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Relatedness: what is it? how do we measure it?

Basic unit is simple: all relationships are made up of parent-child links.

An ancestral path is a sequence of distinct parent-child steps to each
of two individuals starting from a shared ancestor.

Informally we describe our relationships in terms of the shortest
ancestral path(s):

siblings are linked by 2 paths of length 2 (both paths have one step up
and one step down);
half-siblings are linked by 1 path of length 2;
half-second cousins are linked by one path of length 6 (three steps up
followed by three steps down).

Ancestral pathAncestral path

Father Mother

A B

The two 2-step
ancestral paths
linking two
outbred siblings
are shown in red
and black.
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Relatedness: what is it? how do we measure it?

Reality is more complex: we are all linked by very many ancestral paths.

even pairs of sibs have differing levels of relatedness (see figure);

there is no such thing as “unrelated”, that term just means that the
relationship does not include any short ancestral paths;

long ancestral paths are neglected in many applications,

but how to define “long”?

Two 2-step ancestral paths

Parents

A B

Grandparents

Some of the many longer ancestral paths
In addition to the two 2-step
ancestral paths, there are
many longer ancestral paths
corresponding to the possible
ancestries of alleles not shared
IBD from a parental allele.
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Relatedness: what is it? how do we measure it?

Relatedness is often summarised as a single-number “kinship coefficient”,1

which has become a fundamental concept in quantitative genetics:

Heritability can be estimated as the amount of observed phenotypic
variation that can be “explained by” kinships (similar to “variance
explained” in a regression model).

A similar statistical model underlies phenotype prediction.

The kinship coefficient is so fundamental to thinking about genetics, that
the fact that it is not well defined has been overlooked.

In this module we will take a critical look at different attempts to
measure/define relatedness. We closely follow:

Speed D, Balding D, “Relatedness in the post-genomic era: is it
still useful?” Nat Rev Genet Jan 2015

1Alternatively the relatedness coefficient = 2 x kinship.
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Pedigree-based kinship coefficients

Based on known relationships in a specified pedigree.

Most important is coancestry θ(A,B),
the probability that a random allele from
A is Identical by Descent (IBD) with one
from B assuming Mendelian probabilities:

θ(A,B) =
∑
X

1 + fX
2gX

.

Sum is over most recent common
ancestors X of A and B within the
pedigree;

fX = θ(M(X ),F (X ))
inbreeding coefficient of X =
coancestry of parents of X;

gX is path length from A to B via X.

A

CB
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Additive kinship coefficient based on pedigrees

16 possible IBD states among 4
alleles of 2 diploid individuals;

reduces to 9 ignoring
within-individual ordering.

Also ignoring inbreeding: 3 IBD
states (IBD = 0, 1, 2).

Also ignoring dominance: 1
additive kinship (coancestry)
coefficient, θ = E[IBD]/4 =
P[IBD=1]/4 + P[IBD=2]/2.

9 IBD states:

Individual 1

Individual 1

Individual 2

Individual 2

Individual 1

Individual 2

circles = alleles, arcs = IBD.

The θ for you and me is the expected fraction shared IBD in a haploid
genome chosen at random from each of us.

For two outbred individuals we write (k0, k1, k2) for the probabilities that
they have exactly 0, 1, and 2 alleles IBD. Then θ = k1/4 + k2/2.
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Relating kinship to phenotypic correlation

Relative pair (k0, k1, k2) θ

MZ twins (0,0,1) 1/2
parent-child (0,1,0) 1/4

siblings (0.25,0.5,0.25) 1/4
uncle-niece (0.5,0.5,0) 1/8

half-sib (0.5,0.5,0) 1/8
grandparent-grandchild (0.5,0.5,0) 1/8

Phenotypic covariance among relatives: Individuals i and j have
relationship vector (k0, k1, k2) and phenotypes Yi and Yj . Then, ignoring
epistatic effects, we might assume the following model:

Cov[Yi ,Yj ] = 2θσ2a + k2σ
2
d + γσ2c

where γ = 1 if i and j have the same environment (e.g. same household in
childhood), otherwise γ = 0.
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Estimating components of variance

Relative pair phenotypic covariance

MZ twins σ2a + σ2d + σ2c
Parent-child σ2a/2

Siblings σ2a/2 + σ2d/4 + σ2c
Uncle-niece σ2a/4

By computing the phenotypic variance-covariance matrix for many
individuals of varying relationships, for example in multiple extended
pedigrees, we can estimate σ2a , σ2d and σ2c . By subtracting these
estimates from σ2 (estimated from unrelated individuals) can
estimate σ2e .

Researchers can fit different models depending on their assumptions
about sources of variation:

an ACE model includes shared environmental effects (C) but not
dominance (D) or epistatic (I) effects;
an ADE model includes D but not C or I effects.
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Problem 1:
θ depends on the pedigree you happen to have available

For diploids, there is no such thing as a complete pedigree.

As more ancestors are added, θ among original pedigree members can
only increase and eventually converges to one;

so if a complete pedigree were possible, it would be useless.

There is also no “ideal” pedigree in any other sense.

Similarly for inbreeding (θ between parents): an inbreeding coefficient
depends on the available pedigree, and always increases with
increasing pedigree information.

Didn’t matter much in the past because we could only make use of close
relatedness, but with genome-wide date now we can “see” relatives
separated by 10 or more meioses.

Armidale Genetics Summer Course 2016 Module 8 Relatedness



Problem 2:
θ only captures expected, and not realised, genome-sharing

θ for half-sibs is 0.125, but 95% CI is (0.092,0.158).

Just 6 parent-child transmissions can result in no DNA remaining
from the founder.

Two children may share no DNA from their common
great-grandparent.

So they are pedigree-related but not genetically related.

Conversely, θ = 0 for many pairs of individuals, yet the levels of
genome-sharing among “unrelateds” can vary substantially; this has
been exploited e.g. for prediction or to estimate SNP heritability.

Armidale Genetics Summer Course 2016 Module 8 Relatedness



Genome sharing from recent shared ancestors

Fraction Identical by Descent

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Siblings

Half−Siblings

First−Cousins

Half−Cousins

Second−Cousin

Half−Second−Cousin

Third−Cousin

Half−Third−Cousins

...
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Statistics of IBD from recent shared ancestors
(update of Donnelly 1983)

# # θ(A,B) P[IBD>0] E[#sr] E[rl]
Relationship G A E[IBD]/4 95% CI (Mb)

Sibling 1 2 0.250 (0.204,0.296) 1.000 85.3 31.3
1/2-sib 1 1 0.125 (0.092,0.158) 1.000 42.6 ”
Cousin 2 2 0.063 (0.039,0.089) 1.000 37.1 18.0

1/2-cuz 2 1 0.031 (0.012,0.055) 1.000 18.5 ”
2nd-cuz 3 2 0.016 (0.004,0.031) 1.000 13.2 12.6

1/2-2nd-cuz 3 1 0.008 (0.001,0.020) 0.995 6.6 ”
3rd-cuz 4 2 0.004 (0.000,0.012) 0.970 4.3 9.7

1/2-3rd-cuz 4 1 0.002 (0.000,0.008) 0.832 2.2 ”
5 2 0.001 (0.000,0.005) 0.675 0.7 7.9
7 2 (1/2)14 (0.000,0.001) 0.098 0.1 5.5
9 2 (1/2)18 0.009 0.0 4.4

1

G: generations; A: ancestors; sr = shared regions; rl = region length
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Pedigree ancestors vs DNA ancestors (simple simulation) PEDIGREE ANCESTOR      DNA ANCESTOR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beyond 10 generations, chance of inheriting DNA is slim: 
 
Bad news if you are a descendant of William Shakespeare 
Great news if a descendant of Ivan the Terrible 
 
 
 

The gap between solid red and black lines (left panel; expressed as a
fraction on right) corresponds to ancestors in your pedigree (individuals
from whom you are descended) from whom you inherited no DNA.
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Effect on h2 estimation of realised versus expected IBD EFFECT ON HERITABILITY ESTIMATION 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
With high relatedness, using expected sharing has little effect on h2 estimation 

Actual   Expected 
Based on simulation with causal variants
arising 50 generations ago. x-axis indicates
closest relatives included.

“full siblings” = random population
sample including close relatives.

here, little loss of estimation efficiency
when using expected rather than
realised IBD.
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Effect on h2 estimation of realised versus expected IBD

 EFFECT ON HERITABILITY ESTIMATION 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
As relatedness decreases, much better to use actual sharing Substantial loss of information for estimation when close relatives excluded.
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Kinships based on unobserved pedigrees

C

Gene Pool
Allele fractions
p and 1!pA

C

A

A

C

A A C A A A A A A

Many population genetics
models define kinship in
terms of excess allele sharing,
measured as a correlation
(no reference to a pedigree).

The correlation coefficient =
pedigree θ if individuals
come from a finite pedigree
with unrelated founders, and
if allele probabilities in
founders are known.

Pop gen textbooks and practice put much weight on this theory

but the underpinning assumptions don’t hold;

negative estimates are frequent yet θ is positive by definition.
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IBD genome segments

Homologous segments from two haploid genomes are
(recombination-sense) IBD if there has been no recombination within the
segment since their MRCA (mutation is ignored).

With sequence data, it is now common to think of relatedness in terms of
numbers and sizes of IBD segments.
Advantages:

No need for an explicit pedigree and no founder population.

Problems:

Recombinations cannot always be inferred.

Easy to identify if shared segment is large, but most shared segments
are short, even for close relatives.

Limited use as a measure relatedness: two haploid genomes are
entirely IBD, relatedness is reflected in distribution of IBD fragment
lengths, which is hard to infer.
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Fragment lengths IBD from 1 and 10 generations ago

NATURE REVIEWS | GENETICS  www.nature.com/reviews/genetics

F3

Nature Reviews | Genetics
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Distribution of TMRCA given IBD fragment length

NATURE REVIEWS | GENETICS  www.nature.com/reviews/genetics
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Consumer genetics and IBD

Large consumer genetics companies have ∼ 106 customers genotyped
at ∼ 106 SNPs.

They are interested to identify IBD segments in order to infer
(remote) pedigree relationships.

The relationship is usually expressed in terms of the shortest ancestral
path (e.g. 3rd cousin, two paths each of length 8) but these are hard to
distinguish from many other relationships e.g. involving multiple
ancestral paths.

Why should a customer prefer a poorly-inferred pedigree relationship
to a direct measure of genome similarity?
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Summary so far

Classical measures of relatedness had serious flaws, but were good
enough for many applications in the pre-genome era.

With genome-wide data now available, we need new concepts
definitions and measures (not estimates!).

Many researchers still regard pedigree kinships as “gold standard”,

but they are unsatisfactory as a definition;
they were only a convenient proxy when we didn’t have genome data.

Only actual genome similarity matters for most purposes.

So how do we measure genome similarity?
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SNP-based kinships

There are many ways to measure genetic similarity of two individuals from
genome-wide genetic markers (SNPs),

which one is the best?

One difficulty in humans is that we are all closely related:

Any two haploid human genomes share over 99.9% sequence identity
due to shared ancestry.

This isn’t evident for SNPs because they are highly polymorphic, but

measures of similarity can depend sensitively on the Minor Allele
Fraction (MAF) spectrum.
more low-MAF sites ⇒ greater similarity.
depends on SNP chip and QC.
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SNP-based kinships

Two approaches:

1 Average haplotype sharing.

2 Genome-wide average of a single-SNP measure.

We briefly discuss approach 1 here, approach 2 on following slides.

Average haplotype sharing:

Identify genome segments that are IBD between two individuals.

Measure kinship by the number of shared fragments, or their total
length.

Useful in some settings, but small (e.g. < 1Mb) shared fragments are
informative yet hard to exploit:

Because any two human genomes are > 99.9% IBD, an arbitrary
decision must be made to ignore small IBD fragments.
This decision can have a big impact on the resulting measure of kinship.
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Single-SNP approach 1: Average allele-sharing

Code SNP genotypes as 0,1 and 2, and so the genotypes of the two
individuals can be represented as a pair, such as (0,1): individual A
has genotype 0 while B has genotype 1.

Pairs of genotypes are assigned a score = P(allele drawn at random
from A = allele drawn at random from B):

(0, 0) or (2, 2) → 1
(0, 1), (1, 1) and (1, 2) → 1/2

(0, 2) → 0

Note similarity with the definition of coancestry (θ), but instead of
the probability that the two alleles are descended from a common
ancestor within the pedigree (which can be computed without
genotypes) we use the probability that the alleles are observed to be
the same (sometimes called Identity By State, IBS).
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Single-SNP approach 1: Average allele-sharing

Using above definition, the kinship of an individual with itself is
(1 + h)/2, where h is the fraction of heterozygous sites.

This is similar in form to the pedigree-kinship of an individual with
itself which is (1 + f )/2, where f is the individual’s inbreeding
coefficient (coancestry of its parents).

Disagreement about how to code heterozygotes: PLINK is highly
influential and it codes (1,1) as 1, rather than 0.5.

Now, the kinship can be represented in a simple formula

1− 1

2m

m∑
j=1

|GAj − GBj |

where GAj ∈ {0, 1, 2} is the genotype of A at the jth locus.
The kinship of an individual with itself is always 1.

Not clear which coding is better, and often not clear which coding
has been used in a calculation.
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Single-SNP approach 2: Average allelic correlation

Average allele sharing has the advantage of not requiring MAF values, but
disadvantages:

Matching common alleles score the same as matching rare alleles;
The result is very sensitive to the MAF spectrum of the SNPs.

The coancestry θ can be represented as a correlation coefficient, which
suggests the following expression for the kinship of A and B:

1

m

m∑
j=1

(GAj − 2pj)(GBj − 2pj)

2pj(1−pj)

a genome-wide average of single-SNP sample-size-1 correlation estimates.

This expression upweights the sharing of rare shared alleles (which
provides more evidence for a recent common ancestor).
Not clear what MAF values to use (the pj) and these have a big
impact on the results.
Usually sample MAFs are used, which implies that many negative
kinship values will be observed.
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Single-SNP approach 3: A more general formula

The kinship formula introduced above (Single-SNP approach 2) is the case
α = −1 of a more general formula:

Kα =
1

m

m∑
j=1

(GAj − 2pj)(GBj − 2pj)× [2pj(1−pj)]α

Animal/plant breeders tend to use α = 0, human geneticists α = −1

For many applications, the value of α encodes an assumption about
the relationship between the MAF of an allele and its effect size.

α = 0 implies the same effect size distribution for each SNP,
irrespective of MAF.
α = −1 implies that each SNP is expected to contribute the same to
total heritability, which implies that effect size is inversely proportional
to MAF.
Other values of α imply different MAF/effect size relationships
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ĥ2 for139 mouse traits using various kinship matrices

NATURE REVIEWS | GENETICS  www.nature.com/reviews/genetics

F4

Nature Reviews | Genetics
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A better way to measure relatedness?

Relatedness is a property of ALL the shared ancestors of two
individuals from whom they both inherited DNA;

Better to use (genome-wide average) Time since the MRCA.

TMRCA estimated from markers/sequence + demographic model.

Estimates used for inferring historical demographic parameters.2

LETTER
doi:10.1038/nature10231

Inference of human population history from
individual whole-genome sequences
Heng Li1,2 & Richard Durbin1

The history of human population size is important for understand-
ing human evolution. Various studies1–5 have found evidence for a
founder event (bottleneck) in East Asian and European popula-
tions, associated with the human dispersal out-of-Africa event
around 60 thousand years (kyr) ago. However, these studies have
had to assume simplified demographic models with few parameters,
and they do not provide a precise date for the start and stop times of
the bottleneck. Here, with fewer assumptions on population size
changes, we present a more detailed history of human population
sizes between approximately ten thousand and a million years ago,
using the pairwise sequentially Markovian coalescent model applied
to the complete diploid genome sequences of a Chinese male (YH)6,
a Korean male (SJK)7, three European individuals (J. C. Venter8,
NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507
(ref. 10) and NA19239). We infer that European and Chinese popu-
lations had very similar population-size histories before 10–20 kyr
ago. Both populations experienced a severe bottleneck 10–60 kyr
ago, whereas African populations experienced a milder bottleneck
from which they recovered earlier. All three populations have an
elevated effective population size between 60 and 250 kyr ago, pos-
sibly due to population substructure11. We also infer that the dif-
ferentiation of genetically modern humans may have started as early
as 100–120 kyr ago12, but considerable genetic exchanges may still
have occurred until 20–40 kyr ago.

The distribution of the time since the most recent common ancestor
(TMRCA) between two alleles in an individual provides information
about the history of change in population size over time. Existing
methods for reconstructing the detailed TMRCA distribution have
analysed large samples of individuals at non-recombining loci like
mitochondrial DNA13. However, the statistical resolution of inferences
from any one locus is poor, and power fades rapidly upon moving back
in time because there are few independent lineages probing deep time
depths (in humans, no information is available from mitochondrial
DNA beyond about 200 kyr ago, when all humans share a common
maternal ancestor11). In contrast, a diploid genome sequence contains
hundreds of thousands of independent loci, each with its own TMRCA
between the two alleles carried by an individual. In principle, it should
be possible to reconstruct the TMRCA distribution across the auto-
somes and the X chromosome by studying how the local density of
heterozygous sites changes across the genome, reflecting segments of
constant TMRCA separated by historical recombination events. To
explore whether we could use this idea to learn about the detailed
TMRCA distribution from a diploid whole-genome sequence, we pro-
posed the pairwise sequentially Markovian coalescent (PSMC) model,
which is a specialization to the case of two chromosomes of the sequen-
tially Markovian coalescent model14 (Fig. 1a). The free parameters of
this model include the scaled mutation rate, the recombination rate
and piecewise constant ancestral population sizes (see Methods). We
scaled results to real time, assuming 25 years per generation and a
neutral mutation rate of 2.5 3 1028 per generation15. The con-
sequences of uncertainty in the two scaling parameters will be dis-
cussed later in the text.

To validate our model, we simulated one-hundred 30-megabase
(Mb) sequences with a sharp out-of-Africa bottleneck followed by a
population expansion, and inferred population-size history with
PSMC (Fig. 2a). PSMC was able to recover the parameters used in
the simulation and the variance of the estimate was small between
20 kyr ago and 3 Myr ago. More recently than 20 kyr ago or more
anciently than 3 Myr ago, few recombination events are left in the
present sequence, which reduces the power of PSMC. Therefore, the
estimated effective population size (Ne) in these time intervals was not
as accurate and had large variance. To test the robustness of the model,
we introduced variable mutation rates and recombination hotspots in
the simulation (Supplementary Information). The inference was still
close to the true history (Fig. 2b) and a uniform rate of single nucleo-
tide polymorphism (SNP) ascertainment errors did not change our
qualitative results either (Supplementary Fig. 2). The simulations did,
however, reveal a limitation of PSMC in recovering sudden changes in
effective population size. For example, the instantaneous reduction from
12,000 to 1,200 at 100 kyr ago in the simulation was spread over several
preceding tens of thousands of years in the PSMC reconstruction.

1The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.
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Figure 1 | Illustration of the PSMC model and its application to simulated
data. a, The PSMC infers the local time to the most recent common ancestor
(TMRCA) on the basis of the local density of heterozygotes, using a hidden
Markov model in which the observation is a diploid sequence, the hidden states
are discretized TMRCA and the transitions represent ancestral recombination
events. b, We used the ms software to simulate the TMRCA relating the two
alleles of an individual across a 200-kb region (the thick red line), and inferred
the local TMRCA at each locus using the PSMC (the heat map). The inference
usually includes the correct time, with the greatest errors at transition points.

0 0 M O N T H 2 0 1 1 | V O L 0 0 0 | N A T U R E | 1

2Li H, Durbin R. Inference of human population history from individual
whole-genome sequences. Nature 475, 493-496 (2011).
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Historically prediction of phenotype was understood in terms of exploiting
relatedness summarised by kinship coefficients:

mathematically the standard formulation involved a matrix of kinship
coefficients, usually understood to be uniquely defined.

Now we have many different kinship coefficients:

we are free to tailor the kinship coefficient to match the genetic
architecture of the trait

can use multiple different kinship coefficients

for example corresponding to different genome regions
or for pedigree relationships and SNPs (after adjusting for pedigree)

Exciting new possibilities, but the traditional notion of kinship coefficients
is no longer useful - more tomorrow.
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Prediction of 139 mouse traits, various kinship matrices

NATURE REVIEWS | GENETICS  www.nature.com/reviews/genetics

F4

Nature Reviews | Genetics
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Model likelihood, heritability and prediction for 7 human
disease traits, kinship Kα for α ∈ {−2,−1, 0, 1}

Chromopainter61 offers a different approach that is 
based directly on the haplotype copying model52. Every 
chromosome is regarded as a mosaic of fragments cop-
ied from other sampled chromosomes, possibly with 
some mutations, and the coancestry of two individuals 
is measured by the number of distinct copying events 
between them. Although copying is intended to reflect 
IBD, every part of every chromosome is copied from 
another chromosome, and so an individual that is not 
closely related with anyone else in the sample will have 
the closest genome matches recorded even if these 
are remote.

Heritability and phenotype prediction
We focus below on the use of GSMs to estimate h2 and 
to predict phenotypes. Both applications traditionally 
used a matrix of θ values, which is now usually replaced 
by a GSM, to model phenotypic correlations among 
individuals, with the intuition being that the higher 
the genome similarity of two individuals, the more 
correlated their phenotypes that are under genetic  
control.

The linear mixed model. Underlying both types of 
inference is the following regression model, in which a 
matrix K specifies the covariance structure of a vector of 
observed phenotypes Y, where N represents the normal 
(or Gaussian) distribution.

Y ~ N(Z 0, K g + I e)σσβ 2 2 (11)

In this equation, β0 represents fixed effects cor-
responding to covariates in Z, I denotes the identity 
matrix, and σ2

g and σ2
e are the genetic and environmental 

variances, respectively. Given Y, Z and K, we typically 
estimate σ2

g and σ2
e using restricted maximum likeli-

hood (REML)62, which seeks values that maximize the 
restricted model likelihood (see Supplementary infor-
mation S7 (box)). For h2 estimation, we are interested 
in the ratio of variance terms; when K is standardized 
to have a mean of zero and a mean diagonal value of 
one, h2 = σ2

g /(σ2
g + σ2

e). A key technique for phenotype 

prediction in plant and animal breeding is best linear 
unbiased prediction (BLUP)63,64, which predicts the 
phenotypes of new individuals from estimates of Kσ2

g.
SNP-based analyses that were pioneered in wild pop-

ulations65 have been extensively applied in animal and 
plant breeding66–69 and, more recently, in humans12,70,71. 
A feature of SNP-based ĥ2 in humans is the use of unre-
lated individuals. This is counterintuitive because more 
relatedness generates more precise inferences. However, 
the problem is that inferences vary according to the 
levels of relatedness among the sampled individuals. In 
addition, most readily available data are from popula-
tion samples that include little relatedness. By exclud-
ing any close relatives, sampled individuals only share 
the short genomic regions from remote ancestors that 
generate LD, which is reasonably stable across popu-
lation samples. Furthermore, although high levels of 
relatedness would generate long-range tagging of causal 
variants, which can therefore all contribute to ĥ2, the 
ability to attribute ĥ2 to specific genomic regions would 
be greatly reduced. Despite the information loss from 
reduced relatedness, reasonable precision (SD < 0.05) 
can be achieved with, for example, 5,000 unrelated indi-
viduals72, and the estimates are more consistent across 
studies. SNP-based ĥ2 values using unrelated individu-
als have been interpreted in terms of common causal 
variants because these are better tagged by SNPs than 
rare variants. However, poorly tagged rare variants will 
contribute to ĥ2 (REF. 73), which hinders interpretation. 
Even so, it is possible to make useful comparisons across 
genomic regions74 and across phenotypes.

Prediction accuracy can be measured by the cor-
relation (r) between observed and predicted pheno-
types across test individuals. The squared correlation 
(r 2) is bounded above by h2, but in practice r 2 << h2. 
Relatedness between training and test individuals 
enhances predictive accuracy in the test set, but this 
may give an over-optimistic assessment of performance 
if the model is applied to new, less-related individuals. 
In humans, prediction of complex traits is typically 
poor in the general population but can be useful in 
high-risk groups75–78.

Table 2 | Model log likelihood, heritability estimates (ĥ2) and predictive accuracy (r2) for different SNP-based GSMs

Trait Log likelihood Heritability (ĥ2) Prediction accuracy (r2)

K
c – 2

K
c – 1

K
c0

K
c1

K
c – 2

K
c – 1

K
c0

K
c1

K
c – 2

K
c – 1

K
c0

K
c1

Bipolar disorder –97 0* –12 –32 1.00* 0.98 0.92 0.81 0.040 0.074* 0.073 0.069

Coronary artery disease –24 –3 0* –1 0.33 0.41* 0.17 0.06 0.000 0.017 0.020* 0.02

Crohn’s disease –178 –5 0* –3 1.00 1.00 1.00 1.00 0.057 0.096 0.098* 0.095

Hypertension –32 –3 0* –1 0.57* 0.48 0.21 0.08 0.005 0.024 0.026* 0.026

Rheumatoid arthritis –125 0* –15 –72 0.77 1.00* 0.99 0.17 0.016 0.043 0.042 0.043*

Type 1 diabetes –65 0* –7 –16 0.85* 0.82 0.41 0.16 0.031 0.060 0.060* 0.056

Type 2 diabetes –28 0* 0 –3 0.64* 0.52 0.22 0.08 0.009 0.026* 0.025 0.024

Average –78 –2* –5 –18 0.74 0.74* 0.56 0.34 0.022 0.048 0.049* 0.047

GSM, genetic similarity matrix; SNP, single-nucleotide polymorphism. Data for seven disease traits are from the Wellcome Trust Case Control Consortium.  
The GSMs considered are K

cα for α ∈ {–2, –1, 0, 1}. Log likelihoods, computed under the mixed model (equation 11), are reported relative to the maximum observed 
across GSMs. ĥ2 values correspond to the observed scale. *The GSMs marked by asterisks indicate those that maximize the model likelihood, ĥ2 and r2.
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Log likelihoods, computed under the mixed model, are reported
relative to the maximum observed over the four α values.

ĥ2 values correspond to the observed scale (not directly interpretable
but OK for comparisons here).

The GSMs marked by asterisks indicate those that maximize the
model likelihood, ĥ2 and r2.
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