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Preliminaries 2

I My goals
I Key concepts in methods and theory to support solid

empirical work (as before)

I Structure
I What happens when selection acts on more than one trait

at a time?
I The selection gradient concept really comes into its own.

I Set up for following lectures
I Many of the most useful concepts in modern selection

analysis are elaborations of the basic multivariate case we
focus on in this lecture.
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Two views, univariate (from lecture 1)

Two complimentary ways of thinking about natural selection:
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The multivariate distributional view
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The multivariate function view
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Dispensing with misunderstandings about collinearity 1
> S <- matrix(c(1,0.5,0.5,1),2,2)
>
> x <- rmvnorm(200,c(0,0),S) # from pkg mvtnorm
>
> d <- data.frame(x1=x[,1],x2=x[,2])
>
> plot(d$x1,d$x2)
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Dispensing with misunderstandings about collinearity 1

> d$y <- rnorm(200,0.5*d$x1,1) >

> summary(lm(y˜x1,data=d))$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03284569 0.07174432 0.4578159 6.475867e-01
x1 0.53123048 0.06472664 8.2072930 2.849766e-14
>
> summary(lm(y˜x2,data=d))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0828077 0.08010253 1.033771 0.3025040808
x2 0.2734574 0.07188813 3.803930 0.0001896892
>
> summary(lm(y˜x1+x2,data=d))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03036372 0.07222198 0.4204222 6.746353e-01
x1 0.54704737 0.07798616 7.0146722 3.610191e-11
x2 -0.02831862 0.07750379 -0.3653838 7.152170e-01
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The multivariate breeder’s equation

Univariate breeder’s equation

∆z̄ = Va
Vp
S

Multivariate breeder’s equation

∆z̄ = GP−1S

where

G =

[
σ2

az1 σa(z1, z2) . . .

σa(z1, z2) σ2
az2

...
. . .

]
, P =

 σ2
pz1 σp(z1, z2) . . .

σp(z1, z2) σ2
pz2

...
. . .

 , S

[
S1
S2
...

]
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Regression parameterisations of the multivariate
breeder’s equation

If we define the regression of an offspring trait vector on a
mid-parent trait vector, we ge

H = GP−1

and so
∆z̄ = HS

But what turns out to be really fun is to note that the multiple
regression of fitness on traits is

β = P−1S

and so
∆z̄ = Gβ

This is referred to as the multivariate Lande equation.
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β points in the direction of most rapidly increasing
fitness
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The duality of covariances: phenotypic and genetic
correlations and their effects 1

Phenotypic covariances map fitness function (surface) geometry
onto changes in the multivariate distribution of phenotype.

S = Pβ
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The duality of covariances: phenotypic and genetic
correlations and their effects 1

Let’s break that down...
I direct selection

Si,direct = σ2
ziβi

I indirect selection

Si,indirect = Σj 6=iσzj ,ziβj

I total multivariate selection

S = Pβ
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The duality of covariances: phenotypic and genetic
correlations and their effects 2

Genetic covariances map the response to selection onto the
selection gradient vector
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]
then

∆z̄ =
[

0.5
−0.25

]
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The MV response over generations
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The MV response over generations
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Estimation: the multivariate Lande-Arnold regression

wi = α

+ Σjβjzij directional

+ 1
2Σjγj(zij − z̄j)2 quadratic

+ Σt
j=2Σk

k=j+1γjk(zij − z̄j)(zik − z̄k) correlational

+ ei

This is an extension of the univariate Lane-Arnold regression
from lecture 1 to multiple regression.
We will continue in this lecture with the directional component
only.
Multivariate quadratic selection will be treated separately.
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Multivariate selection in Soay lambs

First we’ll back-track and do univariate analyses
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trait S SE[S] βuniv SE[βuniv]
mass (kg) 0.394 0.070 0.082 0.014
hind leg length (mm) 1.525 0.300 0.017 0.003
horn length (mm) 0.281 0.740 0.000 0.002
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Multivariate selection in Soay lambs

6 8 12 16

0.
0

0.
4

0.
8

mass (kg)

su
rv

iv
al

130 150 170

0.
0

0.
4

0.
8

hind leg length (mm)

su
rv

iv
al

0 40 80 120

0.
0

0.
4

0.
8

horn length (mm)

su
rv

iv
al

Multivariate directional selection OLS model

wi = α+ βmassmassi + βleglegi + βhornhorni + e1

trait βuniv SE[βuniv] β SE[β]
mass (kg) 0.082 0.014 0.087 0.029
hind leg length (mm) 0.017 0.003 0.004 0.007
horn length (mm) 0.000 0.002 −0.004 0.001
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Multivariate selection in Soay lambs
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Direct and indirect selection in Soay lambs

S = Pβ

P =

mass leg horn
mass 5 18 22
leg 18 86 85
horn 22 85 468

, β = mass 0.087
leg 0.004
horn -0.004

Direct selection of horn length:

Sdirect = σ2
horn · βhorn = 468 · −0.0043 = −2.01

Indirect selection of horn length:

Sindirect = σhorn,mass·βmass+σhorn,leg·βleg = 22·0.087+85·0.0004 = 2.25

Total selection differential:

S = Sdirect + Sindirect = −2.01 + 2.25 = 0.24

Michael Morrissey Analysis of multivariate phenotypic selection



Direct and indirect selection in Soay lambs

S = Pβ

P =

mass leg horn
mass 5 18 22
leg 18 86 85
horn 22 85 468

, β = mass 0.087
leg 0.004
horn -0.004

Direct selection of horn length:

Sdirect = σ2
horn · βhorn = 468 · −0.0043 = −2.01

Indirect selection of horn length:

Sindirect = σhorn,mass·βmass+σhorn,leg·βleg = 22·0.087+85·0.0004 = 2.25

Total selection differential:

S = Sdirect + Sindirect = −2.01 + 2.25 = 0.24

Michael Morrissey Analysis of multivariate phenotypic selection

Direct and indirect selection in Soay lambs

S = Pβ

P =

mass leg horn
mass 5 18 22
leg 18 86 85
horn 22 85 468

, β = mass 0.087
leg 0.004
horn -0.004

Direct selection of horn length:

Sdirect = σ2
horn · βhorn = 468 · −0.0043 = −2.01

Indirect selection of horn length:

Sindirect = σhorn,mass·βmass+σhorn,leg·βleg = 22·0.087+85·0.0004 = 2.25

Total selection differential:

S = Sdirect + Sindirect = −2.01 + 2.25 = 0.24

Michael Morrissey Analysis of multivariate phenotypic selection



Direct and indirect selection in Soay lambs

S = Pβ

P =

mass leg horn
mass 5 18 22
leg 18 86 85
horn 22 85 468

, β = mass 0.087
leg 0.004
horn -0.004

Direct selection of horn length:

Sdirect = σ2
horn · βhorn = 468 · −0.0043 = −2.01

Indirect selection of horn length:

Sindirect = σhorn,mass·βmass+σhorn,leg·βleg = 22·0.087+85·0.0004 = 2.25

Total selection differential:

S = Sdirect + Sindirect = −2.01 + 2.25 = 0.24

Michael Morrissey Analysis of multivariate phenotypic selection

Estimation: average partial gradients

The average gradient concept applies to multivariate analysis
also.

Scheme:
1. estimate W f(z1, z2, ...)
2. predict individual fitness, calculate ¯W (z)
3. add a small amount h to each value of z1, holding all other

traits constant
4. calculate ¯W (z)∗, i.e., predictions with the modified z1 + h

values
5. estimate gradient of W̄ (finite differences), and scale to w

β̂1 =
¯W (z)∗ − ¯W (z)

h

1
W̄

6. restore values of z1; repeat for other traits
Michael Morrissey Analysis of multivariate phenotypic selection



Multivariate selection and variation in fitness

We saw earlier that the combined effect of direct and indirect
selection sum up to the covariance according to

S = Pβ

This is simply the covariance o a linear transformation; when P
is transformed according to β the covariances of z and w that
result are S.

The variance of a linear transformation (β) of a random vector
(z) is similar:

V AR[w] = βTPβ
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Absolute constraints can hide in multivariate space - 1
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Absolute constraints can hide in multivariate space - 2
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Interpretation: if more than two traits, some geometry
makes it less mind-bending

Sorry - couldn’t imbed my animation. I’ll give it in the
presentation.
The distribution depicted is for

G =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1


and  1 −0.5 −0.5

−0.5 1 −0.5
−0.5 −0.5 1


bb
b

 =

0
0
0


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Interpreting effect size

Which is more important to fitness: mass, skeletal size, or horn
length?
trait β βσ βµ
mass (kg) 0.087 0.190 1.074
hind leg length (mm) 0.004 0.040 0.671
horn length (mm) -0.004 -0.094 -0.359
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