GTM. Exploring
biological relationships between calving traits in primiparous cattle
with a Bayesian recursive model. Genetics 181: 277-287, 2009.
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Example of Application
/\ky,‘ =X;b + Zi(h)h + Zi(s)s + Zi(mgs)mgs +e
| 0 0

Ar = | “Acp—cLk) 1 0
~NsB—GL(k) —AsB—cp(r) 1

Estimates of recursive effects on the observable scale, by subgroup of gestation length

261-267 days 268-273 days 274-279 days 280-291 days
Aene i (%/1 day GL) 0.06 0.24° 0.37° 0.47°
Aspecr. (%/1 day GL) —0.96° —0.57° —0.40° 0.23°
Assecp (%/1% CD) 0.61¢ 0.60° 0.60° 0.60°
Aspe e’ (%/1 day GL) 0.03 0.14° 0.237 0.29¢
Ovenall effect of GL. on —0.93* —0.43° —0.17 0.52°

SB (%/1 day GL)

“HPDggg; region does not include 0, where HPD is the highest posterior density.
*\sBe—cDe—cL cun'cspunds to the effect of GL on SB mediated Lhmugh CD.

Inferring Causal Phenotype Networks

= d-Separation (‘directed separation’) concept: Verma and
Pearl (1988), Pearl (1998), Geiger et al. (1990)

Two variables X and Y are said to be d-separated by Q if
there is no active path between any X and Y conditionally on Q

* Example 1: y, is not a collider * Example 2: y, is a collider

ys is not independent of y, y; and y; unconditionally independent

Conditioned on y,, y; becomes y; and y; not independent,
independent of y, conditioned on y,

Yi— Y2 — s Yi— Y2 —Y;
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The IC Algorithm

(Inductive Causation; Verma and Pearl| 1991)

Step 1: Undirected graph (search for d-separations;
connect adjacent variables)

Step 2: Partially oriented graph (search for colliders)

Step 3: Attempt to orient remaining undirected edges

such that no new colliders or cycles are generated

Inferring Causal Phenotype Networks

= Valente et al. (2010): Correlated genetic effects act
as an additional source of phenotypic covariance, which
may confound the search for causal structures

@

Example of network involving five

= 3\ "™ phenotypic (observable) traits,
~ I and their corresponding additive
. / genetic (u’s) and residual (e’ s)
§ ‘1 - ‘2 ¥s effects; arcs connecting u’s
3 / represents genetic correlations
= \

€ €4 €s




Inferring Causal Phenotype Networks

= Valente et al. (2010): To restore the connection between
causal structures and joint density, the joint distribution of
phenotypes conditionally on additive genetic effects is used

1. Fit a multiple frait model where additive genetic effects
could be predicted based on pedigree information

2. Apply the IC algorithm to this matrix, returning a class
of equivalent causal structures (i.e. causal structures
that results in the same conditional independencies in
the joint probability distribution)

3. Fit final structural equation model using the selected
causal structure

Valente BD, Rosa 6JM, de los Campos G, Gianola D and Silva MA.
Searching for recursive causal structures in multivariate
quantitative genetics mixed models. Genetics 185: 633-644, 2010.

= Valente et al. (2010): Simulation study

5 phenotypic traits
300 inbred lines
6 individuals per line

Model from which
simulated data were drawn.

/ \ Undirected acyclic graph resulting
\ / from step 1 of the IC algorithm

/ \ Partially oriented graph
\ / retrieved by the IC algorithm

/ \. Structure chosen given prior beliefs
\ / on the direction of the edge between
y; and y, (pointing towards y,)

Yi
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Example of Application

Reproductive Traits in European Quail
892 females with observations

Pedigree: 10,291 animals

@ Birth weight
@ Weight at 35d

® Age at sexual maturity (15" egg)
@ Average egg weight

® Rate of lay (# eggs)

5 phenotypic traits:

Valente BD, Rosa GJIM, Silva MA, Teixeira RB and Torres RA.
Searching for phenotypic causal networks involving complex traits:

an application to European quails. Genet. Sel. Evol. 43:37, 2011.

Example of Application

| NE

BW |—— W35 —— | AFE
l AEW
@ > NE

BW |—> W35 —> | AFE
' > | AEW

@ Birth weight (BW)

@ Weight at 35d (W35)

® Sexual maturity: Age at 15t egg (AFE)

@ Average egg weight (AEW) and ® Number of eggs (NE)

Time
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+ 397 commercial farms

Example of Application 3:

=)  Milk Fatty Acid Composition in
™ Dairy Cattle

- 1,905 first lactation cows (63-282 DIM) ‘XQL\

]

* Last four generations in pedigree: 4676 animals
+ Fatty Acids (14 Total): C:4:0-C18:0, C10:1-C18:1,

CLA (g/kg milk)

Bouwman AC, Valente BD, Janss LLG, Bovenhuis H and Rosa GJM.
Exploring causal networks of bovine milk fatty acids in multivariate
mixed model context. Genetics Selection Evolution 46:2, 2014,

Milk Fatty Acids Network

+ Schematic overview of major milk fatty acids synthesis pathways
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IC Algorithm, Results

i

1t

Figure 1 Network obtained from the inductive causation (IC) algorithm with different highest posterior density (HPD) intervals. The
connections obtained with a HPD interval of 95% and 90% are given in black solid lines, with a HPD interval of 85% in grey dashed lines, and
with a HPD interval of 80% in blue dotted lines.

* No unshielded colliders were recovered from the data
and the resulting network was completely undirected

SEM, Results

Figure 2 The fitted causal structure of the structural equation model. The edges in the fitted structure represent the causal relations for the
observed variables (C4:0-C12:0), with independent residuals (ecsg-€c120) and correlated additive genetic effects (Ucag-Uci120)-

0 0 0 0 0

Ac6:0,c1:0 0 0 0 0

A= 0 Acs:0,c60 0 0 0
0 0 Ac100,c8:0 0 0

0 0 0 Acizocioo O
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SEM, Results

Density
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Figure 3 Posterior densities of structural coefficients for the fitted causal structure of the structural equation model.

Example of Application 4:

Meat Quality Traits in
Japanese Black Cattle

11,588 carcass records of Japanese Black cattle

57,523 animals in the pedigree

* Meat quality fraits:

flo

A
@O®eE

Beef marbling score (BMS)
Beef color score (BCS)
Firmness of beef (FIR)
Texture of beef (TEX)
Beef fat color score (BFS)
Mono unsaturated fatty acids /
saturated fatty acids (MUS)
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1 Dollar ~ 110 Yens

IC Algorithm, Results

MUS BCS MUS
BMS BMS
FIR XHR
TEX TEX
HPD 95% HPD 80%

Inoue K, Valente BD, Shoji N, Honda T, Oyama and Rosa GJM.
Inferring phenotypic causal structures among meat quality fraits
and the application of a structural equation model in Japanese Black
cattle. Journal of Animal Science 94:4133-4142, 2016.
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SEM vs. MTM in Animal Breeding

Litter weight at

weaning (y3)

»
\

Y =u +e

Y, =Ay tu, +e

Litter size, 5 days (Y2) |y =40, +u; +e

Litter size, O days (y,)

Valente BD, Rosa 6JM, Gianola D, Wu XL and Weigel KA. Is
structural equation modeling advantageous for the genetic
improvement of multiple traits? Genetics 194: 561-572, 2013.

SEM vs. MTM in Animal Breeding

R

Litter weight at
weaning (ys)

-~
-
N

\\
Yy =Ac+us +e, \

1

. . ’ /
Litter size, 5 days (y,) | Cross fostering I’

Litter size, O days (y;)

« SEM = MTM for predictions under stable conditions

« SEM superior if with modified scenarios (i.e., interventions)
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