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ael Morrissey Analysis of univariate phenotypic selection

Preliminaries 1

» My goals
» Key concepts in methods and theory to support solid
empirical work
> Structure
» This lecture: jump right in! — quite fine detail for a
“simple” case
» Subsequent lectures: elaboration of simple univariate case
» References
» Very few on slides
» Online slides with notes have extensive and specific
references to W&L2018
> See notes for other references as well as notes about
unpublished results
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Preliminaries 2 - notation

In addition to Julius and Bruce, I am able to be here thanks to:

University of [e# THE ROYAL N =@

> St Andrews SOCIETY SCIENCE OF THE
ENVIRONMENT
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Preliminaries 3 - notation

» z: phenotype

» a: breeding value

> W: (absolute) fitness

> w: relative fitness (w; = %)

> I, py, Elz]: mean of ©

> V,, 02, VAR[z]: variance of x

» 0,4, COV[z,y]: covariance of z and y
> Buy, by, regression of y on x
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L_Preliminaries 3 - notation

Changes and slopes

Two complimentary ways of thinking about natural selection:

distribution change perspective fitness function (landscape) perspective
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phenotype phenotype

Key concepts to look out for in each framework

selection gradients
the Lande equation

selection differentials
the breeder’s equation
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The change in the mean, within a generation

A natural summary of selection:

14 15 16

number of individuals
0

° L B B B B B B B e
& 9 10 11 12 13 17

lamb mass (kg)

» mean mass before selection: pg = 12.35 kg
> mean mass after selection: p; = 12.74 kg

» change in mass: S = p; — po = 0.39 kg

Analysis of univariate phenotypic selection

Michael Morrissey

el

(=1

&

<

§ LChangeS and slopes .
[}

Analysis of univariate phenotypic selection

el

o

&

<

§ LThe change in the mean, within a generation
&}

W&L2018 pp. 482, 1107, and onwards




The selection differential’s justification

Justification comes from the mechanics of evolution
evolution = f(genetics, selection)
For S, the justification is this:
R=h%S

Interpretation of h%:
» ratio of heritable to total variance b—;

» slope of the parent-offspring regression by,
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L_The selection differential’s justification

To see how, and under what conditions, these are equal, note that the
covariance of (single) parent and offspring is 4V,. The covariance of
mid-parrents and offsrping is thus V. The variance in parents is V},,
so from the definition of a regression (we shall focus on it soon when it
becomes immediatley relevant to selection coefficeints, the slope of the
offspring on mid-parent regression is ‘\;—;

Derivation of the Breeder’s equation
By construction, the regression of offspring phenotype on
mid-parent phenotype is a function that predicts offspring
phenotype according to

Zo = p+ bo|mp(zmp - /") +e

Where a definition of h? is h? = by, The expectation of a
linear transformation of a random variable z with expectation
Elz], according to the tranformation y = a + bz is

Ely] = a + bE[x], so

E[zn] =p+ bu|mpE[zmp - ,U']

/v is not a random variable insofar as our analysis is concerned,
)
E[ZO] — K= bn\mp(E[ZmPM)
R = Elz0] — 1 = byjyS
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L_Derivation of the Breeder’s equation

I'm not going to justify all other relationships between selection, ge-
netics, and evolution to the same extent, but I want to do this one
because this justification is the ultimate basis the entire selection coef-
ficient concept. Without the grounding in evolutionary QG, we might
as well just measure correlations of everything.This derivation of the
breeder’s equation is given in W&L2018 pp. 482

Where does h2 come from?

BAd e =1
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LWhere does h? come from?

Where does h? come from, and why is it squared (i.e., why is the
symbol squared, when h the square root of h? doesn’t seem to ever
come up in quantitative genetics? The answer is kinda cool!S. Wright.
1921. Systems of mating. I. The biometric relations between parent
and offspring. Genetics 6:111-123.




Alternative definition of S

Suppose a population contains n individuals, indexed i, with
individual fitness W;. For e.g., W; = 0 if dead, W; = 1 if alive:

S = Hafter — Hbefore

= 121&% - lELZL

n W n
= Elwz] — (1)E[z] (with w = WW ™! such that w = 1)
= COV|z,w]

Notes:
» this is a proof of the Robertson-Price identity

» this allows calculation of S as the mean weighted by relative
fitness, for fitness components other than viability
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L Alternative definition of S

Not just an alternative, one of the most important and useful relation-
ships in evolutionary biology.

Applied to phenotypes, it is another way of calculating the selection
differential. Applied to breeding values, it says what the mean breeding
value is, among individuals that pass on their genes. This directly
tells us how much evolution to expect (if only we could easily directly
measure breeding values!), and is the secondary theorem of selection,
which we will encounter later.

Background on OLS regression
If the covariance of A and B is o4p and the variance of A is 0124
then the regression of B on A is given by
gA
Bap = —%5
A
This, or its multivariate equivalent, is exactly what your
favourite software does to give you regression coefficients.

For multiple regression, if ¥y is the covariance matrix of the
predictor variables, and Xy, is a (column) vector of covariances
of predictors with the response, then the gradient of partial
regression coefficients is

B =32y,

The univariate case is key to the next slide, the multivariate
case comes up in multivariate selection.
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LBaCkground on OLS regression

A general stats interlude: not ignorable though!

The selection gradient: another selection coefficient

Recall that

R=h%S
and that v
=2
Vp
SO v s
R=2S=V,—
AT

recall also that S = COV [z, w], so
R=V,Bu

This is the univariate Lande equation.
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LThe selection gradient: another selection
coefficient

The key thing to remember from the previous slide is that Sap = Z42.
A




Using regression to estimate /3

Recall that we previously considered the mean of survivors
relative to the unselected mean to calculate S.

The same data could have been plotted as a scatter plot,
making regression natural.

00 02 04 06 08 10 12

mass (kg)

B =0.082

units are kg~! because w is unitless
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The relation between 5 and S

Since

5= S
Vi
rearrangement yields

S=V.p3
In ewe lambs V, of mass is 4.78, and 8 = 0.082, so

S =4.78-0.082 = 0.39

which is exactly what we got for S in the first place.
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Standardisations of differentials and gradients 1: o
Is selection of S = 0.5 kg of lamb mass stronger or weaker than
(also positive directional) selection of S = 50 mm of oak tree
sapling height? Some kind of standardisation is required for
most comparisons of selection coefficients.

» Standardising to unit variance is by far the most common
in empirical studies.
» variance-standardising S:

oS
Oz

» variance-standardising J3:

ﬁa = ﬂ 0z

> recall that 8 = 3, so

o2’
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E

forget everything you've ever been told about OLS assuming normal

LUsing regression to estimate 3

residuals, it isn’t true.
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L The relation between B and S

The relation between S and § may seem trivial, and the alternative
coefficients redundant. Soon their different uses will become very in-
teresting.
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L-Standardisations of differentials and
gradients 1: o AT

In practice, S, and 3, are estimated by the simple regression of w on
z; we'll come to a justification of this presently.




Properties of S, and 3,
Consider these two associations between a trait and relative
fitness:

w
00 05 10 15 20
L
w
00 05 10 15 20
I

o T T T T ’w T T T T
0 5 0 15 20 0 B 0 15 20
trait 1 (original units) trait 2 (original units)

Which is stronger selection?

w
00 05 1.0 15 20
L L
w
00 05 1.0 15 20
I

T T T T T T
8 -2 -1 0 1 2 3 3 -2 -1 0 1 2 3

trait 1 (unit standardised)

Properties of S, and 3,

> [, (or Sy) gives the slope of the relative fitness function (or
change in mean phenotype), in units of phenotypic
standard deviations.

» These are not all-purpose measures the strength of selection
> A shallow function (low 3 in original units), can cause a lot
of variation in expected fitness, if there is a big range of

phenotype (also in its original units)
» (5, and S, are the standard deviation of relative fitness
implied by the trait-fitness association
» this confounds (not necessarily in a pejorative sense)
phenotypic variability and steepness of the effect of
phenotype on fitness
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Standardisations of differentials and gradients 2: p
mean-standardising S:

S

Hz

Q: By what percent are survivors larger (smaller) than the

initial average? A: S, (-100).

mean-standardising 3:

S, =

Bu ="

Q: By what percent does a 1% change in phenotype change
relative fitness? A: .

There is no direct equivalence between S, and 3, as there is
for S, and f,

S
B,u = sﬁ Mz = 5 Mz

2

0z
2
_ S}L,“’Z - S M
=2 2= Ops
z z
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LProperties of S, and B,
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Evolvability and mean standardisation

In terms of the mean, how much evolution do we expect?

Az =V,B
Az VB
'z z
Az VB
E Tz

‘;—.‘j has been termed the evolvability, and is closely related (and
referred to essentially interchangeably with the coefficient of

additive genetic variance C'V, = %
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LEvolvability and mean standardisation

T.F. Hansen and D. Houle. 2008. Measuring and comparing evolvabil-

ity and constraint in multivariate characters. Journal of Evolutionary

Biology 21: 1201-1219.

h? and alternative standardisations of S

» h? is a variance-standardisation of the genetic variability in
a population

» the breeder’s equation holds, using k2, for any
standardisation of traits

R=h%S
Ry, = h%S,
R, = h%S,

> as we saw on the previous slide, for the Lande equation to
hold, V,, must be expressed in the same standardising unit
(e.g., o or u) in which the gradient and response are
expressed.
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L2 and alternative standardisations of S

Changes in the variance due to selection 1

Selection may change the variability of a population

14 15 16 17

number of individuals

8 9 10 11 12 13

lamb mass (kg)

of =478

o =438
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LChanges in the variance due to selection 1

I




Changes in the variance due to selection 2

Care is needed: purely directional selection changes the
variance too:
Ac?(directional) = —S?
So, the change in the variance, over and above the effect of
purely directional selection to reduce the variance, could be
defined as
C=Ao?+52

In ewe lambs:

> o =12.35, g = 12.74, 50 S = 0.39

> 02 =4.78, 02 = 4.38
So,

Ac? =438 — 4.78 = —0.40

and
C = —0.40 +0.40°> = —0.25
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The Lande-Arnold regression

Just like the change in the mean is related to a linear
regression, the change in the variance is related to a quadratic
regression coefficient.

Lande and Arnold (1983) showed that

’wi,:a+/3(27‘*2)+%(z,¢75)2+e,;
and that when the phenotype is Gaussian,
C=~- 0’;1
(note ot = (62)*) and

M=ot (1~ )
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Some notes about the Lande-Arnold regression

1
u;i:oﬁrﬂ(zif2)+5(zi72)2+ei

» does not (and neither does OLS, regardless of what the
textbooks say) assume normality of residuals

> does assume normality of phenotype (in quadratic case),
despite this not generally being an assumption of OLS

» heterogeneity of residual variance does affect OLS SEs (but
no effect on estimates), but this is probably a minimal
concern

» calculation of w is surprisingly frequently messed up
» mean-centering is critical in quadratic case

> factor of 1/2 is very easy to miss
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LChanges in the variance due to selection 2
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L_The Lande-Arnold regression

R. Lande and S.J. Arnold. 1983. The measurement of selection on
correlated characters. Evolution 37: 1210-1226.
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L-Some notes about the Lande-Arnold
regression

for more on the factor of a half for quadratic selection gradients: Stinch-
combe, J.R., Agrawal, A.F., Hohenlohe, P.A., Arnold, S.J. and Blows,
M.W. 2008. Estimating nonlinear selection gradients using quadratic
regression coefficients: Double or nothing? Evolution 62: 2435-2440.




Some further notes about ~

Consider this relationship between trait and fitness:

°
=

> What are the selection coefficients?

coefficient name symbol  value
directional selection differential S 0.21
directional selection gradient B8 0.21
change in the phenotypic variance ~ Ao? -0.24
stabilising selection differential C -0.20
quadratic selection gradient vy -0.20
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L_Some further notes about ¥

Schluter, D. 1988. Estimating the form of natural selection on a quan-
titative trait. Evolution 42: 849-861.

Fitness “functions” and fitness “landscapes” 1

» The main message from the previous slide is that selection
coefficients represent very specific things about natural
selection, they are not catch-all representations of
trait-fitness relationships

» Directional and quadratic gradients can be thought of as
the average slope and curvature of the of a fitness function,
in the region of phenotype in a population.

» As such differentials and gradients reflect not only the
ecological relationship between trait and fitness, but also
the distribution of phenotype along the z-axis of the
function mapping trait on to fitness.
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LFitness “functions” and fitness “landscapes”
1

Fitness “functions” and fitness “landscapes” 2

(a) individual and mean

fitness functions (b) selection differentials (c) selection gradients
o w

individual or mean fitness

S (directional selection gradient)
 (directional selection gradient)

-2 0 2 4 6 8 -2 0 2 4 6 8
individual or mean phenotype
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L TFitness “functions” and fitness “landscapes”
2

Figure is from B. Walsh and M.B. Morrissey. 2019. Evolutionary Quan-
titative Genetics, in: Handbook of Statistical Genetics, 4th ed.




A bit more formality about the average slope and
curvature

A super-handy result from Charles Stein (1973) is that if
y = f(z), then

COVlz,y] = VAR[]E[f'(x)]
So, if W = f(z)
S-W =COV[z, W] = o2E[f'(2)]
B = oZE[f ()W

So, for any arbitrary function, we can calculate a selection
gradient.
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LA bit more formality about the average slope
and curvature

Lande and Arnold 1983’s justification for OLS analysis of selection
gradients is (among a great many things) an independent discovery of
Stein’s lemma, and an extension to the quadratic case.

C.M. Stein. 1974. Estimation of the mean of a multivariate normal
distribution. Proceedings of the Prague Symposium on Asymptotic
Statistics 345-381. Univ. Karlova, Prague.

A few notes about Buverage gradient

» If z is normal, then Bors = Baverage gradient

» If z is not normal, then 3, calculated as the average
gradient, still works in the Lande equation, provided that
breeding values are normal and uncorrelated with
environmental effects. To see this, note that

COVla,w] = %E[Z—zf'(Z)]

and that g—i =1, so the change in breeding values (from
applying the Robertson-Price identity to breeding values
from one generation to the next

w] _ 1 W s . :
> E {()72} = iy o= if changes in Z are understood to arise
from only the mean changing.
> this is useful for numerical implementation, and also should
allow analysis of discontinuous fitness functions.

Michael Morrissey Analysis of univariate phenotypic selection

2020-02-03

Analysis of univariate phenotypic selection

LA few notes about Bloerase @rodtes

By only the mean changing, I mean that all other non-central moments

stay the same. This corresponds to the thought experiment of shifting
the distribution to the right, or adding a tiny bit to each individual’s
phenotype, just like a single generation of evolution would do.

Inference of selection gradients from arbitrary functions
The relationship between the average partial derivatives of the
fitness function and selection gradients suggests a numerical
scheme applicable to any fitness function shape

10 o
08 -

linear model (with quadratic term)
o] B =0.082, 3, = 0.180
o2 v = 0.001, 7, = 0.003

00 o

logistic regression model (with quadratic term)
g = 0.080, B,= 0.176
v = —0.0076, v, = —0.033

generalised spline regression
8= 0079, f,= 0173
v = —0.010, 7, = —0.044

6 8 10 12 14 16 18

mass (ka)
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L Tnference of selection gradients from
arbitrary functions




Selection coefficients and other fitness functions

» Some functions have direct relationships to selection
coefficients

> Average derivative methods could be used to brute-force
gradient calculations for shape of fitness function

» Analytical relations are still often very useful, especially for
theory or predicting consequences of management

» No way that I can explain all the following equations, or
that you can remember them. My purpose is to make you
aware of the range of known relationships

» Useful type of relationship without analytical results:
logistic and probit functions
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LSelection coefficients and other fitness
functions

Selection coeflicients and other fitness functions -
truncation

breeders

density

culled

fn(t)

Fy—t

where fn() and Fx(¢) are unit normal density and cumulative
functions, and g = T=4=

o

S=o0.
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LSelection coefficients and other fitness .
functions - truncation s g

see beginning of chapter 14 in W&L2018

Selection coefficients and other fitness functions -
partial truncation

harvested

densty

phenotype (z-score)

» like truncation, but individuals above or below the critical
trait value are culled with probability a

« t
§ =g, 00N
aF] N*f, -1
» partial truncation can behave surprisingly differently to
truncation selection!
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L—Selection coefficients and other fitness
functions - partial truncation

This result, and others related to functions that might arise in man-
agement of exploited populations are unpublished. Contact me if this
seems useful to you!




Selection coefficients and other fitness functions -
exponential

» very convenient:

if
W x e
then
B=0b
and
S=o%

if z is normal

of univariate phenotypic selection
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Selection coeflicients and other fitness functions -
Gaussian

If » is normal with mean p, and variance o2, and

—(2—0)2
W(z) x e 22

then
B=-8(z-9),

where § = ﬁ (regrettably, S is not the selection differential)
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Selection coefficients and other fitness functions -
log-exponential (generalisation of gaussian)

Consider the fitness function

EW(z)] = exptbrityoz

» looks an awful lot like a Lande-Arnold regression
> this is a Gaussian fitness function when g < 0
provided that g < ﬁ
: b+ gi.
5= !N’;
1—go?

and
_ P +g(l-g)

(1-9)?

v
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LSelection coefficients and other fitness
functions - exponential

For discussions of how GLMs, GLMMs, and special cases that arise in
mark-recapture, survival analysis, and molecular parentage analysis re-
late to exponential functions, see: M.B. Morrissey, and I.B.J. Goudie.
2016. Analytical results for directional and quadratic selection gra-
dients for log-linear models of fitness functions. biorxiv.org preprint:
10.1101/040618
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functions - log-exponential (generalisation of S
)

M.B. Morrissey, and 1.B.J. Goudie. 2016. Analytical results for direc-
tional and quadratic selection gradients for log-linear models of fitness
functions. biorxiv.org preprint: 10.1101/040618




