Mathematical essentials

Andrea Doeschl-Wilson

Overview

- Functions
- Differentiation \& Integration
- Differential equations
- Probability and distributions (see Thursday lecture)

What is a mathematical function?

- A function is a relation between a set of inputs
$x \in$ Domain D and a set of outputs $y=f(x) \in$ Range R with the property that each input is related to exactly one output

Which one of these graphs is NOT the graph of a function?

What is a mathematical function?

- Functions can consist of variables and parameters
- Variable: trait that vary over time or space
- Parameters: assumed to be constant

Example: $y=m \mathrm{x}+\mathrm{c}$ has independent variable x , dependent variable y and parameters $\mathrm{m} \& \mathrm{c}$

- Properties of functions can be summarized by their graphs

Linear functions $\quad f(x)=\mathrm{mx}+\mathrm{c}$

Fully defined by

- constant slope m
- For every increase of one in the value of x, the value of y increases by m
- constant intercept c
- When $x=0$ then $f(x)=c$
- What are the values for the slopes \& intercepts of these functions?
- What properties do these functions have?

Exponential functions $y=f(t)=a e^{b t}=a \exp (b t)$

- Where the parameters a and b are constants
- a is the intercept
- b controls the slope
- e is the Euler number (≈ 2.718)
- Exponential has no roots, i.e. $e^{x}>0$ for all x
- $e^{0}>1$
- b controls the behaviour for large x
- b>0 means that $f(t) \rightarrow \pm \infty$ as $t \rightarrow \infty$
- $\mathrm{b}<0$ means that $f(t) \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$

Power functions
 $$
y=f(t)=a t^{b}
$$

- The exponent b determines the domain \& the shape of the function
- $0<b<1$: $f(t)$ defined for $t \geq 0$
- $b \geq 1$: $f(t)$ defined for all real numbers t

Derivative of a function

1. Mathematical definition:
$\frac{d y}{d t}\left(t_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{y(t)-y\left(t_{0}\right)}{t-t_{0}} \approx \lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}$

2. Geometric definition:

The derivative $\frac{d y}{d t}\left(t_{0}\right)$ of a function at point $t=t_{0}$ is the slope of the tangent line to the graph at t_{0}

3. Physical definition:

The derivative $\frac{d y}{d t}$ defines the average rate of change of variable y with respect to t

Derivatives allow you to find the maxima / minima of a function:

Find t_{0} so that $\frac{d y}{d t}\left(t_{0}\right)=0$

Examples of derivatives of basic functions

- Differentiation is the process of calculating derivatives
- Derivatives of certain functions need to be committed to memory:
- If $\mathrm{y}=\mathrm{c}$ then $\frac{d y}{d t}=0$ for constant c
- If $y=e^{b t+c}$ then $\frac{d y}{d t}=b e^{b t+c}$
- If $y=t^{b}$ then $\frac{d y}{d t}=b t^{b-1}$
- If you know these, and some basic rules, you can calculate the derivative of almost any function

Rules of differentiation

1. Derivatives of sums and constant multiples

- If $y(t)=y_{1}(t) \pm y_{2}(t)$ then $\frac{d y}{d t}=\frac{d y_{1}}{d t} \pm \frac{d y_{2}}{d t}$
- If $y(t)=k x(t)$ then $\frac{d y}{d t}=\mathrm{k} \frac{d x}{d t}$

Example: Calculate the derivative of $y=2 e^{3 t}+t^{5}$

Rules of differentiation

2. Derivatives of products

$$
\text { If } y(t)=u(t) * v(t) \text { then } \frac{d y}{d t}=u \frac{d v}{d t}+v \frac{d u}{d t}
$$

$$
\text { Example: } y=5 t^{3} e^{-2 t}
$$

3. Derivatives of quotients

If $y(t)=\frac{u(t)}{v(t)}$ then $\frac{d y}{d t}=\frac{v \frac{d u}{d t}-u \frac{d v}{d t}}{v^{2}}$
Example: $y=\frac{5 t^{3}}{e^{2 t}}$
4. Chain rule

If $\mathrm{y}(\mathrm{x})=\mathrm{y}(\mathrm{x}(\mathrm{t}))$ then $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$
Example: $y=e^{e^{-t}}$

Integration

- Reverse process of differentiation

Example: if $\frac{d y}{d t}=2 t$ then $y(t)=t^{2}$
Write the reverse as:

$$
\int 2 t d t=t^{2}
$$

- t^{2} is called the indefinite integral of 2 t
- But why do books have

$$
\int 2 t d t=t^{2}+C ?
$$

Constant of integration

- While differentiating any function gives a well defined answer, a number of functions have the same differential
- E.g. each $y=t^{2}, y=t^{2}+1, y=t^{2}-3$ differentiate to 2 t
- The differential tells you the slope but nothing about the y-location
- The indefinite integral of a function is a set of parallel curves
- The constant of integration C is determined by the initial conditions: $y(t=0)=C$

Definite integrals

If $\mathrm{F}(\mathrm{t})$ is the indefinite integral of a function f , i.e. $\int f(t) d t=F(t)+C$ Then the definite integral of f with limits a and b is

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

Example: $\int_{1}^{2} 2 t d t=\left[t^{2}\right]_{1}^{2}=2^{2}-1^{2}=4-1=3$

There are several integration rules and techniques, but often calculation of integrals requires numerical approximations (i.e. computer software)

Definite integrals and Area under the curve

Theorem:

If $f(x)$ is a continuous function that is non-negative for $a \leq x \leq b$, then the area of the region bounded by the graph of $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$ is given by

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Differential equations - Outline

- What are differential equations
- Why do we care about them?
- The modelling process
- Some examples
- How to solve them

What are differential equations?

Crude definition: Differential Equation = equations with derivatives

Mathematical definition:
First order differential equation: Equation for the rate of change of a dependent variable as a function of independent variables, itself and model parameters

$$
\frac{d N}{d t}=f(N, t,\{a, b, c\})
$$

Examples for first order linear equations

Let $\mathrm{N}(\mathrm{t})=$ size of a population at time t
Migration: every year the population increases by 2:

- Differential equation:

$$
\frac{d N}{d t}=2
$$

- Solution: $N(t)=2 t+C$
- The constant C is defined by the initial state of the system:
- $\mathrm{C}=N(0)=N_{0}$
- The exact solution of a differential equation
 requires specification of initial conditions (N_{0})

Examples for first order linear equations

Let $\mathrm{N}(\mathrm{t})=$ size of a population at time t
Time-depdendent growth: every year the population increases by 2 t :

- Differential equation:

$$
\frac{d N}{d t}=2 t
$$

- Solution: $N(t)=t^{2}+N_{0}$

Examples for first order linear equations

Let $\mathrm{N}(\mathrm{t})=$ size of a population at time t
Exponential growth: every year the population doubles in size

- Differential equation:

$$
\frac{d N}{d t}=2 N
$$

- Solution: $N(t)=e^{2 t+C}=e^{C} e^{2 t}=N_{0} e^{2 t}$

Why do we care about differential equations?

- They are the mathematical representation of a dynamical systems:
- E.g. growth or decay of populations
- Change of pathogen burden over time
- Change of the number of infected individuals over time or space

Modelling process

1. Reality

Abstract model

2. Learn about reality

Learn about abstract model

Mathematical model: Differential equations (DE)

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

\because
Examine mathematical model: solve DEs \& explore solutions

Systems of differential equations - modelling interacting populations

- The growth / decline of one species often depends on the population level of another species
- Example: Preditor - Prey dynamics

Preditor - Prey models

- System of 'coupled' differential equations:

$$
\begin{array}{ll}
\text { Preditor: } \frac{d N}{d t}=\mathrm{f}(\mathrm{~N}, \mathrm{P}, \mathrm{t}) \\
\text { Prey: } & \frac{d P}{d t}=\mathrm{g}(\mathrm{~N}, \mathrm{P}, \mathrm{t})
\end{array}
$$

How many variables does this model have?

The Lotka-Volterra Predator -Prey model

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

First-order, non-linear differential equation model with

- $x=$ number of prey (rabbits)
- $y=$ number of preditors (foxes)
- $\alpha, \beta, \delta, \gamma$ are positive real parameters describing the interactions between the two species

What is the interpretation of these model equations?

The Lotka-Volterra Predator -Prey model

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

$$
x=\text { number of prey (rabbits) }
$$

$$
y=\text { number of preditors (foxes) }
$$

$\alpha, \beta, \delta, \gamma$ are positive real parameters describing the interactions between the two species

Interpretation:

- Prey reproduce exponentially unless subject to predation (term αx)
- The rate of predation is proportional to the rate at which preditors and prey meet ($\beta x y$)
- The growth rate of the predators is proportional to the rate at which they catch prey ($\delta x y$)
- In the absence of prey, predators vanish exponentially (γy)

Examining the predator-prey model:

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

- The Lotka-Volterra model is one of the most studied mathematical models in biology
- One of the rare cases where analytical solutions exist
- Lends itself to various mathematical techniques
- Here we use it to demonstrate the process of model exploration adopted in this course

Examining the predator-prey model: 1. Dynamic behaviour

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

In order to obtain numerical solutions to the Lotka-Volterra model:

1. Choose arbitrary values for the model parameters
2. Define initial conditions $x(t=0), y(t=0)$
3. Code the differential equations
4. Call a numerical solver (e.g. 'Isoda’ in R) to generate predictions for $x(t)$ and $y(t)$ for specific values of t
5. Plot profiles
6. Interpret the results

$$
\begin{aligned}
& \text { We will follow } \\
& \text { this process in the } \\
& \text { tutorials }
\end{aligned}
$$

Dynamics of the preditor-prey system: Frequency plot

- Predators thrive when there is plentiful pray but ultimately run out of food supply \& decline.
- As the predator population gets low, the prey population increases.
- These dynamics continue in a periodic cycle of growth and decline

Examining the predator-prey model: 2. Population Equilibrium

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

Population equilibrium (also called steady state) occurs when neither the number of predators (y) or prey (x) are changing:

- i.e. when $\frac{d x}{d t}=\frac{d y}{d t}=0$
- Setting the above equations to zero yields 2 equilibria:

1. $\{x=0, y=0\}$ - Extinction of both species

We will follow this process in the tutorials
2. $\left\{x=\frac{\gamma}{\delta} 0, y=\frac{\alpha}{\beta}\right\}$ - Both populations sustain their current numbers

