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Mixed Modelsfor Genetic Analysis

Application of mixed models has become an attractive tool to evaluate animalsin actual
breeding programs of breeding organizations. The methodology consists of a framework
with justifiable statistical and genetic properties and it potentially delivers the most
accurate and least biased prediction of breeding values.
The quality of evaluations depends on
1. Thedata (recording of management groups, correct identification, correct
parentage
2. The modd.
The BLUP methodology has the property to account for selection of parentsin a breeding
population. Hence, it fairly accounts for the fact that some animals are from better parents
than other animals. Note that a requirement is that the pedigree, and data on selected
parents as well as non-selected contemporaries are included in the analysis.
Models can be extended to account for more complicated effects, such as
= different breeds (useful for an *across-breed evaluation or when there are animals
imported from other countries.
= maternal effects: important in all pre-weaning traits
= correlated traits: useful for higher accuracy or to account for selection on a
second trait (e.g. first lactation versus. later lactation or weaning weight versus
yearling weight)
= interactions between environment and genotype: Some sires may have a different
effect in different environments
= heterogeneous variance: the differences in one herd may be much larger (on

average) than the differences in another herd.

Some factors are more difficult to include in the model: e.g preferential treatment of some
animals (e.g. with hormones), or serious illness at the time of measurement. It is up the
herd-recording scheme to design rules for when measurements can be considered as
‘valid'. It is important here that the herd recording is unbiased and non-selective.
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The mixed model model: general form:

The Model: y=Xb+Zu+e

where b isthe vector with fixed effects with design matrix X (relating obs' nsto fixed effects)

u isthe vector with random effects with design matrix Z (relating obs' ns to random effects)

Model definition E(y) = Xb
var(u=G
var(e)=R
var(y)=2GZ +R

The equations
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This structure is expandable in many ways. The vector u could contain more random
effects (e.g. additive genetic, maternal genetic, permanent environmental, maternal
environmental, etc. The effectsin u determine the structure of G. The vector y could
contain more traits, and consequently u would have (breeding) values referring to the
different traits. The R matrix could have a structure is there are correlations between
errors, e.g. with correlated observations (traits). Also, R could contain different error
variances for different groups of observations. Therefore, in defing a mixed model, not
only fixed effects have to be defined, but also the variance structure of the random effects
(hence the terms G-structure and R-structure in ASREML.
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Single Trait Animal Model

The simple mixed model used in animal breeding is asingle trait animal modedl. Itisan
‘animal’ model because we fit a breeding value for each animal. ‘Single trait’ refers to the
fact that animals have only observations on one character (trait) and there are only fixed
effects and additive genetic effects, and no other random effects such as maternal or
dominance. It is important to understand the principles of the smplest model. Less smple
models are based on the same principles, and therefore not really much more difficult to
understand. Like in any other statistical model building more complicated models largely
requires more knowledge of the data, and imaginationof effects that could possibly be

causing differences.

More detail

In the single trait animal model with breeding value as the only random effect, we assume often that the

matrix R iss equal to Is?, and the matrix G is equal to A s2,. The simple equations were therefore obtained

by multiplying the equations with the factor s%.
A e

XX Xz PO xvg

a27a2
wherel =s2/s;.
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IN ASREML:
Anal ysi s of sone kind
anim!P  The variable ‘anim is related to a pedigree file
dage 10 'A
rt 6
vt
grp 322 'A
exanpl e. ped
exanpl e. dat
wm ~ nu rt dage !r anim !f grp #nmodel definition

There is no need to define variance structures more specifically, as there is only one extra
random effect (besides residual) so one component of variance. One could put a scalr
behind the anim variable in the model statement to indicate a starting value (optional).

i.e.
bwt ~ mu bt dage !'r animO0.5 !'f grp #nmodel definition
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Sire M odel

In this model, only effects of sires are fitted on records of their progeny (those are 0.5
times their breeding values!), making for computational ease. We may have only 100
sires in a data set on 100.000 recorded animals, hence needing 0.1% of the number of
equations of an anima model. Thel value represents the ratio of error variance
(including % of the add. genetic variance) and sire variance (1/4 of the add. genetic

variance) and the solutions are sire effects, i.e. %2 breeding values.

Sire EBVs obtained from a sire model may be slightly less accurate both due tolower accuracy (in case of
few progeny / sire) and potential bias, because there is no correction for differences between dams. The
model basically assumesthat all progeny of asire are of adifferent dam and all dams are expected to be
from the same homogeneous population al with the same expected mean. In reality, dams could be of
different breeds and dams are selected over years making the younger dams probably better than older
dams. Fitting an animal model would allow to fit genetic relationships among dams and accommodate

trends in dams breeding val ues..

Reduced animal model (RAM)
In this model, breeding values are only fitted for animals that have progeny records. This makes for faster

computing (only equations for animals that are parents), and the EBV'sfor all other animals are simply
derived from those of their parents, plustheir own corrected phenotypes. The results are the sasme asfor a

full animal model. Less computing time at the cost of some extra computer programming timeis needed.

Repeated records model

This is used where animals can have more than one record, such as multiple fleece weight
records in sheep. The phenotypic correlation between recordings is equal to repeatability,
and genetic correlation between recordings is assumed one (if the genetic correlation was
less than one, then the multi-trait approach outline above is applicable!).

The approach is to invent a permanent environmental effect for each animal, i.e. when the
animal has a second record, not only his breeding value but also part the environmental
effects are repeated. This can represent effects of raising of the animal (a good
‘development’ guarantees a consistently good performance later on), or the occurrence of

a disease that happened to a particular animal, with permanent effects.
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The mixed model with repeated records can look likee y=Xb+ Za+ Zp+e

wherey isthe vector of the observations, b is the vector of fixed effects, a is avector of additive

genetic effects, p isavector of permanent environmental effects and e is a vector of residua

effects. The matrix X isthe incidence matrix for the fixed effects and Z is the incidence matrix

relating observations to animals. Each animal has an additive genetic as well as a permanent

environmenta effect, hence both effects have the same design matrix.

The three random effects have the following distribution
PO P 000 5 0y @t 0

vagp:=¢ 0 lsc 0 2=g, o= G=E 7 s
Sejy $0 0 Is? e c g

where s?, is the direct additive genetic variance and s is the variance due to permanent

environmental effects. The model shows that those permanent environmental effects for different

animals are uncorrelated, and within an animal there is no correlation between its additive and its

permanent environmental effect. The total phenotypic variance is the sum of the three variance

components.

The mixed model equations for a model with repeated records look like:

8@<'X X'Z X'Z %%)9 ?('yg
CZ'X Z'Z+IA'  Z'Z wgaz=¢Z'y+wheenow | = s’/ s? andg= s%/s?
§ZX 27 ZZ+d@Epp EZY5

IN ASREML:
Anal ysis of some kind
anim!P The variable ‘anim is related to a pedigree file
dage 10 'A
rt 6
vt
grp 322 'A
exanpl e. ped
exanpl e. dat
wm ~ nu rt dage !'r anim ide(anim !f grp #nmodel definition
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Mater nal effects model

Some traits such a surviva of piglets or early growth in beef cattle and meat sheep are
influenced by maternal effects. The mother has an influence on the performance of her
offspring over and above that of her direct additive genetic contribution i.e. through
maternal effects. These maternal effects are strictly environmental for the offspring, but can
have both a genetic and environmental component. In selection of animals, and especially
in dam lines, it is important to consider the maternal genetic effects. Beef cattle producers
are interested in animals which have a high breeding value for growth (direct genetic
effect) but also in cows with good mothering abilities (milk production). Including
maternal effectsin the model allows to estimate maternal effects and to correct for possible
biases in genetic evduation of the growing animal. It is usualy assumed that maternal
effects are genetic, although part of it might aso be a permanent environmenta effect (e.g.

abeef cow with only three teats).

Maternal Effects Model
In the following model the direct genetic and maternal genetic effect are considered:

y=Xb+ Zija+Zom+e

where y is the vector of the observations, b is a vector of fixed effects, a is a vector of
additive genetic effects, m is a vector of maternal genetic effects and e is a vector of
residual effects. X is the incidence matrix for the fixed effects and Z; and Z, are incidence
matrices relating observations to random effects of animal (additive genetic) and dam
(maternal genetic), respectively. The random effects have the following distribution:

a0 @&As’ As 00
ot g a am = O @\SZ AS o) -
vargm+:<;Asam As? O +:a§5 2 G= 2 MI=G,AA
ey g O 0 Is?g an Sm

. s’ O .. :
where & isa2 by 2 matrix: g a o' zand A isadirect product (it ‘blowsup’ a
San Smﬂ

S
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Further s 2, is direct genetic variance, s %, the maternal genetic variance, s am the covariance
between direct and materna genetic effects and s 2 the error variance. The model shows
that both random effects have a covariance structure depending on the genetic relationships.
Related dams have related materna genetic effects, and there is a correlation between a
dam’s direct additive genetic effect and her maternal genetic effect. The total phenotypic

2
e

varianceisequal to S, =S. +s, +S, +S

The mixed model equations are:

X' X X'z, X'z, @bo XV .

¢, . -1 . T &y, ap0_ 1 o

cZi'X Z,'Z,+a, A Z,'Z,+a, A sgUus=¢Z,'y+ where g =G, .S,
. . 1 . 140t o Ay Axng

gzz X Zz Zl +a21A Zz Zz + azzA émﬂ 822 Yo

Since the full (inverse) relationships matrix is used with relationships between all animals
(progeny as well as dams), estimates will be obtained for additive effects for progeny
(with records) as well as for dams (with possibly no own record). Equally, estimates for
maternal effects will be obtained for dams (with progeny) as well as for progeny (which
may not have expressed their maternal ability yet).

IN ASREML:
Anal ysi s of sone kind
anim!P  The variable ‘anim is related to a pedigree fi

dam!P The variable ‘dami is related to a pedigree file
dage 10 'A
rt 6
wwt
grp 322 'A
exanpl e. ped
exanpl e. dat
wm ~ nu rt dage !r anim dam!f grp #nmodel definition
001 #R struc: # sites, dimRo, #G struct
anim 2 #G structure: nodel term dinensions
2 0US !GP #order Go, 0, nodel
.2 0 .15 starting_val ues
anim o ANV #i nner di mension of Gstructure

Note that this model has an ‘US' structure for the G matrix, i.e. all 3 variances of G, will
be estimated. It is possible to ignore the covariance between direct and maternal effects.

In that case the & is diagonal and the last lines of the asfile are:
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wm ~ nu rt dage !r anim dam!f grp #nmodel definition

001 #R struc: # sites, dimRo, #G struct

anim 2 #G structure: nodel term dinmensions

2 0 DIAG .2 .15 #order Go, 0, nodel starting_values
anim #i nner di mension of Gstructure

In maternal effects models, it is also possible to fit the dam effect as environmental effect
(me), in ASREML.: ide(dam), i.e. the dam effect is fitted with an identity structure rather
than with a relationships structure (A-structure).. In that case, no genetic relationships
among dams are considered in estimating its effects. The me effect is considered
uncorrelated with direct effects.

/2 00
2
me

G is a2 by 2 matrix: éoa
S

[SERle}

And t he ASRTEM. npdel statenent reads |ike:

w ~ nmu rt dage !r anim ide(dam) !f grp #nmodel definition

Another moddl fits both genetic and environmental dam effects. Note that the number of
genetic maternal effects estimated is equal to the number in the pedigree, while the
number of perm. env. dam effectsis equal to the number of dams that have progeny with
data
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2
Sa Sam 0
2
& is a3 by 3 nmatrix: Sam  Sm 0
0 0 s?2

And t he ASREM. nodel statement reads |ike:

w ~ nmu rt dage !r anim damide(dam !f grp #nmodel definition
001 #R struc: # sites, dimRo, #G struct
anim 2 #G structure: nodel term dinensions
20Us .2 0.10 #order Go, 0, nodel starting_val ues
ani m

Notice that we don’t need to define the whole of G W only
define the first 2 terms (US structure). The last termis
‘left over’ but independent and only one variance conponent
need to be estimated for that term (no need to define a
structure.

wm ~ nu rt dage !r anim damide(dam) !f grp #nmodel definition
002 #R struc: # sites, dim Ro, #G struct
anim 2 #G structure: nodel term dinensions
20USs .2 0 .10 #order Go, 0, nodel starting_val ues
ani m
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Multiple Trait Genetic Evaluation

Multi trait model
Thisis an extension of the single trait case. Data on a number of traits are available in

Y, and EBV's are calculated for each trait. The results are generally different from what
would be got from a number of separate single-trait BLUPS, because each trait is used to
help give information about all other traits, much as with a selection index. In alater
chapter, the multiple trait BLUP procedure will be worked out in more detail. The benefit
form multiple trait models comes from

= more accuracy as information from correlated traits is used

» |esshias as the analysis will take into account that for traits that are measured

after sequential rounds of selection, only the better ones are evaluated.

An example of potential selection bias. Compare agood bull and abad bull, each having 40 progeny at

weaning. From the good bull, no progeny are culled, whereas from the bad bull 50% is culled. Comparing
the progeny of these bulls at post-weaning will give a huge advantage to the bad bull, as his bad progeny

have been removed. Multi-trait BLUP would correct for this bias.

For the genetic evaluation of the animals, we can use information which is available on
all traits. Originally the main reason for using information on all traits was to obtain more
accurate evaluations. Withusing information on correlated traits the accuracy of the
estimated breeding value increases. A second advantage arose later, namely a multiple
trait analysisis the only way to obtain unbiased estimates for a trait, which is observed
only on animals selected based on values of a correlated trait. A model including
information of the correlated trait, on which selection was based, is able to correct for this
type of selection. An example of thisisthe evaluation of the second lactation

productions of dairy cows where selection has been practised based on the first lactation.
Only animals that survived the first lactation have a second lactation record, and those are
usually only the better animals. Other examples are the analysis of piglets born in secord
litter, or the analyses of yearling weight after animals have been selected for weaning

weight.
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Multiple Trait Mixed Model

Taking again as a starting point the mixed model in its genera form:
y=Xb+ Zu+e.

With more traits we can now partition the observation vector y in a part for each trait. The
same can be done with the associated environmental effects. The vector of breeding values
is also partitioned for the different traits, so that each animal has a breeding value for each
trat in the analysis.
For a 2-trait example, the vector y; represents the n; observations for trait 1 and y,
represents n, observations for trait two. For each trait we can write a mixed mode!:

yi=Xibi +Ziu + &,
where there are p; fixed effects associated with trait i so that X; isan n; X p; matrix and b; is
api X 1 dimensional column vector. X; and Z; are incidence matrices for fixed effects and
random effects for trait i, respectively.

The multiple trait model can be represented as follows:

éyll\:l éXl OU éb1l:| éZl OU éUlU éell:l
e 0= & aéuat* é uéut* éq
8.0 e 0 X0 &l 60 Z0 eud éed

Notice that not al animals necessarily have an observation for both traits. Some animals
may be represented in y1 but not in y,, or vice versa. All animals, however, are represented
with a breeding vaue for each trait in the analyss, irrespective whether they had an
observation for that trait. The vectorsy; and y, (and e; and e;) are therefore not necessarily
of the same length, but u; and u, are always equaly long (with the number of eements
equal to the number of animalsin the anayss).

To obtain the mixed model equations for estimating fixed effects b and breeding values u,
we need to specify the covariance matrices R and G associated with the vector e = (e, & )’

of residua errors and the vector u = (u; , Uz )" of random effects.
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For the breeding values we can write

a8l 6 &, G,0
u=¢c '=ad var(u)=G= s
guzﬂm W)= SG G,,o

If s is the genetic variance of trait i, and s g is the genetic covariance between the two
traits (within one animal), we can define a 2 by 2 genetic covariance matrix

, .
G _63911 89129
0= 2 +

ésgzl Se2g

Each part of G is obtained by multiplying the relationships matrix with either the variance
of atrait (diagonal blocks gi A) or the covariance between the traits (off diagonal blocks
g;.A) where g;j is an element of &. . The covariance between the breeding value of trait i
on individua k and the breeding value of trait j inindividual | is the additive genetic
covariance between traitsi and ] multiplied by the additive genetic relationship between
individualsk and I.

Multiple Trait Mixed Model Equations

The mixed model equations for a multiple trait model can be written according to the
genera principle of setting up mixed model equations. However, they are extended for the
G- and the R-matrices.

For the mixed model equations we will need the inverse of G. In te multiple trait mixed

model this becomes:

N €ty o
G'= iu GZZE where G = /A,
g

and where g is (i,j)-element of the inverse of the 2 by 2 genetic covariances matrix G

and Al istheinverse of the relationships matrix as it can be setup directly.
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The residual covariance matrix R has the same form, but A is replaced by an identity
matrix | assuming there are no correlations between the residuals of different animals.
While residual deviations for a given trait measured on different individuals are often
assumed to be uncorrelated, thisis not necessarily the case for different traits measured on
the same individual. The phenotypic correlation between traits is often the result of
correlation between genetic as well as environmental effects. When al traits are measured
on al individuas (n1=ny=n), the covariance matrix between e; and ej can be written as's (g
,€))=rijl, wherer; = s¢(i,j) isthe environmental covariance between traitsi and j as
expressed in the same individual. The resulting n.2 x n.2 variance-covariance matrix for the

total error vector e = (e, €)' becomes:

és(eia) s(ene)u & In,0
R=¢ u=é u
&B(ee) s(ene)ld Bra Izl

: . et oartu

andtreinverseis R =g G
21 22

ar= 1Ir=g

where 1! is i-j element of the inverse of the 2 by 2 environmental covariances matrix
between the two traits: R.

The set of multiple trait mixed model equations are given in the next figure. It is not
the idea to memorise these equations, but to give you a how single trait mixed mode
equations are ‘blown up’ to multiple trait mixed model equations. This has a rather large
impact on the number of equations that has to be solved. Roughly, computer time for
solving multiple trait mixed models goes up quadratically with the number of traits!

EXaer ' Xy Xaer X, Xaer 24 Xur?Zs Ugp o EXary, + r2y,)u

e uz-"- €& u

A 21 2 21 2 7€ U 3 .

gXQd' X1 Xadr “ X, Xaor © 27 Xoael “Z> Hébzl.'] gx2¢(r21y1+ rzzyz)g

5 --é - % 7
1 12 1. 12, . = -

mer X1 Zawr "Xz Zwr"Zi+ 9 A" Zwur?Z:+ gAY ggulg me(r“yl“‘ rIZY2)H

A e U =z A
e Uz ,.n € u
8Zor X1 Zoor Xz Zaor 2Zi+ 97AT Zar 222+ 9FAT YN EZodr Py, r?y,)g

If not all traits are recorded for al animals, the inverse of the residual covariance matrix R

becomes a bit trickier. The reason is that animals with one record only do not have a
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residua covariance with another trait. The covariance matrix between the residuals of the
different traits (s (e1, &)) can no longer be written as adiagonal matrix (amultiple of 1 ).
When some observations are missing, the matrix X1 can not be directly multiplied with Xa,
i.e. the number of columns (= ny ) does not correspond with the number of rows (= ).
This can be solved by using X1 r*?11,X, where |1, identifies when two observations are on
the same individual (only in those case we have an environmental covariance). When both
traits are measured on all animals 112 = | and X1r 115X reducesto X1 r#Xo.

The rules for building up multiple trait mixed model equations are outlined heresfter, asa
reference for the further interested reader.

Rulesfor building mixed mode equations:
(this section isonly for reference)

For small examples the mixed model equations can be build from the corresponding design
matrices. For larger data sets, however, this becomes complicated. Rules have been
developed to build the mixed model equation without explicitly setting up the design
matrices. These rules for building the mixed model equations with a multiple trait model
(per animal) are:
1) If both y; and y» are known for an animd;
Thevaues for r', r2, r?, and r* are added to the particular sections for each trait in
the fixed and random part of the coefficient matrix. For instance for 2 effects (herd
and animal), we have to add these four numbers to each of X' X, X.Z,, ZX and
Z'Z . To the vectors with the totals (right hand sides) we add r*'y; + r?y, and r?y,
+ r?y, to each trait partition of the two vectors (X'y and Z'y).
In asingle trait modd, we would have added only one figure to the 4 partid
matrices for atrait. For the totals (right hand sights), we would add only y to the
partial vectors for herd and animal.
2) When only one observation for one trait on the animal is available;
The values (r11)™ or (r22)* are added to each of the relevant partial matricesin the
coefficient matrix, while yi(ri1)™ or y2(r22)* are added to the relevant parts of the
right hand sides.
3) Independent of the pattern of traits measured, we add the rel ationships matrix
multiplied by d' to the i-j block of the random effects of the coefficient matrix.
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Example of a Multiple Trait Model

Consider a situation where we have the following measurements on 6 unrelated and non-
inbred individuas, performing in two different herds. Both traits on an anima are
measured in the same herd.

Individua Herd Trait 1 Trait 2
1 1 160 -

2 1 180 320

3 1 210 330

4 2 190 -

5 2 228 360

6 2 210 350

The phenotypic standard deviations for weaning weight and yearling are 20 and 40 kg,
respectively, the heritabilities are 0.42 and 0.39 and the genetic correlation is 0.769. The 2

5169 2500 . . . €0145 -.058(

G, = a U which correspond swith G, ™ = S u
U u 0 u
€50 6250 €.058 .0039u

by 2 matrix with additive genetic covariances (within an individud) are;

The within-individua environmental covariances are:

€231 2850 . . 1_€.0068 -.0020y
R,=a ! which correspond swith R, ™ = S !
0~ @& u 0 e u
€285 975U € .0020 .0016u

The design matrices for the first trait are straightforward. Z; is an identity matrix since all
animals have arecord for the firg trait. For the second trait, however, more attention is
needed. The matrix Z, has one column for each breeding value (i.e. 6 columns) and one

row for each observation (i.e. 4 rows) which resultsin:
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© 100 0 0y
Z_20010003
" % o000 10U
e 0
© 000 0 1

Theright hand side (RHS) for the example are (transposed):
[205 238 0271 0272 069 058 077 082 083 073 0 016 011 0 013 015

Thefirst 4 elements are for the fixed effects (2 herds for 2 traits).

The values are al scaled by multiplying with residua (co)variances. For example: the
RHS-value for the second animal for the first trait (6" element) is obtained as:

iy, + 2y, = 0.0068* 180 + (-0.002)* 320 = 0.584, whereyi, (=180) and y», (=320) are
the record for the first and second trait for the second animal. The first animal has only the
first trait measured, and its RHS value (5 element) becomes

(r11)  y11 = 0.0043* 160 = 0.69. Notice that when an animal has only one trait recorded, we
multiply it by (ri1)? (theinverse of the 1-1 element of the residual covariance matrix) and
not by r'* (the (1,1)-element of the inverse of the residual covariance matrix). Notice also
that animals with no record for a given trait have a zero in the RHS.

The solutions for the fixed effects and the multiple trait BLUP EBV's are;

b.=[183 209] bx=[309 342

é- 9.86( & 1458
é ¥ é ¥
& 100@ & 2.87@
€1086Y e 1172u
u = € uy = ¢€ u
& 8170 & 12.080
é | é Y
§ 7.70y § 9.35@
€ 0474 g 2734

where bl are the solutions for the herd effects for weaning weight, and w, are EBV’sfor
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weaning weight, and b, and u, refer to yearling weight.

When performing two single trait evaluations for the two traits the following solutiors were

found for Single Trait BLUP:

Sngletrait: py,=[183 209] p,=[325 355

th —

é— 9.86[) é 0 [‘:|
e u e u
81127 &195 (
& oiol W= & 0
S 8174 o
8789 U 8195 0
028 § & 1950

Notes to the solutions:

1

2)

3

The average breeding value for both traitsis equal to zero within herd. Thisisto be expected
because animals are assumed to be unrelated. Thisillustratesthat it isimpossible to make afair
comparison of the average breeding value of animalsin herds when there are no genetic ties (e.g.

offspring from acommon sire).

Animal 1 has no observation for trait 2. Consequently its breeding value is entirely
based on the information from the correlated trait 1. Animal 1 has avalue for trait 1
which lies below the herd average and as aresult of the positive genetic correlation
between traits its breeding value is also below average, i.e. negative. The same is

true for anima 4 in herd 2.

Thesingletrait breeding values (and fixed effect solutions) deviate from the multiple trait
solutions. Asto be expected the single trait breeding values of animal 1 and 6 for yearling weight
are equal to zero. Thereis no information to estimate the breeding val ue and consequently the
animals get the average breeding value. The differencein breeding value for yearling weight



5)

4)
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between animal 2 and 3 (and between 5 and 6) islarger in the mu ltipletrait case. Thereasonis
that the information from weaning weight (the correlated trait) gives additional evidence that these

animals are different in breeding value.

The difference between the average herd effect for weaning weight and yearling
weight islarger in the single trait anaysis. In fact, this difference is overestimated,
sinceisit biased by the fact that for yearling weight we only recorded the best
animals (=selection). The multiple trait evaluation takes this into account. From
using the information on the first trait, the model knows that only the better animals

had a yearling weight measured.

In the multiple trait EBV’ s we see that the animals that were not culled have an
average EBV’ s above zero. This makes sense, because from the information on
trait 1 we know that these are actually the better animals. Single trait evaluation
would not use information on weaning weight, and consider the yearlings that were
weighted as average animals. This shows that multiple trait evaluation is able to

correct for sequential selection.

Advantages of Multiple Trait BLUP evaluation

In general, using the multiple trait model gives an increase in accuracy of estimated

breeding values. Furthermore, in many cases it is the only way to correct for selection on

correlated trait.

The importance of increase of accuracy by using extrainformation, i.e. the importance of

using amultiple trait (MT) model, depends on several aspects:

- the information available on each animal

If few or no observations are available for a particular trait, using observations on another

trait when both traits are genetically correlated can increase the accuracy.
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- parameter structure

If genetic and environmental correlations are small, the multiple trait model has few
advantages. Furthermore, in a situation with a high I, only afew observations are needed
for an accurate estimate of the breeding value. In other words, information of other traitsis
lessimportant in that case. Besides, the difference between rg and re isimportant; the larger
the difference, the larger is the contribution of a correlated trait to the reduction of the
Prediction Error Variance. The contribution of correlated traits to the accuracy of
estimating breeding values can be examined with the selection index method.

- correctness of parameters;

In multiple trait model we make use of estimated values of the genetic parameters
(heritabilities, correlations). This variance-covariance (VCV) matrix has to be checked on
incorrectness (or consistency).

Schaeffer (1984) discussed the effects of incorrect estimated parameters. He distinguished
two kinds of mistakes. First, the VCV matrices may not be vaid, i.e. within the parameter
gpace. A valid VCV matrix, by definition, is a positive definite matrix. This can be checked
by looking at al the eigenvalues of the matrix. Eigenvalues of covariance matrices all have
to be positive, making the matrix “positive definite’. The second and most common
mistake, mentioned by Schaeffer, is that estimates used in the model, could be greatly
different from the underlying true values. Assume that the true parameters give the
maximum response of selection. The realised response then depends on the difference with
the parameters used, namely (rg-fg) and (re-fe).

In this respect, it is good to realise that single trait models are MT models with the
assumption thatf e =t g = 0. Therefore, inaccurate correlations are often still closer to the

true values than zero correlations!

- Correction for selection

The exampleillustrated selection on sequentialy recorded traits leads to culling and
missing records for traits that are recorded in alater stage. Multiple trait evaluation was
able to avoid selection hias.

This reflects a more general rule, also applicable in single trait genetic evaluation, that to
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avoid selection bias, all information that was used to base selection decisions on, should
be included in the analysis. This is not only the case with missing records in sequentially
recorded traits. Assume the situation when two traits are recorded simultaneously, and all
animals have records for all trait, but selection is only for one of the traits. Single trait
evauation of one trait only would lead to biased EBV’ s and generally to an
underestimate of the genetic trend for the correlated trait (although this depends on the
genetic and environmental correlation between the traits). Since selection is usually on an
index (alinear combination on all traits), single trait evaluation leads to incorrect

estimates of the genetic trend in most of the cases!

Computational considerations

Computer requirements quickly increase with the application of multiple trait BLUP
genetic evaluation procedures. Suppose we want to carry out a 5-trait BLUP analysis. The
multiple trait mixed model equations require nearly 25 times more coefficient to be handled
compared to single trait BLUP. Solving the mixed model equations when multiple traits are
present can be greatly smplified by constructing a transformation for the traits being
considered (thisis called ‘ canonical transformation’). This transformation constructs a new
set of uncorrelated variables, which can be analysed in independent single trait evaluations.
Such a transformation is possible when all animals had observations for all traits. Recently,
algorithms have been devel oped to handle transformations also for the case of missing
observations on some traits. Multiple trait models can still be quite cumbersome if more
random effects are included (e.g. maternal effects for some traits. However, The
combination of more efficient computing algorithms with the rapid increase of computing
power haslead to a Situation that multiple trait BLUP is the method of choice for more and

more genetic evaluation systems.
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Software

There are software packages available that can be used to implement multiple trait
genetic evaluations. A commonly used package for breeding value estimation is PEST
(Prediction and ESTimation) written by Groeneveld et al. (1994). A more versatile and
increasingly used package is ASREML (Gilmour et a., 1996: This package is most
suitable for estimation of genetic parametersin animal breeding data for awide variety of
models. There are also genetic evaluation services around that provide the whole package

of delivering multiple trait EBV’s.

An ASREML example:

bwt wwt~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.animf Trait.grp
121 #R struct: 1 site, dimension Ro, 1 G structure
0 #order R (?), ASREML figures out if put to zero
20Us 120 14 ICP # order Ro, O, nodel, starting_val ues
Trait.anim 2 #G structure: nmodel term dinension

20US 49045!'C #order Go, 0, model starting_values

ani m

In the model statement, some effects are fitted for both traits: Trait.dage

Other effects are fitted for one trait only at(Trait,2).rt

IGP means that the matrix (R of G) has to be positive definite

A multi-trait model can also have more random effects, e.g. a maternal effect:

bwt wa~ Trait at(Trait,1).bt at(Trait,2).rt Trait.dage !r Trait.anim T Trait.dam!f

Trait.grp

121 #R struct: 1 site, dinension Ro, 1 G structure
001D #nrec (= outer dim O R), ASREM.L figures out if put to zero
Trait 0 US 12 0 14 ! GPUP # order Ro (equal to nr. of traits), O, nodel, start_val ues
Trait.anim 2 #G structure: nodel term dinension

4 0US!IG #order Go, 0, model starting_values

4.9

2 9.5

00 4.5

0o 2 4.2

anim0 Al NV

The Gy has now dimension 4. The definition of the & can be spelled out in some more
detail:
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40US49295004.500 2 4.2 | GPUPFFPFFUP

order of Go
al ways a zero here
us unstructured Go

4.9 following is |lower Go starting val ues

2 9.5

004.5

0024.2

I GPUPFFPFFUP i ndi cati ng whet her the components shoul d be Positive,

Unstructured, or Fixed at the starting val ue

the sane line could be replaced bhy:

4 0 US 1+10 ! GPUPFFPFFUP

4.9 following is lower Go starting val ues

2 9.5

004.5

0024.2

I GPUPFFPFFUP could be replaced by !GP if we sinply want Go to be

positive definite
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Random Regression Models

Random regression models can typically be used when atrait is expressed repeatedly, e.g.
over time or in different environments. In that case, the effect changes gradually along a
trajectory of time, or of some other continuous variable (temperature, elevation, rainfall.
For simplicity, we think of the expression of body weight as a function of time. If the
random effects are modeled as a function of time, then both the variance as the
covariance between expression at different times are modeled as a continuous function.
Note that previously we often modeled repeated measures of weight as multiple traits,
e.g. wwt, pwwt, ywt.. The advantage of random regression is that traits can be measured
at any point dong atrgectory, i.e. a any age, and we do not have to chop thisup in
distinct traits.

In linear models we are used to fitting weight as aregression of age. Thisis often
afix3ed regression, indicating that for each animal that is a certain amount of time
younger or older than an average age there will be aweight correction. This correction is
the same for al animals, hence a fixed regression. In random regression models, we
estimate a different regression coefficient for each animal. Hence, each animal has hig/her
own slope (some grow faster than others) and we estimate te variance of all slop
parameters. An animal individual’s slope is estimated as a BLUP, depending on the
variance of sopes (like the breeding value is derived from the variance of breeding
values.

Hence, each animal may have 3 breeding value for weight, if we fit a three order
regression. The first is an intercept, the ‘average weight’, the second is a dop, ‘the
growth’, and the third is a quadratic term

The regression coefficients are not the same for each animal, but they are drawn from a
population of regression coefficients. In other words, regression coefficientsinaand p
are random regression coefficients with var(a)= K, and var(p)= Kp, where ais additive
genetic effect and p is permanent environmental effect.

In fact, we have rewritten a multivariate mixed model to a mixed model in a
format of a univariate random regression model, with each random effect having k

random regression coefficients. A model for n observations on g animals can then be
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written as
Isl Igl

y=Xb+ a Za+ a Zp+te, [4-6]
j=0 i=0

where Z; are n by g matrices for the " polynomial, and g and p; are vectors with random
regression coefficients for al animals for additive genetic and permanent environmental
effects. The matrix Z contains the regression variables, i.e. the coefficients are those of
the polynomiasin F (i.e rather than a1's, Z contains 1, x, x?, etc.. We can order the
data vector by sorting records by animal, and we can stack the & and p; vectors and sort
them by animal, each animal having k coefficientsin a and k coefficients in p (to simplify
notation, we assume equal order of fit for CF sfor both random effects, therefore having
equal incidence matrices). We can then write Z as a block diagonal matrix of order n by
k*q, with for each animal i block Z{'=F ;.

The mixed model can be written as
y=Xb+Za+Zp+e,
witha'= {a;',...aq} and p'= {p1',...pq}, with & and p; being the sets of random regression
coefficients for animal i for the additive genetic and the permanent environmental effects,
respectively. If all animals have measurements on the same age points, al Z;* are equal
and Z=14AF;
The variances and covariances of the rardom effects can be written as:
var (a)= AAK,
var(p)=1A Kp

and cov(a,p)=0.

where K, and K, are the coefficients for the CF for a additive genetic and permanent

environmental effects, respectively. The mixed model equations for the random
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regression model with covariance functions (RR-CF-model) have asimilar structure asa
repeatability model, except that more coefficients are generated through the polynomic
regression variables from F which are incorporated in Z. In the additive genetic effects
part of te equations there is for each animal adiagonal block F'F i + d's 2K 41, and there

L with d the (i,))" dement of the inverse of the

are off diagonal blocks d's 2K,
numerator relationships matrix (A™). The part for the permanent environmental effectsis
block diagonal with diagonal blocksequal to Fi'F; + sezK,o'1 . Schematically, the mixed

model equations will be like

?Xi Xi XiFi ><| I:| "'L'Jébu éxilyil;]
e ' ' a-u & - @
< : erg & -0
' X F,'F, +a's2K;* F.'F, e u EF 'yl
e raa D I >
S s u_é ' 70
g ) ) ngu é .

] ] 1 2 -1 ,A.l:l e Y u
Q:i XI FiFI I:iFi-*-Ser L,Jép'l:l §F| y[:J
S | g e - d
& a6 g

where the subscript i refers to those part of the equations for animal i. For the earlier

example, we a 3-order CF with measurements at standardized ages[-101], F'F is

The ASREML package can be used for random regression analysis. The latter
package requires the user to define a regression model (e.g. a 3™ order polynomial
regression on ‘daysin milk’, and random regression is achieved by defining arandom

interaction term between animal and this polynomial regression term
weight = herd poly(dim,2) !r poly(dim,3).animal
The first term is a polynomial regression of milk on days in milk (dim) as afixed effect.

This basically fits an average lactation curve equal for al animals. The random term

indicates individual animal variation around this mean curve.
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Alternatively, in ASREML, the regression coefficients (e.g. the Legendre regression on
age asinthe F matrix for each animal) can be constructed 'by hand' based on the age of
the measurement and provided in a data file. ASREML allows estimation of variances
and covariance components between these regression coefficients when they are taken as

random. This covariance matrix should be equal to the K -matrix.
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