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PART 1.  LINKAGE ANALYSIS. 
 

1.1 OVERVIEW: THE DGAT1 STORY 

A recent article in the journal Genome Research (Grisart et al. 2002) reported the 

identification of a single base pair mutation in the DGAT1 gene, with major effects on 

milk yield and composition in cattle. The first step in identifying the mutation was a 

genome wide linkage analysis (genome scan), which found a region of chromosome 

14 contained a QTL with a large effect on fat percentage (Georges et al. 1995).  The 

confidence region surrounding this QTL was very large (about 20-40cM), and 

contained so many possible genes that could possibly be carrying the underlying 

mutation (candidate genes) that it was impossible to select any of the genes with 

confidence.  The confidence region surrounding the QTL was narrowed to about 3cM 

using linkage disequilibrium (LD) mapping (Riquet et al. 1999) and combined linkage 

disequilibrium linkage analysis (LDLA) (Farnir et al. 2002).  The DGAT1 gene was 

identified as a strong candidate in this interval, and subsequent sequencing detected a 

base pair mutation in this gene.  The mutation caused a substitution from lysine to 

alanine in the DGAT1 gene (ie. a functional mutation).  Further investigations showed 

this mutation to be associated with major effects on milk yield and composition.                         

 

This publication is the first to demonstrate that the genetic mutations underlying the 

variation in quantitative traits can be identified.  The process was long (7 years), and 

required a large amount of resources.  In addition, the mutation in the DGAT1 gene 

has a very large effect on milk composition traits, explaining up to 50% of the 

variance for fat percentage.  Most QTL will have smaller effects than this, making the 

identification of the underlying mutations even more difficult.  However the rapid 

expansion of availability of genomic resources (eg. microsatellite markers, human 

genome project) should mean that many more mutations underlying variation in 

quantitative traits in livestock species will be identified in the next 5-10 years.  
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The aim of this course is to provide you with a set of criteria for designing and 

analysing experiments with some chance of successfully detecting QTL, and mapping 

these QTL with some degree of precision.  Considerable attention is devoted to 

strategies to decrease the cost of QTL mapping experiments, as this can be a crucial 

factor in acquiring funding for such experiments.  The course also aims to familiarise 

you with a small portion of the vast genomic resources that are available on the 

Internet, which are invaluable in selecting candidate genes.   

 

1.2 OPTIMISING THE DESIGN OF LINKAGE MAPPING EXPERIMENTS. 
The key parameters which determine the power of QTL mapping experiments to 

detect QTL are the distribution of the effects of genes which affect the quantitative 

trait of interest, the size and structure of the population used for mapping, and the 

statistical significance thresholds used. 

 

1.2.1 How many big genes (detectable QTL) are there? 
The power of a QTL mapping experiment ultimately depends on how many genes of 

large effect and how many genes of small effect are segregating in the population.  

Hayes and Goddard (2001) attempted to derive the distribution of gene effects from 

the results of QTL mapping experiments in pigs and dairy cattle.  Their results 

indicated many genes of small effect, and few genes of large effect, Figure 1.1.  

 

Figure 1.1  A.  Distribution of additive (QTL) effects from pig experiments, scaled by 
the standard deviation of the relevant trait, and distribution of gene substitution 
(QTL) effects from dairy experiments scaled by the standard deviation of the relevant 
trait.  B. Gamma Distribution of QTL effect from pig and dairy experiments, fitted 
with maximum likelihood.   
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Although there are few genes of large effect, these few genes contribute the majority 

of the genetic variance, Figure 1. 2. 
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Figure 1.2 Proportion of genetic variance explained by QTL ranked in order of size of 
effect (■ =pigs, and ∆=dairy cattle). 
 

As a result, QTL mapping experiments need to detect the 10-20 genes with the largest 

effects to explain the majority of the total genetic variance.  The proportion of the 

genetic variance explained by the detected QTL is the parameter which determines the 

increase in accuracy of marker assisted selection (MAS) compared with non-MAS 

(Meuwissen and Goddard 1996, Spelman et al. 2001). 

 

 

1.2.2 Optimising the number and size of families in half sib designs 
 
There are two key criteria which must be met for a mapping experiment to detect a 

QTL.  If the population is outbred, and a half sib design is used, then at least one of 

the sires used in the mapping experiment must be heterozygous at the QTL (eg. carry 

a mutation at the gene locus responsible for the QTL effect on one of his 

chromosomes).  The sire families must also be large enough to ensure that the 

difference between the effect of the two QTL alleles on the quantitative trait can be 

distinguished from environmental and other genetic effects.  Typically the total 

number of progeny which can be genotyped will be limited by cost.  There is then a 

choice between a large number of sires, each with a small number of progeny, and a 

small number of sires, each with a large number of progeny.  Which is a better design 

for QTL mapping?  This question has been investigated both using deterministic 
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predictions (eg. Weller et al. 1990), and simulation (eg. Hayes et al. 2001).  Both 

approaches come to the same conclusion, which is to detect QTL of medium � large 

size (eg. effect of approximately 0.2 phenotypic standard deviations), very large half 

sib families are needed, Figure 1.3 and Table 1.1. 
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Figure 1.3. Proportion of genetic variance explained by detected QTL in genome 

scans with 1, 2, 5 or 10 boars and 500 (■■■■ ), 1000 (ΟΟΟΟ) or 2000 (♦♦♦♦ ) total progeny 

allocated to the mapping experiment. 

 

In Figure 1.3, the criteria for measuring the success of the QTL mapping experiment 

is the total proportion of genetic variance explained by the QTL �detected�, that is, 

those QTL which have effects exceeding a significance threshold (in this case P<0.05 

at the chromosome wide level).  Increasing the numbers of boars increased the chance 

one or more boars was heterozygous for a QTL segregating in the population.  

However, for a given total number of progeny for the mapping experiment, increasing 

the number of boars decreased the progeny per boar, decreasing the chance that the 

QTL effect is statistically significant.  Using five boars balanced these two 

phenomena to maximise proportion of variance explained by detected QTL, 

regardless of total number of progeny in the experiment. 

 

In Table 1.1, from Weller et al (1990), the power of the experiment to detect QTL is 

expressed differently, as the probability that a QTL having an effect of a certain size 
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is statistically significant in the mapping experiment.  Again, increasing the number of 

sires increases the chance of at least one sire being heterozygous at the QTL.  Very 

large family sizes are needed to detect small QTL with any certainty.     

 

Table 1.1  Power of half-sib design to detect a segregating QTL 

Number of  Size of QTL effects1 
Sires Progeny per sire Total number of progeny  0.1 0.2 0.3 
5 200 1000  0.03 0.18 0.50 
 400 2000  0.07 0.44 0.80 
 600 3000  0.12 0.64 0.90 
 800 4000  0.18 0.76 0.94 
 1000 5000  0.25 0.83 0.96 
 2000 10000  0.55 0.95 0.97 
10 200 2000  0.05 0.31 0.76 
 400 4000  0.11 0.70 0.96 
 600 6000  0.21 0.88 0.99 
 800 8000  0.32 0.95 0.99 
 1000 10000  0.43 0.97 0.99 
 2000 20000  0.81 0.99 0.99 
20 200 4000  0.07 0.56 0.95 
 400 8000  0.20 0.93 0.96 
 600 12000  0.38 0.99 0.99 
 800 16000  0.56 0.99 0.99 
 1000 20000  0.70 0.99 0.99 
 2000 40000  0.97 0.99 0.99 
Weller et al. (1990); 1 The size of QTL effects = a/SD, where a is half the difference 
between the mean trait values for the two homozygotes, and SD is the residual 
standard deviation. 
 

1.2.3 Effect of statistical significance thresholds on QTL detection and accuracy 
of subsequent MAS 

 
If one conducts a genome scan, with the aim of detecting QTL to use in marker 

assisted selection, an important question is how many QTL to take from the genome 

scan and use in the MAS program.  The number of QTL detected in a genome scan is 

controlled by the number of segregating genes which affect the trait, the power of the 

experiment, and the level of stringency of the statistical test used to set the size of the 

significance threshold, above which a QTL is �detected�.  The less stringent the 

threshold, the greater the number of QTL detected, and the higher the proportion of 

genetic variance exploited by MAS using these detected QTL.  The �cost� of using 

less stringent thresholds is the higher number of false positives detected.  False 
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positives reduce the accuracy of MAS, as the variance explained by marked QTL is 

overestimated.   

 

A major issue in setting significance thresholds is the multiple testing problem.  In 

most QTL mapping experiments, many positions along the genome or a chromosome 

are analysed for the presence of a QTL.  As a result, when these multiple tests are 

performed the "nominal" significance levels of single test don't correspond to the 

actual significance levels in the whole experiment, eg. when considered across a 

chromosome or across the whole genome.  For example, if we set a pointwise 

significance threshold of 5%, we expect 5% of results to be false positives.  If we 

analyse 100 points along the chromosome (assuming for the moment these points are 

independent), we would expect 5 (100*0.05) false positive results!  Obviously more 

stringent thresholds need to be set.  The problem in QTL mapping is even more 

complex because �tests� on the same chromosome are not independent, as the markers 

are linked.   

 

Churchill and Doerge (1994) proposed the technique of permutation testing to 

overcome the problem of multiple testing in QTL mapping experiments. Permutation 

testing is a method to set appropriate significance thresholds with multiple testing (eg 

testing many locations along the chromosome for the presence of the QTL).  

Permutation testing is performed by analysing simulated data sets that have been 

generated from the real one by randomly shuffling the phenotypes across individuals 

in the mapping population. This removes any relationship between genotype and 

phenotype, and generates a series of data sets corresponding to the null hypothesis. 

Chromosome or genome scans can then be performed on these simulated data-sets. 

For each simulated data the position in the genome yielding the highest value for the 

test statistic is identified and stored.  The values obtained over a large number of such 

simulated pedigrees are ranked yielding an empirical distribution of the test statistic 

under the null hypothesis of no QTL. The position of the test statistic obtained with 

the real data in this empirical distribution immediately measure the significance of the 

real dataset.  Significance thresholds can then be set corresponding to 5% false 

positives for the entire experiment, 5% false positives for a single chromosome, and 

so on. 
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We performed an experiment to investigate the effect of the significance threshold on 

the subsequent accuracy of MAS.  The experiment had two stages:  

1. QTL mapping. From a simulated population of pigs, a sire was selected from the 

population and 200 progeny were bred from this sire for a genome scan.  For each 

of the four marker brackets on 18 chromosomes, the sire�s progeny were separated 

into those that inherited the sire�s paternal bracket and those that inherited the 

sire�s maternal bracket.  Recombinants were ignored.  If the difference between 

the average of the phenotypes of the two groups exceeded the significance 

threshold, a QTL was detected.  The location of a detected QTL was considered to 

be at the centre of the bracket with the largest estimated effect on the quantitative 

trait.  Five significance thresholds of decreasing stringency were set by 

permutation testing.  The probabilities of a false positive for the five thresholds 

when testing an individual marker bracket were 0.0008 (corresponding to less than 

5% false positives for the whole experiment), 0.014 (less than 5% false positives 

for each chromosome tested), 0.05, 0.10 and 0.25.  

2. Accuracy of MAS.  For each marker bracket with a significant effect, the effect of 

the four possible sire haplotypes (paternal, maternal, paternal-maternal 

recombinant and maternal-paternal recombinant) were estimated from the 200 

progeny by solving the equation, [ ] [ ]yZ'uIZZ' =+
∧

λ , where Z is a design matrix 

allocating records to haplotypes, I is used to approximate G, the matrix of 

haplotype co(variances), 2

2

g

e

σ

σ
λ =   where 2

eσ is the error variance and 2
gσ is the 

within sire variance for the QTL, 
∧
u is a vector of the estimates of the haplotype 

effects, and y is a vector of phenotypic records.  A further 500 progeny were bred 

from the sire used in the genome scan.   These progeny were genotyped for the 

marker haplotypes surrounding the detected QTL.  The breeding values of a 

progeny were estimated as the sum over the marked QTL of the estimates for the 

marker haplotypes which the progeny carried. The correlation of estimated 

breeding values with true breeding values for these 500 progeny was the accuracy 

of MAS.  
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The results are shown in Figure 1.4.  When breeding values are predicted in marker 

assisted selection, the QTL variance is required.  Breeding values were predicted with 

both the true QTL variance at a significant QTL (TRUE), and the QTL variance 

estimated from a least squares analysis (DIRECT). 
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Figure 1.4. Number of QTL detected in the genome scan and accuracy of MAS. 

 

The accuracy of MAS rose rapidly as the significance threshold for QTL detection 

was lowered from P<0.0008 to P<0.014.  This is a result of the greater number of 

QTL detected explaining a greater proportion of the within sire variance.   When 

DIRECT was used to estimate the variance from each QTL, the greatest accuracy of 

MAS was obtained when P<0.10.  Lowering the stringency from P<0.10 to P<0.25 

greatly increased the FDR, Table 1.  This indicates that the majority of additional 

QTL detected by lowering the significance from P<0.10 to P<0.25 are false positives.  

These additional QTL therefore explain very little of the additive variance (also 

indicated by the plateau of accuracy using TRUE to estimate the variance), and in fact 

reduce the accuracy of MAS as the proportion of variance accounted for by detected 

QTL is overestimated.  

 

A useful statistic is the false discovery rate (FDR).  FDR is the expected proportion of 

detected QTL that are in fact false positives (Weller 1998).  FDR can be calculated for 
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a QTL mapping experiment as mPmax/n, where Pmax is the largest P value of QTL 

which exceed the significance threshold, n is the number of QTL which exceed the 

significance threshold and m is the number of chromosomes tested.   

 

The FDR was calculated for each of the significance thresholds above, Table 1.2.  The 

proportion of detected QTL which are in fact false positives rises rapidly as the 

stringency of the significance threshold is reduced, until when P<0.25, more than half 

the detected QTL are in fact false positives.  

 

Table 1.2  False discovery rates for different significance thresholds (h2=0.25) 

P value QTL detected False discovery rate 

(FDR) 

0.0008 0.35 0.04 

0.014 1.3 0.20 

0.05 3.2 0.24 

0.1 4.9 0.34 

0.25 9 0.58 

 

The accuracy of MAS was greatest when P<0.10 was the criteria for taking QTL from 

a genome scan, if the QTL variance was estimated by DIRECT.  While the P<0.10 

threshold gave the greatest accuracy, it may not be the most profitable criteria for 

taking QTL from a genome scan to MAS.  For example, using criteria P<0.05 would 

reduce the number of markers to be typed from 10 to 6 while only reducing accuracy 

by 8%.  In addition, the number of progeny per sire in the mapping experiment was 

large (200), which meant both the QTL position and QTL variance was accurately 

estimated.  For QTL mapping experiments with smaller families, the optimum 

stringency threshold for smaller QTL mapping experiments (where the intention is to 

use detected QTL in MAS) is likely to be more stringent (eg. chromosome or genome 

wide).  
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1.2.4 Precision of QTL mapping  
The precision of positioning a putative QTL along a chromosome is usually expressed 

as an interval (in centiMorgan, cM) that contains the QTL with a level of statistical 

certainty, e.g. a 95% confidence interval. One method to assign confidence intervals 

to QTL locations is based on the likelihood ratio test (Lander and Bostein, 1989; 

Zeng, 1994; Zou, 2001). The likelihood ratio test is performed at any position covered 

by markers across the whole genome. The location with the highest likelihood is the 

most likely putative QTL position. The confidence interval (CI) is calculated by 

moving sideward (left and right) of the estimated position to the locations 

corresponding to a decrease in the LOD score of one or two units. The total width 

corresponding to a one- or two-LOD drop-off is then considered as the 96.8 or 

99.8%CI, respectively (Mangin et al., 1994). In the Lander and Bostein method, 

estimates of QTL position and its effects are approximately unbiased if there is only 

one QTL segregating on a chromosome (Zeng, 1994). Haley and Knott (1992) 

adopted a similar approach in a regression framework. 

 

Visscher et al. (1996) proposed a bootstrap method to determine approximate 

confidence intervals for QTL position. For data on N individuals, a bootstrap sample 

is created by sampling with replacement N individual observations from the dataset. 

Each observation has marker genotype and phenotype. In the bootstrap sample some 

records can appear more than once. This process is repeated n times to generate n 

bootstrap samples. The Haley and Knott (1992) interval mapping method was used to 

detect QTL from the bootstrap samples. The empirical central 90 and 95% confidence 

intervals (CI) of the QTL position are determined by ordering the n estimates and 

taking the bottom and top fifth and 2.5th percentile, respectively.  

 

Darvasi and Soller (1997) proposed a formula for estimating the 95% CI for QTL 

location for daughter and granddaughter designs provided genetic maps with high 

density of markers: CI=3000/(kNδ2), where N is the number of individuals genotyped, 

δ the substitution effect in units of the residual standard deviation, k the number of 

informative parents per individual, which is equal 1 for half-sibs and backcross 

designs and 2 for F2 progeny, and 3000 is about the size of the cattle genome in centi-

Morgans. For instance, given a QTL with a substitution effect of 0.5 residual standard 

deviations, and 1000 progeny genotyped, the 95% CI would be 12cM. 
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Another commonly used method to improve the mapping precision is to increase the 

marker density on the chromosome.  In practise the effectiveness of this strategy is 

limited, as enormously large half sib families would be required to generate 

recombinants between closely spaced markers in order to refine the QTL position.  

Linkage disequilibrium (LD) mapping is a possible solution and will be discussed 

later.   

 

 

1.3 STRATEGIES TO MINIMISE THE NUMBER OF GENOTYPINGS  
The largest cost in any QTL mapping experiment is the cost of genotyping animals at 

the DNA markers.  For example, the cost of genotyping alone (ignoring DNA 

extraction costs, etc) for a genome scan in pigs, with say 10 markers on each of 18 

chromosomes, at $4/marker/animal, and in a resource population of 5 sires with 200 

progeny each, would be $723600.00.  More than pocket money!  As a result, there has 

been considerable effort into identifying strategies to reduce the genotyping cost.   

 

1.3.1 Selective genotyping  
 
Selective genotyping is a method of QTL mapping in which the analysis of linkage 

between markers and QTL is carried out by genotyping only individuals from the high 

and low phenotypic tails of the trait distribution in the population (Darvasi and Soller, 

1992). In half sib designs, the selective genotyping is usually done with each sire 

family, eg. for each sire there will be a high and low progeny group.  Individuals most 

deviating from the mean are considered to be most informative for linkage, as their 

genotypes at the QTL can be inferred from their phenotypes more clearly than can 

those with average phenotypes, Figure 1.5.    
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Figure 1.5 Distribution of the progeny of a M1Q1/M2Q2 sire, with high and low 

phenotypes for the production trait. 

 

In fact Darvasi and Soller (1992) demonstrated that it is not necessary to genotype 

more than 50% of a population to get maximum power from the design.   

 

For a constant number of genotyped progeny, selective genotyping can actually 

increase the power of the mapping experiment (Bovenhuis and Meuwissen 1996). 

Figure 1.6, from Bovenhuis and Meuwissen (1996), shows the power for different 

selected fractions as a function of the total number of animals with phenotypic records  

The design consists of five sires with a large number of daughters.  Other parameters 

are: heritability 0.1, type I error 0.05, gene effect 0.2σp, and recombination fraction 0. 

For a given number of animals genotyped, and no restrictions on the number  of 

animals available for phenotypic trait evaluations, the power can  be increased 

dramatically by using selective genotyping. This increase in the power results from 

the increased contrast between individuals carrying different marker genotypes 

(Bovenhuis and Meuwissen, 1996).  Nevertheless it is recommended  that the 

selection not be lower than 10% in either tail, (Bovenhuis and Meuwissen, 1996) 

because  the  data  might contain outliers representing artefacts.    
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Figure 1.6.  The power of a daughter design (probability of detecting a QTL with 
effect of 0.2σp, as a function of the number of individuals genotyped, for different 
selection fractions (p) (Bovenhuis and Meuwissen, 1996). 
  

One drawback with selective genotyping is that the estimated QTL effect is severely 

biased (upwards) if only genotyped individuals are used to estimate the effect 

(Darvasi and Soller, 1992), Figure 1.7.   

 

 

 
Figure 1.7.  Overestimation of the QTL effect with selective genotyping.  Progeny are 
from a single sire heterozygous at a marker locus (allele M1 and M2) and a closely 
linked QTL.  The slope of the regression line between the mean of the distribution of 
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phenotypes of  progeny inheriting the M1 allele and the mean of the distribution of 
phenotypes of progeny inheriting the M2 allele is the estimate of the allele 
substitution effect of the QTL allele.  When 100% of progeny are genotyped, the slope 
of the regression line is line µ1µ2 is α. With selective genotyping, the trait means of the 
upper and the lower tails are µ1

* and µ2
*, respectively. The regression line is now 

µ1
*µ2

*, with the slope of β, which is greater than α. Thus the sire QTL effect is 
overestimated with selective genotyping. The higher the selection intensity, the 
greater the β is, and the more the QTL effect is overestimated.  
 

This is a major problem if the QTL are to be used in MAS, as the overestimation of 

the QTL variance will erode the advantage of using the marker information.  Darvasi 

and Soller (1992) suggested a method to derive the actual QTL effect as a function of 

the observed effect and the selection fraction (see Darvasi and Soller (1992) for more 

details).  An alternative which can be applied in a wide range of situations is to 

include the pedigree and phenotype information from the ungenotyped animals in a 

variance component analysis.  An identical by descent (IBD) matrix tracing the 

inheritance of sire alleles to progeny is constructed.  Ungenotyped animals are given a 

probability of 0.5 of inheriting either sire QTL allele.  Consider the following 

example, with three sires having two progeny each.  The first two sires are 

heterozygous at the marker (which is very closely linked to the QTL), the second is 

homozygous.  The model assumes that each sire carries two different QTL alleles, and 

these alleles are unique to that sire.   

 

 

Table 1.3. Example of complete marker information 

ID 1 2 3 
Sire Marker alleles A and  B C and  D E and E 

ID 4 5 6 7 8 9 

Sire ID 1 1 2 2 3 3 Progeny 

Marker alleles inherited from the sire A A C D E E 
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The IBD matrix for this data set is: 

 

Progeny ID 4 5 6 7 8 9 

4 1 1 0 0 0 0 

5 1 1 0 0 0 0 

6 0 0 1 0 0 0 

7 0 0 0 1 0 0 

8 0 0 0 0 1 0.5 

9 0 0 0 0 0.5 1 

 

Both progeny of sire 1 inherit the A allele (and therefore the same QTL allele), so 

their covariance is 1.  Animals 6 and 7 are progeny of sire 2.  They received different 

marker alleles from their sire (and different QTL alleles), so their covariance at the 

QTL is 0.  Sire 3 is homozygous at the marker, and so his progeny both received the E 

allele.  In this case the marker cannot be used to infer the QTL allele which the 

progeny received, and in fact given the marker data the progeny are equally likely to 

have received either allele. 

 

Now consider the case where animals 5, 6 and 7 have not been genotyped because 

they do not fall in the top or bottom phenotypic tail. 

 

Table 1.4. Example of missing of marker information 

ID 1 2 3 
Sire Marker alleles A and  B C and  D E and E 

ID 4 5 6 7 8 9 

Sire ID 1 1 2 2 3 3 Progeny 

Marker alleles inherited from the sire A * * * E E 

* Marker information is missing 
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The IBD matrix is now: 

 

Progeny ID 4 5 6 7 8 9 

4 1 0.5 0 0 0 0 

5 0.5 1 0 0 0 0 

3 0 0 1 0.5 0 0 

4 0 0 0.5 1 0 0 

5 0 0 0 0 1 0.5 

6 0 0 0 0 0.5 1 

 

As animal 5 has not been genotyped, we do not know which marker allele was 

inherited from the sire.  In the absence of marker information, there is a 50% chance 

of inheriting either sire QTL allele.  The covariance between animals 4 and 5 is 

therefore 0.5.   

 

The variance component model used was : Y = µ +Zu + Zv + e ,  where Y is a vector 

of observation, µ the overall mean, Z the design matrix relating animals to 

phenotypes, u the vector of additive polygenic effects, v the vector of additive 

paternal QTL effects, e the residual vector. The random effects u, v, and e are 

assumed to be distributed as follows: u~(0, σu
2A), v~(0, σv

2IBD), e~(0, Iσe
2), where 

σu
2, σv

2, and σe
2 are the polygenic variance, the additive variance of one QTL allele, 

and the residual variance, respectively; A is the standard additive genetic relationship 

matrix, and IBD is a matrix whose ij element IBDij = Prob(QTL alleles i and j are 

IBD), described in the tables above, and I is an identity matrix. 

   

This method gave unbiased estimates of the QTL variance in simulations, Table 1.5. 
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Table 1.5.  Estimates of the variance of a QTL segregating in a half-sib design, 30 
sires with 100 progeny each, and either 100% of progeny genotyped, 20% of progeny 
genotyped (top and bottom 10% within each sire family), or 20% of progeny 
genotyped but including the ungenotyped animals in the analysis. 

Strategy QTL size 

True 0.32

100% genotyped 0.30±0.02

20% genotyped 0.93±0.02

20% genotyped, ungenotyped 

animals included in the analysis 

0.31±0.02

 

1.3.2 Selective DNA pooling  
 
A really clever strategy to greatly reduce the number of genotypings was proposed by 

an Israeli mapping group (Darvasi and Soller, 1994, Lipkin et al. 1998).  In DNA 

pooling, the determination of linkage between a marker and a QTL is based on the 

distribution of parental alleles among pooled DNA samples of the extreme high and 

low phenotypic groups of offspring.  The concept is illustrated in Figure 1.8.   
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Figure 1.8.  Design for selective DNA pooling of high and low abalone profit index 
(API) progeny within an abalone family line.  Two pools of lows and two pools of 
highs are created for replication. 
  

For a particular sire, if the 150 marker allele is linked to the increasing QTL allele 

(Q), and the 160 marker allele is linked to the decreasing QTL alleles (q), then we 
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would expect more of the 150 marker in the high pool than and in the low pool, and 

more of the 160 allele in the low pool than the high pool, Figure 1.9.  

 

 
Figure 1.9. Electropherogram of marker allele abundance in high and low phenotype 
pools of progeny (top and bottom line respectively) from a single sire. 
 

 

There are three potential difficulties with DNA pooling.  One is that the amount of 

DNA in each pool to be genotyped must be quantified very accurately in order to 

estimate the frequencies of alleles in each pool with any precision, Figure 1.10.   
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Figure 1.10.  Allele frequencies in pools estimated from DNA pooling compared with 
pool frequecies estimated from individual genotyping.   
 

The second is that with poly(TG) microsatellites, estimates of allele frequencies from 

pooled genotypes are confounded by "shadow" ("stutter")  bands (eg Figure 1.9).  

Correction procedures have been developed on the basis of an observed linear     

regression between shadow band intensity and allele TG repeat number.  
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The third difficulty is that the selective DNA pooling experiment has the power to 

detect QTL affecting only the trait from which the pools of high and low phenotype 

progeny were made.  The power to detect QTL for other traits will be extremely low, 

unless there is a high genetic correlation between the traits.  

  

One parameter which should be considered in the design of selective DNA pooling 

experiments is the proportion of the half sib progeny from a sire which should be 

placed into each pool.  The extra information from including a higher proportion of 

animals (and reduction of error due to outliers) must be balanced with minimising the 

number of DNA extractions to reduce time and cost.  Figure 1.11, using simulated 

data, indicates most of the information is captured if high and low pools consist of 

10% of the progeny. 
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Figure 1.11.  Power of QTL detection in a selective DNA pooling experiment in 
abalone, with three families of 1000 progeny each. 
 

A large DNA pooling experiment has been carried out in Israeli-Holstein dairy cattle 

to detect QTL affecting milk protein percentage (Lipkin et al. 1998).  Selective DNA 

pooling accessed 80.6% and 48.3% respectively of the information that would have 

been available through individual selective genotyping or total population genotyping. 

In effect, the statistical power of 45,600 individual genotypings was obtained from 
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328 pool genotypings.  The experiment detected 5 QTL with highly significant effects 

on protein percentage.   

 

To quote from Lipkin et al. (1998) �The DNA pooling methodology can make 

genome-wide mapping of QTL accessible to moderately sized breeding 

organisations."  Extremely large QTL detection experiments using DNA pooling are 

currently underway in humans using dense single nucleotide polymorphism (SNP) 

markers.  
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PART 2. LINKAGE MAPPING IN COMPLEX PEDIGREES 
 

In some species (eg. humans), it is difficult to create large half sib families for QTL 

mapping.  An alternative to creating large half-sib families is to genotype animals in 

the existing pedigree.  Potentially a larger number of recombination events (essential 

for positioning the QTL) can be accessed with this approach than with half-sib 

families.  In practise, the large number of missing marker genotypes reduces the 

power of complex pedigrees for QTL mapping.   

 

A two step process has been suggested for QTL mapping in complex pedigrees  

(George et al (2000):  

1. For each QTL position on the chromosome segment, calculate the (co) variance 

matrix associated with the QTL.  This matrix is also called the G or IBD (identical 

by descent matrix), and has elements ij = Prob(QTL alleles i and j are identical by 

descent or IBD).     

2. For each position considered in step 1., construct a linear model to estimate QTL 

variance and other parameters, test for the presence of a QTL.  

 

2.1 Calculating the IBD matrix 

The IBD matrix has the dimensions 2*the number of animals x 2*the number of 

animals, eg two QTL alleles for each animal in the pedigree.  The IBD matrix traces 

the transmission of the alleles of the founder animals (those at the top of the pedigree) 

through the population.  If the marker information was complete, and could be used to 

perfectly infer the transmission of QTL alleles, this matrix would contain 1s and 0s 

only.  At the other extreme, if there is no marker information, the IBD matrix will be 

identical to the A matrix (the average genetic relationship matrix), ie many elements 

of 0.5 signifying equal probability of inheriting either allele from a parent.  

 

The inference of QTL genotypes from marker genotypes is considerably more 

complicated in complex pedigrees than simple half-sib pedigrees, as marker alleles 

need to be tracked over multiple generations.  This can lead to a large number of 

missing genotypes.  These genotypes have to be inferred in some way, which has 

proved to be very difficult in populations with many inbreeding and or marriage loops 
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(eg. most livestock populations).  Considerable effort has been invested in creating 

strategies to infer genotypes with missing marker information and complex pedigrees 

(eg. Heath 1997, Kinghorn et al. 1993 and many others).  Most strategies now use 

simulation based methods, predominantly Monte Carlo Markov Chain (MCMC) 

approaches.  See George et al. (2000) for a good review of methods to calculate the 

IBD matrix when genotypes are missing, and Tier and Henshall (2002) for an 

approach that appears to work in the presence of inbreeding loops.       

 

2.2 Variance component approaches for estimation of QTL parameters.  

A further complication of using complex pedigrees for QTL mapping is that simple 

regression or maximum likelihood analysis can not be used easily to analyse linkage 

in complex pedigrees.  Rather, a variance component approach is required (George et 

al. 2000).  The model used to analyse such data is (ignoring fixed effects):  

Y = µ +  Zu + Zv + e , 

where Y is a vector of observation, µ the overall mean, Z the design matrix relating 

animals to phenotypes, u the vector of additive polygenic effects, v the vector of 

additive QTL effects, e the residual vector. The random effects u, v, and e are 

assumed to be distributed as follows: u~(0, σu
2A), v~(0, σv

2G), e~(0, σe
2I), where σu

2, 

σv
2, and σe

2 are the polygenic variance, the additive QTL variance, and the residual 

variance, respectively; A is the standard additive genetic relationship matrix, and G is 

a matrix whose ij element  Gij = Prob(QTL alleles i and j are identical by descent or 

IBD). 

 

2.3 Linkage mapping in complex pedigrees and MAS 

One major advantage of linkage mapping in complex pedigrees is that the variance 

component model predicts marker assisted breeding values for all animals in the 

analysis.  As some of these animals are likely to be the current crop of selection 

candidates, MAS can be implemented immediately.  In the half-sib designs the 

situation is quite different � the sires used in the design will be one or two generations 

older than the current crop of selection candidates.  
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