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Overview

Why do we need statistical models?

The likelihood function

Frequentist inference: maximum likelihood estimates and
confidence intervals

Likelihood and frequentist inference for stochastic SIR models
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Why do we need models? An example

Early vs first day lactation somatic cell counts of young cows
(De Vliegher et al., 2004)

somatic cell count (SCC) is an indicator of milk quality and cow
health
early indicators of SCC can be useful to guide farm management
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Somatic cell count (SCC) study:
Research questions

Early vs first day lactation somatic cell counts of young cows

how early SCC is related to first lactation SCC?
is early SCC really related to first lactation SCC?
are there any other variables associated with first lactation SCC??

models can provide answers to these questions
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Models

Models are devices to answer questions and represent reality

mathematical models use equations to represent relationships

example: 1st lactation SCC = α+ β(early lactation SCC)

mathematical models represent assumptions and underlying
knowledge about quantities of interest

problem: these models do not deal with the uncertainty regarding the
phenomenon.
(is early SCC really related to 1st lactation SCC? are there any other
variables associated with 1st lactation SCC?)

How to deal with the uncertainty underlying the problem?
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Statistical models

Statistics deals with uncertainty by incorporating variation into the
model

Sources of variation
systematic (deterministic) variation: this can be based on
knowledge about the system (example: early lactation SCC)

random (stochastic) variation: this is due to unknown
factors/variables which might be affecting the response

Statistics uses probability distributions to deal with random variation

example: linear regression model: y = α+ βx + ε, ε ∼ N(0, σ2)

ε has a normal distribution with mean 0 and variance σ2
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probability distributions represent
data variation

What probability distribution gives the best fit to these data?
Assumptions must be considered and evaluated based on
available data

7/36



Variation in a variable might depend
on the variation in another variable
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Regression Analysis idea

linear regression model:
y = β0 + β1x + ε,
ε ∼ N(0, σ2)

Distribution of the response variable Y given (fixed) x

Y |x ∼ N(β0 + β1x , σ2)

task: estimate parameters β0, β1 based on a
sample of the population: Statistical Inference

Parameter inference is one of the goals of Statistics
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Scientific Method and Statistics

important statistical tasks
design of experiments
inference
prediction/forecasting

statistical conclusions must be translated back into biology
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Statistical inference

Statistical inference is the process of reaching conclusions from
data

data are always limited: usually a sample and/or limited
experiments
information may be limited even when dealing with large datasets
(ex. gene expression data)
different data provide different answers

any statistical conclusion involves a degree of uncertainty

Statistical inference tasks
point estimation
interval estimation
hypothesis testing (ex. p-values, GWAS)
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Point estimation

Statistics uses probability to deal with random variation

a probability distribution is assumed for a random variable of
interest

probability distributions are functions of unknown parameters

point estimation idea:
given the available data and assuming an underlying model for the
variation observed (probability distribution) what single value is plausi-
ble for the indexing parameter?

a point estimate is the best guess about the parameter of a distribution
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Maximum likelihood estimates (MLE)

Key idea (Fisher, 1922):
ML estimates maximize the probability of having observed the available
data (e.g best explain the data)

Example: suppose an artificial data set with 3 independent
observations:
x1 = 3, x2 = 4 and x3 = 8
Assume these data come from random variable X which follows a
geometric distribution:

P(X = x ; θ) = (1− θ)x−1θ, x = 1,2,3...

The geometric distribution depends on an unknown parameter θ which
can be estimated using x1, x2 and x3.
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In the example we assume that X1,X2,X3 are independent and
follow the same distribution

If that’s the case, X1,X2, . . . ,XN independent and identically
distributed (i.i.d) random variables

The assumption of i.i.d random variables is frequently considered
in Statistics, but it is not suitable for infectious disease data
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Example (cont’d)

assuming i.i.d random variables (random sample), the probability of
observing x1, x2 and x3 is

P(X1 = x1,X2 = x2,X3 = x3; θ) =

= P(X1 = 3; θ)P(X2 = 4; θ)P(X3 = 8; θ)
= (1− θ)3−1θ(1− θ)4−1θ(1− θ)8−1θ

= (1− θ)12θ3

This is the likelihood function
the likelihood is a function of the unknown parameter θ.
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Plotting the likelihood function

the likelihood function is maximized at the value θ = 0.2
Hence, 0.2 is the maximum likelihood estimate of θ
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Point estimation: another example

Suppose an experiment to study the incidence of a certain tumour
in mice
a binary random variable (tumour/not tumour) can be used to
represent each mouse in a random sample with size N
the total number of mice with tumour can be modelled with a
binomial distribution
given that 6 out of 54 mice were observed with tumour, the
probability of this event is

P(X = k) =
(

54
6

)
θ6(1− θ)54−6

where θ represents the unknown proportion of mice with tumour in the
population. This is the likelihood function of θ for the data observed,
and it is maximized at θ̂ = 0.11
Hence, θ̂ = 0.11 is the maximum likelihood estimate of the proportion
of the mice with tumour in the population.
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notes on point estimation/MLEs

maximum likelihood estimators have important statistical
properties (e.g., unbiasedness and eficiency)

calculus or numeric procedures are used to obtain MLEs

shape of the likelihood function plays a vital role in statistical
inference (more on this later)

it can be difficult to derive a proper likelihood to represent the data
(example: epidemic modelling)

different samples provide different likelihoods hence different
MLEs - How to consider this feature into our inferences?

Two main approaches can be used: Frequentist (Classical) Inference
and Bayesian Inference
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Interval estimation:
the frequentist approach

interval estimation idea:
given the available data and assuming an underlying model for the vari-
ation observed, what range of values is plausible for the indexing pa-
rameter?

This range of values involve a degree of uncertainty.
goal: for an unknown and fixed parameter θ, we want a range (a,b)
such that

P[a < θ < b] = δ

a and b are functions of the data: a and b are random quantities
δ is a probability: usually 0.95
example: when δ = 0.95, the range of values [a,b] is called a
95% confidence interval for the parameter θ
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Confidence intervals example:
the frequentist approach

Suppose that observations from a data set follow a normal
distribution with unknown parameter µ and unknown variance σ2

X1,X2, ...,XN are random variables which represents the
measurements of a random sample of size N

the sample mean X = (X1 + X2 + . . .+ XN)/N is the maximum
likelihood estimator of the population mean µ

Since X is a function of random variables, this estimator is also a
random variable which follows a probability distribution
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Confidence intervals example:
the frequentist approach

When the sample size is large, it can be shown X has
approximately a normal distribution unknown mean µ and
variance σ̂2/n.
σ̂2 is an estimate of the variance (the sample variance)
this is a key result in Statistics (Central-limit theorem) and it holds
for any data distribution

a 95% confidence interval for the
mean µ is

[X − 1.96σ̂/
√

n,X + 1.96σ̂/
√

n]

density of a N(0,1)

1.96−1.96

0.95
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Interpretation of a confidence interval
the frequentist approach

Confidence intervals are functions of the data available: they are
random quantities

In the frequentist approach, the distribution parameters are
assumed fixed

frequentist interpretation of a 95% CI for the mean µ:
If a large number of confidence intervals were calculated us-
ing independent random samples of the population, 95% of
them would contain the true mean µ
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notes on
frequentist interval estimation
for normal distributed variables

exact confidence intervals can be obtained even when the sample
size is small: in this case a Student’s t-distribution is used

confidence intervals for the variance can be calculated using a
chi-square distribution

Other distributions
large-sample confidence intervals can be used to calculate CI for
proportions (practical)

definition of large-sample can vary. Usually n=30 is enough for
means of normal distributions and also proportions

point and interval estimation can be also applied to regression
analysis

23/36



Summary of key ideas:
Frequentist inference

Statistics allow the incorporation of uncertainty about the
quantities of interest into models

Any statistical conclusion involves uncertainty

Frequentist inference allows parameter estimation by using
vailable data only (using likelihood)

Maximum likelihood estimates are the ones that best explain the
observed data

confidence intervals represent the uncertainty regarding
Frequentist inference: plausible range of values for a model
parameter
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Tutorial 9a

Analysing fish infection data
Looking at likelihood plots
Comparing frequentist estimates based on different sample sizes
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Representing infectious disease dynamics:
stochastic compartmental models
“diversity” represented through disease states - ex. SIR model

S I R
β α

possible individual states
susceptible (S)
infected (I)
recovered (R)

Infections occur with rate βS(t)I(t) (Poisson process)
Recoveries occur with rate γ → infectious period follows an
exponential distribution (general stochastic model)

Assumptions
closed population, homogeneous mixing and no latent period
all individuals are equally susceptible and infectious

Inference problem: estimation of β, γ and R0
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Estimating R0 (in general)

There are several approaches for estimating R0, depending on
assumptions and data limitations (see Keeling and Rohani’s book)

For example, R0 can be estimated using reported cases,
seroprevalence data, Average age at infection and final size data

most of simple methods for estimating R0 are based on
deterministic models - cannot accommodate uncertainty
regarding parameter estimation

R0 can be also estimated from transmission experiments (see
Diekmann et al, 2013) - practical
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Likelihood function for a SIR model

The likelihood function depends on the structure and availability of
the epidemic data

Some possible scenarios:

best scenario: exact infection and removed times (complete
observation)

Infection times observed at fixed time periods
(e.g an individual infected between week 1 and 2)

only removed times observed

only final numbers infected
Not suitable for genetic analysis
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Infectious disease data in
genetic analysis

usual phenotype: binary disease status at a single time T
animal phenotype

1
2
3
.
.
.
n

diseased
healthy

diseased
.
.
.

diseased

time0 T

τ1

t2
t3

tn
τ1 τ2 · · · τM−2τM−1

time to infection is more informative about disease traits (rarely
observed but can be inferred - to be seen in the MCMC lecture)
disease status at sampling times (0, τ1, τ2, . . .T ) are required
better genetic analyses of disease traits when using binary
longitudinal data (e.g, Anacleto et al, 2015)
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Likelihood function for a SIR model
(idea)
assumption: Complete observation of the data

infection times: i = (i2, i3, . . . in)

removal times: r = (r1, r2, . . . rn)

data observed until the end of the epidemic:

time0 i1 i2 · · · in−1 inr2 rn r1 rn−1

infection events are not independent!
likelihood can be decomposed into the contributions of the
infectious and the removal processes
order of the events and special properties of the stochastic
process and associated distributions are important for derivation
of the likelihood

30/36



Likelihood function for a SIR model
(idea)

time0 i1 i2 · · · in−1 inr2 rn r1 rn−1

likelihood contribution of the infectious process
Time between infections follows a exponential distribution
(Poisson Process property)
based on the conditional densities at small time steps

likelihood contribution of the removal processes
- based on the exponential distribution of the infectious periods
- infectious period of individual j = rj − ij

Different likelihood derivations depending on inference approach
- See Bailey and Thomas (1971), Becker (1989) and Britton and
O’Neill (2002). See also Kypraios (thesis, 2007) for comparison.
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Maximum likelihood estimates of
SIR model parameters
Assume that

epidemic started with an initially infected individual and was
observed until its end at time T
nI and nR are the total numbers of infecteds and recovereds
St and It and Rt are the numbers of susceptibles, infecteds and
recovereds at time t

β̂ =
nI∫ T

I1
St Itdt

β̂’s denominator is the accumulated rate of contacts between
susceptibles and infecteds

γ̂ =
nR∫ T

I1
Rtdt

γ̂’s denominator is the aggregated length of the infectious period
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Maximum likelihood estimates of
SIR model parameters

Rida (1991) showed that standard errors of β̂ and γ̂ are

s.e(β̂) = β̂√
nI−1

and s.e(γ̂) = γ̂√
nr

Hence, approximate confidence intervals for β and γ can be obtained
by normal approximation

Approximate confidence intervals can also be derived for R0 (see
Diekmann et al, 2013)
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Summary of key ideas:
Frequentist inference for SIR model parameters

challenges: high dependence between infection events and
incomplete data

several approaches for estimating R0

likelihood function of the SIR model is derived depending on
inference approach

likelihood function of the SIR can be decomposed into the
contributions of the infectious and the removal processes - order
of events are important!

individual level data are required for (most of) genetic analysis of
infectious diseases
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Tutorial 9b

Frequentist inference for R0

Comparing frequentist estimates based on different sample sizes
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