Structural Equation Models with Latent Variables

Francisco Peñagaricano University of Florida

Causal Effects

Decipher causal relationships is the ultimate goal in most studies involving complex traits

•unravel causal relations among variables can be used to predict the behavior of complex systems

Inferring causal effects from observational data is difficult due to the presence of potential confounders

suitable methodologies, e.g. structural equation models are already available and have been used in other fields

statistical measures of the fit of the causal model

Structural Equation Modeling

- Σ variance-covariance matrix for the entire population
- S variance-covariance matrix computed from a sample of the population
- $\hat{\Sigma}$ model-based (fitted) variance-covariance matrix

 $S=\hat{\Sigma}$ $\;$ residual variance-covariance matrix $\;$

• Minimize a fitting function $F(S, \widehat{\Sigma})$

if variables follow a multivariate normal distribution, the ML estimates are those that minimize the following fitting function:

$$F_{ML} = \log \left| \hat{\boldsymbol{\Sigma}} \right| + tr \left(\mathbf{S} \times \hat{\boldsymbol{\Sigma}}^{-1} \right) - \log \left| \mathbf{S} \right| - \left(p + q \right)$$

Structural Equation Modeling

$$F_{ML} = \log \left| \hat{\Sigma} \right| + tr \left(\mathbf{S} \times \hat{\Sigma}^{-1} \right) - \log \left| \mathbf{S} \right| - \left(p + q \right)$$

test for model fit

$$(N-1)\cdot F_{ML} \sim \chi^2_{df}$$

df: difference between the number of unique elements in the VCOV matrix and the number of free parameters in the model

In SEM: we want high P-values (we want to NO reject H_0)

Structural Equation Modeling

$$F_{ML} = \log \left| \hat{\boldsymbol{\Sigma}} \right| + tr \left(\mathbf{S} \times \hat{\boldsymbol{\Sigma}}^{-1} \right) - \log \left| \mathbf{S} \right| - \left(p + q \right)$$

test for model fit

$$(N-1)\cdot F_{ML} \sim \chi^2_{df}$$

- global test: it evaluates simultaneously all the restrictions imposed in the variance-covariance matrix
- if the test is significant, i.e. we reject H₀, the source of the lack of fit is unclear
- depends on the sample size and the number of parameters

