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Mixed Models for Genetic Analysis  
 

Application of mixed models has become an attractive tool to evaluate animals in actual 

breeding programs of breeding organizations. The methodology consists of a framework 

with justifiable statistical and genetic properties and it potentially delivers the most 

accurate and least biased prediction of breeding values.  

The quality of evaluations depends on  

1. The data (recording of management groups, correct identification, correct 

parentage 

2. The model.  

The BLUP methodology has the property to account for selection of parents in a breeding 

population. Hence, it fairly accounts for the fact that some animals are from better parents 

than other animals. Note that a requirement is that the pedigree, and data on selected 

parents as well as non-selected contemporaries are included in the analysis. 

Models can be extended to account for more complicated effects, such as  

§ different breeds (useful for an ‘across-breed evaluation or when there are animals 

imported from other countries. 

§ maternal effects: important in all pre-weaning traits 

§ correlated traits:  useful for higher accuracy or to account for selection on a 

second trait (e.g. first lactation versus. later lactation or weaning weight versus 

yearling weight) 

§ interactions between environment and genotype: Some sires may have a different 

effect in different environments 

§ heterogeneous variance: the differences in one herd may be much larger (on 

average) than the differences in another herd. 

 

Some factors are more difficult to include in the model: e.g preferential treatment of some 

animals (e.g. with hormones), or serious illness at the time of measurement. It is up the 

herd-recording scheme to design rules for when measurements can be considered as 

‘valid’. It is important here that the herd recording is unbiased and non-selective. 
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The mixed model model: general form: 

 

The Model:  y = Xb + Zu + e 

 
where  b is the vector with fixed effects with design matrix X (relating obs’ns to fixed effects) 

 u is the vector with random effects with design matrix Z (relating obs’ns to random effects) 

 

 

Model definition  E(y) = Xb 

   var(u)= G 

   var(e)= R 

   var(y)=ZGZ’ + R 

 

The equations 
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This structure is expandable in many ways. The vector u could contain more random 

effects (e.g. additive genetic, maternal genetic, permanent environmental, maternal 

environmental, etc. The effects in u determine the structure of G. The vector y could 

contain more traits, and consequently u would have (breeding) values referring to the 

different traits. The R matrix could have a structure is there are correlations between 

errors, e.g. with correlated observations (traits). Also, R could contain different error 

variances for different groups of observations. Therefore, in defing a mixed model, not 

only fixed effects have to be defined, but also the variance structure of the random effects 

(hence the terms G-structure and R-structure in ASREML. 
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Single Trait Animal Model 
 
The simple mixed model used in animal breeding is a single trait animal model.  It is an 

'animal' model because we fit a breeding value for each animal.  ‘Single trait’ refers to the 

fact that animals have only observations on one character (trait) and there are only fixed 

effects and additive genetic effects, and no other random effects such as maternal or 

dominance. It is important to understand the principles of the simplest model. Less simple 

models are based on the same principles, and therefore not really much more difficult to 

understand. Like in any other statistical model building more complicated models largely 

requires more knowledge of the data, and imagination of effects that could possibly be 

causing differences.  

 

More detail  
In the single trait animal model with breeding value as the only random effect, we assume often that the 

matrix R is s equal to Iσ2
e  and the matrix G is  equal to Aσ2

a. The simple equations were therefore obtained 

by multiplying the equations with the factor  σ2
e. 
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IN ASREML: 
Analysis of some kind 
  anim !P The variable ‘anim’ is related to a pedigree file 
  dage 10 !A 
  rt 6  
  wwt 
  grp 322 !A 
example.ped 
example.dat 
wwt ~ mu rt dage !r anim  !f grp      #model definition 
  
There is no need to define variance structures more specifically, as there is only one extra 

random effect (besides residual) so one component of variance. One could put a scalr 

behind the anim variable in the model statement to indicate a starting value (optional). 

i.e.  
bwt ~ mu bt dage !r anim 0.5 !f grp      #model definition 
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Sire Model 
 
In this model, only effects of sires are fitted on records of their progeny (those are 0.5 

times their breeding values!), making for computational ease. We may have only 100 

sires in a data set on 100.000 recorded animals, hence needing 0.1% of the number of 

equations of an animal model. The λ value represents the ratio of error variance 

(including ¾ of the add. genetic variance) and sire variance (1/4 of the add. genetic 

variance) and the solutions are sire effects, i.e. ½ breeding values. 

Sire EBVs obtained from a sire model may be slightly less accurate both due to lower accuracy (in case of 

few progeny / sire) and potential bias, because there is no correction for differences between dams. The 

model basically assumes that all progeny of a sire are of a different dam and all dams are expected to be 

from the same homogeneous population all with the same expected mean. In reality, dams could be of 

different breeds and dams are selected over years making the younger dams probably better than older 

dams. Fitting an animal model would allow to fit  genetic relationships among dams and accommodate 

trends in dams breeding values.. 

 

Reduced animal model (RAM) 
In this model, breeding values are only fitted for animals that have progeny records.  This makes for faster 

computing (only equations for animals that are parents), and the EBV's for all other animals are simply 

derived from those of their parents, plus their own corrected phenotypes.  The results are the same as for a 

full animal model. Less computing time at the cost of some extra computer programming time is needed. 

 
Repeated records model 
 
This is used where animals can have more than one record, such as multiple fleece weight 

records in sheep.  The phenotypic correlation between recordings is equal to repeatability, 

and genetic correlation between recordings is assumed one (if the genetic correlation was 

less than one, then the multi-trait approach outline above is applicable!). 

The approach is to invent a permanent environmental effect for each animal, i.e. when the 

animal has a second record, not only his breeding value but also part the environmental 

effects are repeated. This can represent effects of raising of the animal (a good 

‘development’ guarantees a consistently good performance later on), or the occurrence of 

a disease that happened to a particular animal, with permanent effects. 
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 The mixed model with repeated records can look like: y = Xb + Za + Zp + e  

where y is the vector of the observations, b is the vector of fixed effects, a is a vector of additive 

genetic effects, p is a vector of permanent environmental effects and e  is a vector of residual 

effects. The matrix X is the incidence matrix for the fixed effects and Z is the incidence matrix 

relating observations to animals. Each animal has an additive genetic as well as a permanent 

environmental effect, hence both effects have the same design matrix. 

The three random effects have the following distribution 
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 where σ2
a is the direct additive genetic variance and σ2

c is the variance due to permanent 

environmental effects. The model shows that those permanent environmental effects for different 

animals are uncorrelated, and within an animal there is no correlation between its additive and its 

permanent environmental effect. The total phenotypic variance is the sum of the three variance 

components. 

The mixed model equations for a model with repeated records look like: 
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IN ASREML: 
Analysis of some kind 
  anim !P The variable ‘anim’ is related to a pedigree file 
  dage 10 !A 
  rt 6  
  wwt 
  grp 322 !A 
example.ped 
example.dat 
wwt ~ mu rt dage !r anim  ide(anim) !f grp      #model definition 
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 Maternal effects  model 

Some traits such a survival of piglets or early growth in beef cattle and meat sheep are 

influenced by maternal effects. The mother has an influence on the performance of her 

offspring over and above that of her direct additive genetic contribution, i.e. through 

maternal effects. These maternal effects are strictly environmental for the offspring, but can 

have both a genetic and environmental component. In selection of animals, and especially 

in dam lines, it is important to consider the maternal genetic effects. Beef cattle producers 

are interested in animals which have a high breeding value for growth (direct genetic 

effect) but also in cows with good mothering abilities (milk production).  Including 

maternal effects in the model allows to estimate maternal effects and to correct for possible 

biases in genetic evaluation of the growing animal. It is usually assumed that maternal 

effects are genetic, although part of it might also be a permanent environmental effect  (e.g. 

a beef cow with only three teats). 

 

 
Maternal Effects Model 

In the following model the direct genetic and maternal genetic effect are considered:  

 

  y = Xb + Z1a + Z2m + e 

 

where y is the vector of the observations, b is a vector of fixed effects, a is a vector of 

additive genetic effects, m is a vector of maternal genetic effects and e is a vector of 

residual effects. X is the incidence matrix for the fixed effects and Z1 and Z2 are incidence 

matrices relating observations to random effects of animal (additive genetic) and dam 

(maternal genetic), respectively. The random effects have the following distribution: 
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Further σ2
a is direct genetic variance, σ2

m the maternal genetic variance, σam the covariance 

between direct and maternal genetic effects and σ2
e the error variance. The model shows 

that both random effects have a covariance structure depending on the genetic relationships. 

Related dams have related maternal genetic effects, and there is a correlation between a 

dam’s direct additive genetic effect and her maternal genetic effect. The total phenotypic 

variance is equal to 2
eam

2
m

2
a

2
p σ+σ+σ+σ=σ  

The mixed model equations are: 
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Since the full (inverse) relationships matrix is used with relationships between all animals 

(progeny as well as dams), estimates will be obtained for additive effects for progeny 

(with records) as well as for dams (with possibly no own record). Equally, estimates for 

maternal effects will be obtained for dams (with progeny) as well as for progeny (which 

may not have expressed their maternal ability yet). 

 
IN ASREML: 
Analysis of some kind 
  anim !P The variable ‘anim’ is related to a pedigree fil 
  dam !P The variable ‘dam’ is related to a pedigree file 
  dage 10 !A 
  rt 6  
  wwt 
  grp 322 !A 
example.ped 
example.dat 
wwt ~ mu rt dage !r anim  dam !f grp      #model definition 
0 0 1                                    #R struc: # sites, dim Ro, #G struct  
anim 2                                   #G structure: model term, dimensions 
2 0 US !GP      #order Go, 0, model   
.2 0 .15                           starting_values 
anim o AINV          #inner dimension of G structure 
 
 
 
Note that this model has an ‘US’ structure for the G matrix, i.e. all 3 variances of Go will 

be estimated. It is possible to ignore the covariance between direct and maternal effects. 

In that case the G0 is diagonal and the last lines of the as file are: 
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wwt ~ mu rt dage !r anim  dam !f grp      #model definition 
0 0 1                                    #R struc: # sites, dim Ro, #G struct  
anim 2                                   #G structure: model term, dimensions 
2 0 DIAG .2 .15                           #order Go, 0, model  starting_values 
anim           #inner dimension of G structure 
 
 
 

In maternal effects models, it is also possible to fit the dam effect as environmental effect 

(me), in ASREML: ide(dam), i.e. the dam effect is fitted with an identity structure rather 

than with a relationships structure (A-structure).. In that case, no genetic relationships 

among dams are considered in estimating its effects. The me effect is considered 

uncorrelated with direct effects. 
 

G0  is a 2 by 2 matrix: 
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And the ASRTEML model statement reads like: 
 
wwt ~ mu rt dage !r anim  ide(dam) !f grp      #model definition 
  
 
 
 
Another model fits both genetic and environmental dam effects. Note that the number of 

genetic maternal effects estimated is equal to the number in the pedigree, while the 

number of perm. env. dam effects is equal to the number of dams that have progeny with 

data. 
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G0  is a 3 by 3 matrix: 
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And the ASREML model statement reads like: 
 
wwt ~ mu rt dage !r anim  dam ide(dam) !f grp      #model definition 
0 0 1                                    #R struc: # sites, dim Ro, #G struct  
anim 2                                   #G structure: model term, dimensions 
2 0 US .2  0 .10                          #order Go, 0, model  starting_values 
anim   
 
 
Notice that we don’t need to define the whole of G. We only 
define the first 2 terms (US structure). The last term is 
‘left over’ but independent and only one variance component 
need to be estimated for that term (no need to define a 
structure. 
 
wwt ~ mu rt dage !r anim  dam ide(dam) !f grp      #model definition 
0 0 2                                    #R struc: # sites, dim Ro, #G struct  
anim 2                                   #G structure: model term, dimensions 
2 0 US .2  0 .10                          #order Go, 0, model  starting_values 
anim   
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Multiple Trait Genetic Evaluation  

Multi trait model 
This is an extension of the single trait case.   Data on a number of traits are available in 

Y, and EBV's are calculated for each trait.  The results are generally different from what 

would be got from a number of separate single-trait BLUPs, because each trait is used to 

help give information about all other traits, much as with a selection index. In a later 

chapter, the multiple trait BLUP procedure will be worked out in more detail. The benefit 

form multiple trait models comes from 

§ more accuracy as information from correlated traits is used 

§ less bias as the analysis will take into account that for traits that are measured 

after sequential rounds of selection, only the better ones are evaluated.  

 

An example of potential selection bias. Compare a good bull and a bad bull , each having 40 progeny at 

weaning. From the good bull, no progeny are culled, whereas from the bad bull 50% is culled. Comparing 

the progeny of these bulls at post-weaning will give a huge advantage to the bad bull, as his bad progeny 

have been removed. Multi-trait BLUP would correct for this bias. 

 

For  the genetic evaluation of the animals, we can use information which is available on 

all traits. Originally the main reason for using information on all traits was to obtain more 

accurate evaluations. With using information on correlated traits the accuracy of the 

estimated breeding value increases. A second advantage arose later, namely a multiple 

trait analysis is the only way to obtain unbiased estimates for a trait, which is observed 

only on animals selected based on values of a correlated trait. A model including 

information of the correlated trait, on which selection was based, is able to correct for this 

type of selection.  An example of this is the evaluation of the second lactation 

productions of dairy cows where selection has been practised based on the first lactation. 

Only animals that survived the first lactation have a second lactation record, and those are 

usually only the better animals. Other examples are the analysis of piglets born in second 

litter, or the analyses of yearling weight after animals have been selected for weaning 

weight. 
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  Multiple Trait Mixed Model 
 

Taking again as a starting point the mixed model in its general form:  

y = Xb + Zu + e. 

With more traits we can now partition the observation vector y in a part for each trait. The 

same can be done with the associated environmental effects. The vector of breeding values 

is also partitioned for the different traits, so that each animal has a breeding value for each 

trait in the analysis.  

For a 2-trait example, the vector y1 represents the n1 observations for trait 1 and y2 

represents  n2 observations for trait two. For each trait we can write a mixed model: 

yi = Xibi + Ziui + ei , 

where there are pi  fixed effects associated with trait i so that Xi is an ni x pi matrix and bi is 

a pi x 1 dimensional column vector. Xi and Zi are incidence matrices for fixed effects and 

random effects for trait i, respectively. 

 

The multiple trait model can be represented as follows: 

Notice that not all animals necessarily have an observation for both traits. Some animals 

may be represented in y1 but not in y2, or vice versa. All animals, however, are represented 

with a breeding value for each trait in the analysis, irrespective whether they had an 

observation for that trait. The vectors y1 and y2 (and e1 and e2) are therefore not necessarily 

of the same length, but u1 and u2 are always equally long (with the number of elements 

equal to the number of animals in the analysis). 

To obtain the mixed model equations for estimating fixed effects b and breeding values u, 

we need to specify the covariance matrices R and G associated with the vector e = (e1, e2 )' 

of residual errors and the vector u = (u1 , u2 )' of random effects. 

 

     =   
0

0
    +   

0

0
    +   

1

2

1

2

1

2

1

2

1

2

1

2

y

y

X

X

b

b

Z

Z

u

u

e

e





























































   



Mixed Models for Genetic Analysis 

 59 

For the breeding values we can write  
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If σg
2

ii is the genetic variance of trait i, and σgij is the genetic covariance between the two 

traits (within one animal), we can define a 2 by 2 genetic covariance matrix 
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Each part of G is obtained by multiplying the relationships matrix with either the variance 

of a trait (diagonal blocks   gii.A) or the covariance between the traits (off diagonal blocks 

gij.A) where gij is an element of G0. . The covariance between the breeding value of trait i 

on individual k and the breeding value of trait j in individual l is the additive genetic 

covariance between traits i and j multiplied by the additive genetic relationship between 

individuals k and l. 

 

  Multiple Trait Mixed Model Equations 
 

The mixed model equations for a multiple trait model can be written according to the 

general principle of setting up mixed model equations. However, they are extended for the 

G- and the R-matrices. 

For the mixed model equations we will need the inverse of G. In te multiple trait mixed 

model this becomes: 
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 where Gij = gijA-1,  

 

and  where g ij  is (i,j)-element of the inverse of  the 2 by 2 genetic covariances matrix G0 

and  A-1 is the inverse of the relationships matrix as it can be setup directly. 
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The residual covariance matrix R has the same form, but A is replaced by an identity 

matrix I assuming there are no correlations between the residuals of different animals. 

While residual deviations for a given trait measured on different individuals are often 

assumed to be uncorrelated, this is not necessarily the case for different traits measured on 

the same individual. The phenotypic correlation between traits is often the result of 

correlation between genetic as well as environmental effects. When all traits are measured 

on all individuals (n1=n2=n), the covariance matrix between ei and ej can be written as σ(ei 

,ej)=rijI, where rij = σe(i,j) is the environmental covariance between traits i and j as 

expressed in the same individual. The resulting n.2 x n.2 variance-covariance matrix for the 

total error vector e = (e1, e2 )' becomes: 

and the inverse is 
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where rij is i-j element of the inverse of the 2 by 2 environmental covariances matrix 

between the two traits: R0.  

 The set of multiple trait mixed model equations are given in the next figure. It is not 

the idea to memorise these equations, but to give you a how single trait mixed model 

equations are ‘blown up’ to multiple trait mixed model equations. This has a rather large 

impact on the number of equations that has to be solved. Roughly, computer time for 

solving multiple trait mixed models goes up quadratically with the number of traits! 

If not all traits are recorded for all animals, the inverse of the residual covariance matrix R 

becomes a bit trickier. The reason is that animals with one record only do not have a 
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residual covariance with another trait. The covariance matrix between the residuals of the 

different traits (σ(e1, e2)) can no longer be written as a diagonal matrix (a multiple of I ). 

When some observations are missing, the matrix X1
' can not be directly multiplied with X2, 

i.e. the number of columns (= n1 ) does not correspond with the number of rows (= n2 ). 

This can be solved by using X1
'r12I12X2 where I12 identifies when two observations are on 

the same individual (only in those case we have an environmental covariance). When both 

traits are measured on all animals I12 = I and X1r 12I12X2 reduces to X1
'r12X2. 

The rules for building up multiple trait mixed model equations are outlined hereafter, as a 

reference for the further interested reader. 

 

Rules for building mixed model equations: 
(this section is only for reference) 
 
For small examples the mixed model equations can be build from the corresponding design 
matrices. For larger data sets, however, this becomes complicated. Rules have been 
developed to build the mixed model equation without explicitly setting up the design 
matrices. These rules for building the mixed model equations with a multiple trait model 
(per animal) are: 
1)  If both y1 and y2 are known for an animal; 
 The values for r11, r12, r21, and r22 are added to the particular sections for each trait in 

the fixed and random part of the coefficient matrix.  For instance for 2 effects (herd 
and animal), we have to add these four numbers  to each of X’X, X.Z, , Z'X and 
Z'Z . To the vectors with the totals (right hand sides) we add r11y1 + r12y2 and r12y1 
+ r22y2 to each trait partition of the two vectors (X'y and Z'y).  

 In a single trait model, we would have added only one figure to the 4 partial 
matrices for a trait.  For the totals (right hand sights), we would add only y to the 
partial vectors for herd and animal.  

2)  When only one observation for one trait on the animal is available; 
 The values (r11)-1 or (r22)-1 are added to each of the relevant partial matrices in the 

coefficient matrix, while y1(r11)-1 or y2(r22)-1 are added to the relevant parts of the 
right hand sides. 

3)  Independent of the pattern of traits measured, we add the relationships matrix 
multiplied by gij to the i-j block of the random effects of the coefficient matrix. 
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 Example of a Multiple Trait Model 
 

Consider a situation where we have the following measurements on 6 unrelated and non-

inbred individuals, performing in two different herds. Both traits on an animal are 

measured in the same herd. 

Individual Herd Trait 1 Trait 2 
1 1 160 - 
2 1 180 320 
3 1 210 330 
4 2 190 - 
5 2 228 360 
6 2 210 350 

 

The phenotypic standard deviations for weaning weight and yearling are 20 and 40 kg, 

respectively, the heritabilities are 0.42 and 0.39 and the genetic correlation is 0.769. The 2 

by 2 matrix with additive genetic covariances  (within an individual) are: 

 

The within- individual environmental covariances are: 

The design matrices for the first trait are straightforward. Z1 is an identity matrix since all 

animals have a record for the first trait. For the second trait, however, more attention is 

needed. The matrix Z2 has one column for each breeding value (i.e. 6 columns) and one 

row for each observation (i.e. 4 rows) which results in: 


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The right hand side (RHS) for the example are (transposed):  
 [2.05    2.38    0.271    0.272    0.69    0.58    0.77  0.82    0.83    0.73   0   0.16    0.11    0     0.13    0.15] 

 

The first 4 elements are for the fixed effects (2 herds for 2 traits). 

The values are all scaled by multiplying with residual (co)variances. For example: the 

RHS-value for the second animal for the first trait (6th element) is obtained as:  

r11y12 +  r12y22 = 0.0068*180 + (-0.002)*320 = 0.584,  where y12 (=180) and y22 (=320) are 

the record for the first and second trait for the second animal. The first animal has only the 

first trait measured, and its RHS value (5th element) becomes 

(r11)-1 y11 = 0.0043*160 = 0.69. Notice that when an animal has only one trait recorded, we 

multiply it by  (r11)-1  (the inverse of the 1-1 element of the residual covariance matrix) and 

not by r11 (the (1,1)-element of the inverse of the residual covariance matrix). Notice also 

that animals with no record for a given trait have a zero in the RHS. 

 

The solutions for the fixed effects and the multiple trait BLUP EBV’s are: 
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where b1 are the solutions for the herd effects for weaning weight, and u1 are EBV’s for 
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[ ] [ ]′ ′1 2b =   b =183 209 309 342  



Mixed Models for Genetic Analysis 

 64 

weaning weight, and b2 and u2 refer to yearling weight. 

 

When performing two single trait evaluations for the two traits the following solutions were 

found for  Single Trait BLUP: 

 

 

Notes to the solutions: 

1) The average breeding value for both traits is equal to zero within herd. This is to be expected 

because animals are assumed to be unrelated. This illustrates that it is impossible to make a fair 

comparison of the average breeding value of animals in herds when there are no genetic ties (e.g. 

offspring from a common sire). 

 

2) Animal 1 has no observation for trait 2. Consequent ly its breeding value is entirely 

based on the information from the correlated trait 1. Animal 1 has a value for trait 1 

which lies below the herd average and as a result of the positive genetic correlation 

between traits its breeding value is also below average, i.e. negative. The same is 

true for animal 4 in herd 2. 

 

 

3) The single trait breeding values (and fixed effect solutions) deviate from the multiple trait 

solutions. As to be expected the single trait breeding values of animal 1 and 6 for yearling weight 

are equal to zero. There is no information to estimate the breeding value and consequently the 

animals get the average breeding value. The difference in breeding value for yearling weight 

[ ] [ ]Single trait :   b =   b =1 2′ ′183 209 325 355  

 

  

 

1 2 =      =  u u

−
−

−

























−

−

























9 86
141

11 27
8 17

7 89
0 28

0
195

195
0

195
195

.

.
.
.

.

.

.
.

.
.

 



Mixed Models for Genetic Analysis 

 65 

between animal 2 and 3 (and between 5 and 6) is larger in the mu ltiple trait case.  The reason is 

that the information from weaning weight (the correlated trait) gives additional evidence that these 

animals are different in breeding value. 

 

4) The difference between the average herd effect for weaning weight and yearling 

weight is larger in the single trait analysis. In fact, this difference is overestimated, 

since is it biased by the fact that for yearling weight we only recorded the best 

animals (=selection). The multiple trait evaluation takes this into account. From 

using the information on the first trait, the model knows that only the better animals 

had a yearling weight measured. 

 

 

5) In the multiple trait EBV’s we see that the animals that were not culled have an 

average EBV’s above zero.  This makes sense, because from the information on 

trait 1 we know that these are actually the better animals. Single trait evaluation 

would not use information on weaning weight, and consider the yearlings that were 

weighted as average animals. This shows that multiple trait evaluation is able to 

correct for sequential selection. 

 

 

  Advantages of Multiple Trait BLUP evaluation 
 

In general, using the multiple trait model gives an increase in accuracy of estimated 

breeding values. Furthermore, in many cases it is the only way to correct for selection on 

correlated trait.   

The importance of increase of accuracy by using extra information, i.e. the importance of 

using a multiple trait (MT) model, depends on several aspects: 

 

- the information available on each animal  

If few or no observations are available for a particular trait, using observations on another 

trait when both traits are genetically correlated can increase the accuracy. 
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- parameter structure 

If genetic and environmental correlations are small, the multiple trait model has few 

advantages. Furthermore, in a situation with a high h2, only a few observations are needed 

for an accurate estimate of the breeding value.  In other words, information of other traits is 

less important in that case.  Besides, the difference between rg and re is important; the larger 

the difference, the larger is the contribution of a correlated trait to the reduction of the 

Prediction Error Variance.  The contribution of correlated traits to the accuracy of 

estimating breeding values can be examined with the selection index method. 

 

- correctness of parameters; 

In multiple trait model we make use of estimated values of the genetic parameters 

(heritabilities, correlations). This variance-covariance (VCV) matrix has to be checked on 

incorrectness (or consistency).   

Schaeffer (1984) discussed the effects of incorrect estimated parameters. He distinguished 

two kinds of mistakes. First, the VCV matrices may not be valid, i.e. within the parameter 

space. A valid VCV matrix, by definition, is a positive definite matrix. This can be checked 

by looking at all the eigenvalues of the matrix.  Eigenvalues of covariance matrices all have 

to be positive, making the matrix “positive definite”. The second and most common 

mistake, mentioned by Schaeffer, is that estimates used in the model, could be greatly 

different from the underlying true values.  Assume that the true parameters give the 

maximum response of selection.  The realised response then depends on the difference with 

the parameters used, namely (rg- r̂g) and (re-r̂e).  

In this respect, it is good to realise that single trait models are MT models with the 

assumption that r̂ e =r̂ g = 0. Therefore, inaccurate correlations are often still closer to the 

true values than zero correlations! 

 

- Correction for selection  

The example illustrated selection on sequentially recorded traits leads to culling and 

missing records for traits that are recorded in a later stage. Multiple trait evaluation was 

able to avoid selection bias. 

This reflects a more general rule, also applicable in single trait genetic evaluation, that to 
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avoid selection bias, all information that was used to base selection decisions on, should 

be included in the analysis. This is not only the case with missing records in sequentially 

recorded traits. Assume the situation when two traits are recorded simultaneously, and all 

animals have records for all trait, but selection is only for one of the traits. Single trait 

evaluation of one trait only would lead to biased EBV’s and generally to an 

underestimate of the genetic trend for the correlated trait (although this depends on the 

genetic and environmental correlation between the traits). Since selection is usually on an 

index (a linear combination on all traits), single trait evaluation leads to incorrect 

estimates of the genetic trend in most of the cases!  

 

   Computational considerations  

 

Computer requirements quickly increase with the application of multiple trait BLUP 

genetic evaluation procedures. Suppose we want to carry out a 5-trait BLUP analysis. The 

multiple trait mixed model equations require nearly 25 times more coefficient to be handled 

compared to single trait BLUP. Solving the mixed model equations when multiple traits are 

present can be greatly simplified by constructing a transformation for the traits being 

considered (this is called ‘canonical transformation’). This transformation constructs a new 

set of uncorrelated variables, which can be analysed in independent single trait evaluations. 

Such a transformation is possible when all animals had observations for all traits. Recently, 

algorithms have been developed to handle transformations also for the case of missing 

observations on some traits. Multiple trait models can still be quite cumbersome if more 

random effects are included (e.g. maternal effects for some traits.  However, The 

combination of more efficient computing algorithms with the rapid increase of computing 

power  has lead to a situation that multiple trait BLUP is the method of choice for more and 

more genetic evaluation systems.  
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Software 

 

There are software packages available that can be used to implement multiple trait 

genetic evaluations. A  commonly used package for breeding value estimation  is PEST 

(Prediction and ESTimation) written by Groeneveld et al. (1994). A more versatile and 

increasingly used package is ASREML (Gilmour et al., 1996: This package is most 

suitable for estimation of genetic parameters in animal breeding data for a wide variety of 

models. There are also genetic evaluation services around that provide the whole package 

of delivering multiple trait EBV’s.  

 

An ASREML example: 

 
bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim!f Trait.grp  
1 2 1     #R struct: 1 site, dimension Ro, 1 G structure 
0     #order R (?), ASREML figures out if put to zero 
2 0 US 12 0 14 !GP       # order Ro, 0, model, starting_values 
Trait.anim 2    #G structure: model term, dimension  
2 0 US 4.9 0 4.5 !GP    #order Go, 0, model starting_values  
anim 
 

In the model statement, some effects are fitted for both traits: Trait.dage 

Other effects are fitted for one trait only    at(Trait,2).rt 

!GP means that the matrix (R of G) has to be positive definite 

 

A multi-trait model can also have more random effects, e.g. a maternal effect: 

 
bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim Trait.dam !f 
Trait.grp  
1 2 1     #R struct: 1 site, dimension Ro, 1 G structure 
0 0 ID    #nrec (= outer dim. Of R), ASREML figures out if put to zero 
Trait 0 US 12 0 14 !GPUP     # order Ro (equal to nr. of traits), 0, model, start_values 
Trait.anim 2    #G structure: model term, dimension  
4 0 US !GP    #order Go, 0, model starting_values  
4.9  
2 9.5  
0 0    4.5  
0 0    2   4.2 
anim 0 AINV 
 

 

The G0 has now dimension 4. The definition of the G0  can be spelled out in some more 

detail: 



Mixed Models for Genetic Analysis 

 69 

 

4 0 US 4.9 2 9.5 0 0 4.5 0 0 2 4.2 !GPUPFFPFFUP 

 
4  order of Go 

0  always a zero here 

US  unstructured Go  

4.9   following is lower Go starting values 

2 9.5  

0 0 4.5  

0 0 2 4.2  

!GPUPFFPFFUP      indicating whether the components should be Positive, 

    Unstructured, or Fixed at the starting value 

 

 

the same line could be replaced by: 

4 0 US !+10 !GPUPFFPFFUP 

4.9   following is lower Go starting values 

2 9.5  

0 0 4.5  

0 0 2 4.2  

 

!GPUPFFPFFUP    could be replaced by !GP if we simply want Go to be 

positive definite   
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Random Regression Models 

 

Random regression models can typically be used when a trait is expressed repeatedly, e.g. 

over time or in different environments. In that case, the effect changes gradually along a 

trajectory of time, or of some other continuous variable (temperature, elevation, rainfall.  

For simplicity, we think of the expression of body weight as a function of time. If the 

random effects are modeled as a function of time, then both the variance as the 

covariance between expression at different times are modeled as a continuous function. 

Note that previously we often modeled repeated measures of weight as multiple traits, 

e.g. wwt, pwwt, ywt.. The advantage of random regression is that traits can be measured 

at any point along a trajectory, i.e. at any age, and we do not have to chop this up in 

distinct traits.  

 In linear models we are used to fitting weight as a regression of age. This is often 

a fix3ed regression, indicating that for each animal that is a certain amount of time 

younger or older than an average age  there will be a weight correction. This correction is 

the same for all animals, hence a fixed regression. In random regression models, we 

estimate a different regression coefficient for each animal. Hence, each animal has his/her 

own slope (some grow faster than others) and we estimate te variance of all slop 

parameters. An animal individual’s slope is estimated as a BLUP, depending on the 

variance of slopes (like the breeding value is derived from the variance of breeding 

values. 

Hence, each animal may have 3 breeding value for weight, if we fit a three order 

regression. The first is an intercept, the ‘average weight’, the second is a slop, ‘the 

growth’, and the third is a quadratic term 

The regression coefficients are not the same for each animal, but they are drawn from a 

population of regression coefficients. In other words, regression coefficients in a and p 

are random regression coefficients with var(a)= Ka and var(p)= Kp, where a is additive 

genetic effect and p is permanent environmental effect. 

 In fact, we have rewritten a multivariate mixed model to a mixed model in a 

format of a univariate random regression model, with each random effect having k 

random regression coefficients. A model for n observations on q animals can then be 



Mixed Models for Genetic Analysis 

 71 

written as 

 

y= Xb+ 
j

k

=

−

∑
0

1

 Zjaj +  
i

k

=

−

∑
0

1

Zjpj + ε ,      [4-6] 

 

where Zj are n by q matrices for the ith polynomial, and aj and pj are vectors with random 

regression coefficients for all animals for additive genetic and permanent environmental 

effects. The matrix Z contains the regression variables, i.e. the coefficients are those of 

the polynomials in Φ  (i.e. rather than a 1’s, Z contains 1, x, x2, etc.. We can order the 

data vector by sorting records by animal, and we can stack the aj and pj vectors and sort 

them by animal, each animal having k coefficients in a and k coefficients in p (to simplify 

notation, we assume equal order of  fit for CF’s for both random effects, therefore having 

equal incidence matrices). We can then write Z* as a block diagonal matrix of order n by 

k*q, with for each animal i  block Zi
*= Φ i. 

The mixed model can be written as 

 

   y= Xb+ Z*a + Z*p + ε ,  

 

with a'= {a1' ,...aq'} and p'= {p1' ,...pq'}, with ai and pi being the sets of random regression 

coefficients for animal i for the additive genetic and the permanent environmental effects, 

respectively. If all animals have measurements on the same age points, all Zi
* are equal 

and   Z*= Iq⊗ Φ ;  

 The variances and covariances of the random effects can be written as:  

  var (a)= A⊗Ka  

 

  var(p)= I⊗ Kp 

 

 and  cov(a,p)=0. 

 

where Ka and Kp are the coefficients for the CF for a additive genetic and permanent 

environmental effects, respectively. The mixed model equations for the random 
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regression model with covariance functions (RR-CF-model) have a similar structure as a 

repeatability model, except that more coefficients are generated through the polynomic 

regression variables from Φ which are incorporated in Z. In the additive genetic effects 

part of te equations there is for each animal a diagonal block Φi’Φi + aiiσε
2Ka

-1, and there 

are off diagonal blocks   aijσε
2Ka

-1  with aij the (i,j)th element of the inverse of the 

numerator relationships matrix (A-1). The part for the permanent environmental effects is 

block diagonal with diagonal blocks equa l to  Φi’Φi + σε
2Kp

-1 . Schematically, the mixed 

model equations will be like 
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where the subscript i refers to those part of the equations for animal i. For the earlier 

example, we a 3-order CF with measurements at standardized ages [-1 0 1], Φ’Φ is  

 

 The ASREML package can be used for random regression analysis. The latter 

package requires the user to define a regression model (e.g. a 3rd order polynomial 

regression on ‘days in milk’, and random regression is achieved by defining a random 

interaction term between animal and this polynomial regression term.  

 

 weight = herd poly(dim,2) !r poly(dim,3).animal  

 

The first term is a polynomial regression of milk on days in milk (dim) as a fixed effect. 

This basically fits an average lactation curve equal for all animals. The random term 

indicates individual animal variation around this mean curve. 
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Alternatively, in ASREML, the regression coefficients (e.g. the Legendre regression on 

age as in the Φ  matrix for each animal) can be constructed 'by hand' based on the age of 

the measurement and provided in a data file. ASREML allows estimation of variances 

and covariance components between these regression coefficients when they are taken as 

random. This covariance matrix should be equal to the K-matrix. 
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