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Preliminaries 1

I My goals
I Key concepts in methods and theory to support solid

empirical work
I Structure

I This lecture: jump right in! – quite fine detail for a
“simple” case

I Subsequent lectures: elaboration of simple univariate case
I References

I Very few on slides
I Online slides with notes have extensive and specific

references to W&L2018
I See notes for other references as well as notes about

unpublished results
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Preliminaries 3 - notation

I z: phenotype
I a: breeding value
I W : (absolute) fitness
I w: relative fitness (wi = Wi

W̄
)

I x̄, µx, E[x]: mean of x
I Vx, σ2

x, V AR[x]: variance of x
I σx,y, COV [x, y]: covariance of x and y

I βxy, by|x: regression of y on x
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Preliminaries 3 - notation

Changes and slopes

Two complimentary ways of thinking about natural selection:
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Key concepts to look out for in each framework

selection differentials
the breeder’s equation

selection gradients
the Lande equation

Michael Morrissey Analysis of univariate phenotypic selection

Changes and slopes

Two complimentary ways of thinking about natural selection:

phenotype

nu
m

be
r 

of
 in

di
vi

du
al

s

0
10

00

−4 −2 0 1 2 3 4

distribution change perspective

−4 −2 0 2 4

0.
0

0.
4

0.
8

phenotype

fit
ne

ss

fitness function (landscape) perspective

Key concepts to look out for in each framework

selection differentials
the breeder’s equation

selection gradients
the Lande equation20

20
-0

2-
03

Analysis of univariate phenotypic selection

Changes and slopes

The change in the mean, within a generation

A natural summary of selection:
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I mean mass before selection: µ0 = 12.35 kg
I mean mass after selection: µ1 = 12.74 kg
I change in mass: S = µ1 − µ0 = 0.39 kg
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The change in the mean, within a generation

W&L2018 pp. 482, 1107, and onwards



The selection differential’s justification

Justification comes from the mechanics of evolution

evolution = f(genetics, selection)

For S, the justification is this:

R = h2S

Interpretation of h2:
I ratio of heritable to total variance Va

Vp

I slope of the parent-offspring regression bo|mp

.
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The selection differential’s justification

To see how, and under what conditions, these are equal, note that the
covariance of (single) parent and offspring is 1

2Va. The covariance of
mid-parrents and offsrping is thus Va. The variance in parents is Vp,
so from the definition of a regression (we shall focus on it soon when it
becomes immediatley relevant to selection coefficeints, the slope of the
offspring on mid-parent regression is Va

Vp

Derivation of the Breeder’s equation
By construction, the regression of offspring phenotype on
mid-parent phenotype is a function that predicts offspring
phenotype according to

zo = µ+ bo|mp(zmp − µ) + e

Where a definition of h2 is h2 = bo|mp. The expectation of a
linear transformation of a random variable x with expectation
E[x], according to the tranformation y = a+ bx is
E[y] = a+ bE[x], so

E[zo] = µ+ bo|mpE[zmp − µ]

µ is not a random variable insofar as our analysis is concerned,
so

E[zo]− µ = bo|mp(E[zmpµ)

R = E[zo]− µ = bo|mpS
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Derivation of the Breeder’s equation

I’m not going to justify all other relationships between selection, ge-
netics, and evolution to the same extent, but I want to do this one
because this justification is the ultimate basis the entire selection coef-
ficient concept. Without the grounding in evolutionary QG, we might
as well just measure correlations of everything.This derivation of the
breeder’s equation is given in W&L2018 pp. 482

Where does h2 come from?
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Where does h2 come from?

Where does h2 come from, and why is it squared (i.e., why is the
symbol squared, when h the square root of h2 doesn’t seem to ever
come up in quantitative genetics? The answer is kinda cool!S. Wright.
1921. Systems of mating. I. The biometric relations between parent
and offspring. Genetics 6:111-123.



Alternative definition of S

Suppose a population contains n individuals, indexed i, with
individual fitness Wi. For e.g., Wi = 0 if dead, Wi = 1 if alive:

S = µafter − µbefore

= 1
n

Σi
Wi

W̄
zi −

1
n

Σizi

= E[wz]− (1)E[z] (with w = WW̄−1 such that w̄ = 1)
= COV [z, w]

Notes:
I this is a proof of the Robertson-Price identity
I this allows calculation of S as the mean weighted by relative

fitness, for fitness components other than viability

Michael Morrissey Analysis of univariate phenotypic selection

Alternative definition of S

Suppose a population contains n individuals, indexed i, with
individual fitness Wi. For e.g., Wi = 0 if dead, Wi = 1 if alive:

S = µafter − µbefore

= 1
n

Σi
Wi

W̄
zi −

1
n

Σizi

= E[wz]− (1)E[z] (with w = WW̄−1 such that w̄ = 1)
= COV [z, w]

Notes:
I this is a proof of the Robertson-Price identity
I this allows calculation of S as the mean weighted by relative

fitness, for fitness components other than viability20
20

-0
2-

03

Analysis of univariate phenotypic selection

Alternative definition of S

Not just an alternative, one of the most important and useful relation-
ships in evolutionary biology.

Applied to phenotypes, it is another way of calculating the selection
differential. Applied to breeding values, it says what the mean breeding
value is, among individuals that pass on their genes. This directly
tells us how much evolution to expect (if only we could easily directly
measure breeding values!), and is the secondary theorem of selection,
which we will encounter later.

Background on OLS regression
If the covariance of A and B is σAB and the variance of A is σ2

A

then the regression of B on A is given by

βAB = σAB
σ2
A

This, or its multivariate equivalent, is exactly what your
favourite software does to give you regression coefficients.

For multiple regression, if Σx is the covariance matrix of the
predictor variables, and Σxy is a (column) vector of covariances
of predictors with the response, then the gradient of partial
regression coefficients is

β = Σ−1
x Σxy

The univariate case is key to the next slide, the multivariate
case comes up in multivariate selection.
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Background on OLS regression

A general stats interlude: not ignorable though!

The selection gradient: another selection coefficient

Recall that
R = h2S

and that
h2 = Va

Vp

so
R = Va

Vp
S = Va

S

Vp

recall also that S = COV [z, w], so

R = Vaβzw

This is the univariate Lande equation.
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The selection gradient: another selection
coefficient

The key thing to remember from the previous slide is that βAB = σAB

σ2
A

.



Using regression to estimate β
Recall that we previously considered the mean of survivors
relative to the unselected mean to calculate S.
The same data could have been plotted as a scatter plot,
making regression natural.
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Using regression to estimate β

forget everything you’ve ever been told about OLS assuming normal
residuals, it isn’t true.

The relation between β and S

Since
β = S

Vz

rearrangement yields
S = Vzβ

In ewe lambs Vz of mass is 4.78, and β = 0.082, so

S = 4.78 · 0.082 = 0.39

which is exactly what we got for S in the first place.
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The relation between β and S

The relation between S and β may seem trivial, and the alternative
coefficients redundant. Soon their different uses will become very in-
teresting.

Standardisations of differentials and gradients 1: σ
Is selection of S = 0.5 kg of lamb mass stronger or weaker than
(also positive directional) selection of S = 50 mm of oak tree
sapling height? Some kind of standardisation is required for
most comparisons of selection coefficients.
I Standardising to unit variance is by far the most common

in empirical studies.
I variance-standardising S:

Sσ = S

σz

I variance-standardising β:

βσ = β · σz
I recall that β = S

σ2
z
, so

βσ = S

σ2
z

· σz = S

σz
= Sσ
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Standardisations of differentials and
gradients 1: σ

In practice, Sσ and βσ are estimated by the simple regression of w on
z; we’ll come to a justification of this presently.



Properties of Sσ and βσ
Consider these two associations between a trait and relative
fitness:
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Properties of Sσ and βσ

Properties of Sσ and βσ

I βσ (or Sσ) gives the slope of the relative fitness function (or
change in mean phenotype), in units of phenotypic
standard deviations.

I These are not all-purpose measures the strength of selection
I A shallow function (low β in original units), can cause a lot

of variation in expected fitness, if there is a big range of
phenotype (also in its original units)

I βσ and Sσ are the standard deviation of relative fitness
implied by the trait-fitness association
I this confounds (not necessarily in a pejorative sense)

phenotypic variability and steepness of the effect of
phenotype on fitness
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Properties of Sσ and βσ

Standardisations of differentials and gradients 2: µ
mean-standardising S:

Sµ = S

µz
Q: By what percent are survivors larger (smaller) than the
initial average? A: Sµ(·100).
mean-standardising β:

βµ = β · µz
Q: By what percent does a 1% change in phenotype change
relative fitness? A: βµ.
There is no direct equivalence between Sµ and βµ, as there is
for Sσ and βσ

βµ = β · µz = S

σ2
z

· µz

= Sµµz
σ2
z

· µz = Sµ
µ2
z

σ2
z
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Standardisations of differentials and
gradients 2: µ



Evolvability and mean standardisation

In terms of the mean, how much evolution do we expect?

∆z̄ = Vaβ

∆z̄
z̄

= Vaβ

z̄

∆z̄
z̄

=
Va

βµ
z̄

z̄
∆z̄
z̄

= Va
z̄2 βµ

Va
z̄2 has been termed the evolvability, and is closely related (and
referred to essentially interchangeably with the coefficient of
additive genetic variance CVa = σa

µ .
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Evolvability and mean standardisation

T.F. Hansen and D. Houle. 2008. Measuring and comparing evolvabil-
ity and constraint in multivariate characters. Journal of Evolutionary
Biology 21: 1201-1219.

h2 and alternative standardisations of S

I h2 is a variance-standardisation of the genetic variability in
a population

I the breeder’s equation holds, using h2, for any
standardisation of traits

R = h2S

Rσ = h2Sσ

Rµ = h2Sµ

I as we saw on the previous slide, for the Lande equation to
hold, Va must be expressed in the same standardising unit
(e.g., σ or µ) in which the gradient and response are
expressed.
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h2 and alternative standardisations of S

Changes in the variance due to selection 1
Selection may change the variability of a population
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Changes in the variance due to selection 1



Changes in the variance due to selection 2
Care is needed: purely directional selection changes the
variance too:

∆σ2
z(directional) = −S2

So, the change in the variance, over and above the effect of
purely directional selection to reduce the variance, could be
defined as

C = ∆σ2
z + S2

In ewe lambs:
I µ0 = 12.35, µ1 = 12.74, so S = 0.39
I σ2

0 = 4.78, σ2
1 = 4.38

So,
∆σ2

z = 4.38− 4.78 = −0.40

and
C = −0.40 + 0.402 = −0.25
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Changes in the variance due to selection 2

The Lande-Arnold regression

Just like the change in the mean is related to a linear
regression, the change in the variance is related to a quadratic
regression coefficient.
Lande and Arnold (1983) showed that

wi = α+ β (zi − z̄) + 1
2 (zi − z̄)2 + ei

and that when the phenotype is Gaussian,

C = γ · σ4
z

(note σ4
z =

(
σ2
z

)2) and

∆σ2
z = σ4

z

(
γ − β2

)
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The Lande-Arnold regression

R. Lande and S.J. Arnold. 1983. The measurement of selection on
correlated characters. Evolution 37: 1210–1226.

Some notes about the Lande-Arnold regression

wi = α+ β (zi − z̄) + 1
2 (zi − z̄)2 + ei

I does not (and neither does OLS, regardless of what the
textbooks say) assume normality of residuals

I does assume normality of phenotype (in quadratic case),
despite this not generally being an assumption of OLS

I heterogeneity of residual variance does affect OLS SEs (but
no effect on estimates), but this is probably a minimal
concern

I calculation of w is surprisingly frequently messed up
I mean-centering is critical in quadratic case
I factor of 1/2 is very easy to miss
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Some notes about the Lande-Arnold
regression

for more on the factor of a half for quadratic selection gradients: Stinch-
combe, J.R., Agrawal, A.F., Hohenlohe, P.A., Arnold, S.J. and Blows,
M.W. 2008. Estimating nonlinear selection gradients using quadratic
regression coefficients: Double or nothing? Evolution 62: 2435–2440.



Some further notes about γ
Consider this relationship between trait and fitness:
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I What are the selection coefficients?
coefficient name symbol value
directional selection differential S 0.21
directional selection gradient β 0.21
change in the phenotypic variance ∆σ2

z -0.24
stabilising selection differential C -0.20
quadratic selection gradient γ -0.20
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Some further notes about γ

Schluter, D. 1988. Estimating the form of natural selection on a quan-
titative trait. Evolution 42: 849–861.

Fitness “functions” and fitness “landscapes” 1

I The main message from the previous slide is that selection
coefficients represent very specific things about natural
selection, they are not catch-all representations of
trait-fitness relationships

I Directional and quadratic gradients can be thought of as
the average slope and curvature of the of a fitness function,
in the region of phenotype in a population.

I As such differentials and gradients reflect not only the
ecological relationship between trait and fitness, but also
the distribution of phenotype along the x-axis of the
function mapping trait on to fitness.
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Fitness “functions” and fitness “landscapes” 2
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Fitness “functions” and fitness “landscapes” 2
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Fitness “functions” and fitness “landscapes”
2

Figure is from B. Walsh and M.B. Morrissey. 2019. Evolutionary Quan-
titative Genetics, in: Handbook of Statistical Genetics, 4th ed.



A bit more formality about the average slope and
curvature

A super-handy result from Charles Stein (1973) is that if
y = f(x), then

COV [x, y] = V AR[x]E[f ′(x)]

So, if W = f(z)

S · W̄ = COV [z,W ] = σ2
zE[f ′(z)]

β = σ2
zE[f ′(z)]W̄−1

So, for any arbitrary function, we can calculate a selection
gradient.
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A bit more formality about the average slope
and curvature

Lande and Arnold 1983’s justification for OLS analysis of selection
gradients is (among a great many things) an independent discovery of
Stein’s lemma, and an extension to the quadratic case.

C.M. Stein. 1974. Estimation of the mean of a multivariate normal
distribution. Proceedings of the Prague Symposium on Asymptotic
Statistics 345–381. Univ. Karlova, Prague.

A few notes about βaverage gradient
I If z is normal, then βOLS = βaverage gradient
I If z is not normal, then β, calculated as the average

gradient, still works in the Lande equation, provided that
breeding values are normal and uncorrelated with
environmental effects. To see this, note that

COV [a,w] = VaE[dz
da
f ′(z)]

and that dz
da = 1, so the change in breeding values (from

applying the Robertson-Price identity to breeding values
from one generation to the next

I E
[
∂w
∂z

]
= 1

W̄
∂W̄
∂z̄ if changes in z̄ are understood to arise

from only the mean changing.
I this is useful for numerical implementation, and also should

allow analysis of discontinuous fitness functions.
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A few notes about βaverage gradient

By only the mean changing, I mean that all other non-central moments
stay the same. This corresponds to the thought experiment of shifting
the distribution to the right, or adding a tiny bit to each individual’s
phenotype, just like a single generation of evolution would do.

Inference of selection gradients from arbitrary functions
The relationship between the average partial derivatives of the
fitness function and selection gradients suggests a numerical
scheme applicable to any fitness function shape
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Inference of selection gradients from
arbitrary functions



Selection coefficients and other fitness functions

I Some functions have direct relationships to selection
coefficients

I Average derivative methods could be used to brute-force
gradient calculations for shape of fitness function

I Analytical relations are still often very useful, especially for
theory or predicting consequences of management

I No way that I can explain all the following equations, or
that you can remember them. My purpose is to make you
aware of the range of known relationships

I Useful type of relationship without analytical results:
logistic and probit functions
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Selection coefficients and other fitness
functions

Selection coefficients and other fitness functions -
truncation

z

de
ns

ity

breeders

culled

T

S = σz
fN (t)
FN−t

where fN () and FN (t) are unit normal density and cumulative
functions, and g = T−µz

σz
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Selection coefficients and other fitness
functions - truncation

see beginning of chapter 14 in W&L2018

Selection coefficients and other fitness functions -
partial truncation

I like truncation, but individuals above or below the critical
trait value are culled with probability α

S = σz
αfN (t)

αFN−t− 1
I partial truncation can behave surprisingly differently to

truncation selection!
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Selection coefficients and other fitness
functions - partial truncation

This result, and others related to functions that might arise in man-
agement of exploited populations are unpublished. Contact me if this
seems useful to you!



Selection coefficients and other fitness functions -
exponential

I very convenient:

if
W ∝ ebz

then
β = b

and
S = σ2

zb

if z is normal
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Selection coefficients and other fitness
functions - exponential

For discussions of how GLMs, GLMMs, and special cases that arise in
mark-recapture, survival analysis, and molecular parentage analysis re-
late to exponential functions, see: M.B. Morrissey, and I.B.J. Goudie.
2016. Analytical results for directional and quadratic selection gra-
dients for log-linear models of fitness functions. biorxiv.org preprint:
10.1101/040618

Selection coefficients and other fitness functions -
Gaussian

If z is normal with mean µz and variance σ2
z , and

W (z) ∝ e
−(z−θ)2

2ω2

then
β = −S(z̄ − θ),

where S = 1
σ2+ω2 (regrettably, S is not the selection differential)
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Selection coefficients and other fitness functions -
Gaussian
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2ω2
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Selection coefficients and other fitness
functions - Gaussian

Selection coefficients and other fitness functions -
log-exponential (generalisation of gaussian)

Consider the fitness function

E[W (zi)] = expa+bzi+ 1
2gzi

I looks an awful lot like a Lande-Arnold regression
I this is a Gaussian fitness function when g < 0

provided that g < 1
σ2
z

β = b+ gµz
1− gσ2

z

and
γ = b2 + g(1− g)

(1− g)2
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Selection coefficients and other fitness
functions - log-exponential (generalisation of
gaussian)

M.B. Morrissey, and I.B.J. Goudie. 2016. Analytical results for direc-
tional and quadratic selection gradients for log-linear models of fitness
functions. biorxiv.org preprint: 10.1101/040618


