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Michael Morrissey Phenotypic selection: elaborations

Preliminaries

My goals
I Key concepts in methods and theory to support solid

empirical work

1. Episodes of selection
I lifetime selection and now it is composed of episodes
I what if episodes are missed?

2. Missing variable problems
I erroneous estimates of selection
I assessing genetic associations between traits and fitness

3. A closer look at non-linear selection
I interpreting all those γ terms

4. Does the selection gradient measure what we really want?
I what traits are materially relevant to fitness?
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The additive partition of S
The total selection differential over k episodes is

ST = Σk
jSj

I From before, S1 = 0.39 kg.
I Among survivors of the first winter, subsequent selection is
S2 = 0.49 kg.

So,
S = S1 + S2 = 0.88kg
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The additive partition of β
The total selection gradient over k episodes is

βT = Σk
j=1

σ2
j−1
σ2

0
βj

I this is a weighted additive partitioning of selection
gradients.

I since viability selection changes the variance, and the
variance is in the denominator of the formula for β, this
change must be taken into account.
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βT for body mass
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Is it worth partitioning selection?

If you have lifetime fitness, why break it down?
I It is worth knowing where in the life cycle selection arises
I It is statistically equally powerful, despite more stuff being

calculated.
for e.g., episodes of selection analysis for lamb mass:
gradient estimate standard error
S1 0.394 0.091
S1 0.488 0.183
Stotal 0.881 0.215
S1 + S1 0.881 0.201
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What about missing episodes of selection?

positive relationship between fecundity and flower size
(figure 2), a result consistent both with the extensive
field data from this species and from flowering plants gen-
erally (§1). However, here we were also able to measure
pre-flowering selection by using genotypic groups
known a priori to differ in flower size. The mortality
data (figure 1b) identifies strong viability selection prior
to trait expression. The invisible fraction is composed dis-
proportionately of large-flowered genotypes that did not
mature fast enough to reach flowering. As a consequence,
the overall direction of selection was usually for smaller
flowers (table 1). Given that the intrinsic features of the
invisible fraction are usually unknown, the conclusion
that natural selection habitually favours larger flowers
should be viewed with caution.

In this experiment, the differential mortality of flower
size genotypes was determined by differences in develop-
ment rate. Across genotypes, mortality was minimal until
the terminal drought period in each year. During this
drought interval, all plants died. Survivorship to flowering
was highest for low genotypes because they mature faster
than control genotypes. Control genotypes reach

flowering faster than high genotypes. Across years,
mean time to first flower was 45.1 days for lows (s.d. ¼
17.0, n ¼ 424), 55.9 days for controls (s.d. ¼ 15.3, n ¼
170), and 68.6 days for highs (s.d. ¼ 16.1, n ¼ 31).
Flower size exhibits a positive genetic correlation with
time to flower mainly because plants that delay flowering
have greater vegetative biomass when they do flower (see
fig. 6 of Kelly 2008). Larger flowers have greater reproduc-
tive capacity, producing more pollen and more ovules
(Kelly 2008; Lee 2009), and may also recruit more pollina-
tors (Martin 2004; Sandring & Agren 2009). However, the
delay in flowering associated with larger flower size can be
costly in alpine field sites such as Browder Ridge where the
availability of water diminishes over the season and
drought is the primary cause of mortality.

The fact that flower size is a direct function of body size
in annual monkeyflowers suggests a broader relevance of
these results. Strong positive correlations between body
size and fecundity are frequently observed in both plants
and animals (Kingsolver & Pfennig 2004), but there are
several reasons why the overall direction of selection may
favour small or intermediate size. Most relevant to the pre-
sent study is the increased mortality of juveniles owing to
longer development. In animals, longer development
means elongated exposure to predation, parasitism or star-
vation before reproductive maturity (Blackenhorn 2000).
Also, mate attraction traits are often correlated with adult
size and such traits routinely exhibit strong positive corre-
lations with mating success (Hews 1990; Grether 1996;
Preziosi & Fairbairn 1996; Burrowes 2000). However, if
attraction traits are genetically correlated with development
time, then viability selection on the invisible fraction might
impede sexual selection. At the very least, a failure to
account for pre-adult viability can lead to a misleading
characterization of natural selection.

(b) Genotypic manipulation as a tool for

measuring natural selection

Our experimental design is a variant of the genotypic
transplant method (Rausher 1992; Willis 1996). Measur-
ing selection on individuals of known genotype, or of

0

1

10

100

1000

1 2 3 4 5

corolla width

fe
cu

nd
ity

 o
f f

lo
w

er
in

g 
pl

an
ts

//

Figure 2. The linear regression of survivor fecundity onto corolla width of Mimulus guttatus is depicted. Corolla width is
square-root transformed. Blue circle, 2007; purple square, 2008; red triangle, 2009.

Table 1. The average seed set of each Mimulus guttatus
genotype in each year of study is given (n is the sample size,
s.e.m. is the standard error of the mean and s.d. is the
standard deviation).

genotype n mean s.e.m. s.d.

2007
low 259 3.66 0.65 10.46
control 159 1.08 0.49 6.15
high 257 0.01 0.01 0.12

2008
low 269 23.70 3.33 54.62
control 257 17.57 3.68 59.02
high 224 6.25 2.50 37.36

2009
low 150 3.82 0.81 9.91
control 150 5.61 1.57 19.22
high 150 1.27 0.74 9.02

2948 J. P. Mojica & J. K. Kelly Selection on the invisible fraction

Proc. R. Soc. B (2010)
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What about missing episodes of selection?

of control plants is representative of the ancestral Iron
Mountain population and the native plants at Browder
Ridge. Relative to the control distribution, the mean
floral size of high plants was about 1.9 s.d. greater than
the control mean, while the mean floral size of the lows
was about 1.5 s.d. less (figure 1a).

(b) Viability and fecundity selection on flower size

Death owing to transplant shock was low across years and
unrelated to genotype. After transplant establishment,
mortality was uniformly low for all genotypes until the
final ‘dry down’ in each field season. All plants eventually
desiccated as snowmelt diminished, although the interval
of this final drought differed among years (20–30 July in
2007, 5–15 August in 2008 and 25 July to 4 August in
2009). However, the number of plants that matured fast
enough to flower and set seed varied greatly with geno-
type and year. Across years, survivorship to flowering of
low genotypes was 12-fold higher than that of high geno-
types (figure 1b). Control genotypes consistently showed
intermediate survivorship to flowering. Likelihood ratio
tests confirm the significant viability effects of genotype
(x2 ¼ 486.6, d.f. ¼ 2, p , 0.001), of year (x2 ¼ 68.0,
d.f. ¼ 2, p , 0.001) and of genotype-by-year interaction
(x2 ¼ 29.6, d.f. ¼ 4, p , 0.001). Despite the interaction,
the rank order of genotypes was consistent across years
(low survivorship . control . high).

Among plants surviving to flower, fecundity was posi-
tively related to flower size genotype (figure 1c; x2 ¼ 8.25,
d.f. ¼ 2, p ¼ 0.016). There was also a large effect of year
(x2 ¼ 59.0, d.f. ¼ 2, p , 0.001). The genotype-by-year
interaction was non-significant and dropped from the
model. The combined effects of viability and fecundity
were evaluated by considering total seed production per
transplant (table 1). There were significant effects of

genotype (x2 ¼ 39.3, d.f. ¼ 2, p , 0.001) and year
(x2 ¼ 112.7, d.f. ¼ 2, p , 0.001) on this measure of
total female fitness. The interaction was non-significant
and was excluded from the model, but the rank order
of estimated genotype means for total fitness was not
completely consistent across years. The high genotype
was always lowest, but control had the highest mean in
2009 (table 1).

The relationship between observed flower sizes and
fecundity is illustrated in figure 2. The Poisson regression
model estimates expected seed set as C ! exp(0.93 z),
where z is the corolla width (square-root transformed)
and C is a constant dependent on year. The
positive relationship is highly significant: x2 ¼ 54.0,
d.f. ¼ 1, p , 0.001. The univariate selection gradient (i.e.
the linear regression of relative fitness onto trait value) is
0.93. Gradients can be standardized in a variety of ways
(Hereford et al. 2004) given the trait mean (!z ¼ 3.18)
and standard deviation (sz ¼ 0.217 after factoring out
differences among years). The variance–standardized gra-
dient is (0.217)(0.93) ¼ 0.20. The mean–standardized
gradient is (3.18)(0.93) ¼ 2.96. These values are compar-
able to gradient estimates from other plants and animals
for size-related traits (see figs 1 and 2 of Kingsolver &
Pfennig 2004; fig. 3 of Hereford et al. 2004).

4. DISCUSSION
(a) Seeing the invisible fraction

Figures 1 and 2 demonstrate the potentially dominant
effects of selection on the invisible fraction: the collection
of individuals that die prior to trait expression (Grafen
1988). Viability and fecundity selection on flower size
were conflicting in each of the three years of the study,
but only the latter process would be evident in a correla-
tive study of natural selection. We observed a strong
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Figure 1. Means are reported for (a) corolla width, (b) survivorship to flowering, (c) fecundity of survivors and (d) total fitness
for each Mimulus guttatus genotype, pooled across years. (a) Corolla width is square-root transformed. (d) Total fitness is the
average of absolute seed set of all transplants of a genotype. Error bars are 95 per cent confidence intervals of each mean.

Selection on the invisible fraction J. P. Mojica & J. K. Kelly 2947

Proc. R. Soc. B (2010)
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Missing traits

z

E

W

z1

z2

W

I Any trait or environmental
variable that causes trait-fitness
covariance will leave a mistaken
signature of selection.

I Solution (part): do more
multivariate analyses.

I Solution (other part): include
environmental variables in
regression-based selection
analyses.

I This has been considered and
prematurely rejected.

Michael Morrissey Phenotypic selection: elaborations



Signatures of missing traits: red deer

This amounts to applying the secondary theorem of selection

E[∆z̄] = E[∆ā] = σa,w
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Signatures of missing traits: Soay sheep
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Empirical application of the STS without stats-on-stats
1

The secondary theorem (Robertson-Price equation applied to
breeding values) is

∆z̄ = σa(z, w)
and the breeder’s equation is

∆z̄ = h2σp(z, w)

Set these to be equal:

σa(z, w) = σ2
a(z)
σ2
p(z)

σp(z, w)

σa(z, w)
σ2
a(z)

= σp(z, w)
σ2
p(z)

βa = β
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Empirical application of the STS without stats-on-stats
1

The condition for the breeder’s (Lande) equation to be
predictive, namely equality of genetic and phenotypic (partial)
regressions of traits on fitness, can be decomposed further:

σa(z, w)
σ2
a(z)

= σp(z, w)
σ2
p(z)

σa(z, w)
σ2
a(z)

= σa(z, w) + σe(z, w)
σ2
a(z) + σ2

e(z)
σa(z, w)
σ2
a(z)

= σe(z, w)
σ2
e(z)

Thus, a corollary of the condition βa = β, βa = βe
The numerators and denominators of β, βa and βe are all
estimable by multi-response mixed model methods.
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LMM and GLMM analysis of the STS and associated
relationships

GLMM analysis seems most natural:[
zi

log(E[W ])i

]
= Xβ +

[
az,i
aW,i

]
+ ...

Where ai, and especially their covariance, is estimated using the
pedigree.

But what matters is relative fitness on the scale upon
which it is expressed... ...but it turns out that the log-link
GLMM has a cool justification:

xi = log(E[W ]i)

FTNS analogue:

∆w̄ = eσ
2
a(x) − 1

STS analogue:

∆z̄ = σ2
a(z, x)

So, theGLMM consistency
measure is:

G−1σa(x, z) = β

Michael Morrissey Phenotypic selection: elaborations

LMM and GLMM analysis of the STS and associated
relationships

GLMM analysis seems most natural:[
zi

log(E[W ])i

]
= Xβ +

[
az,i
aW,i

]
+ ...

Where ai, and especially their covariance, is estimated using the
pedigree. But what matters is relative fitness on the scale upon
which it is expressed...

...but it turns out that the log-link
GLMM has a cool justification:

xi = log(E[W ]i)

FTNS analogue:

∆w̄ = eσ
2
a(x) − 1

STS analogue:

∆z̄ = σ2
a(z, x)

So, theGLMM consistency
measure is:

G−1σa(x, z) = β

Michael Morrissey Phenotypic selection: elaborations



LMM and GLMM analysis of the STS and associated
relationships

GLMM analysis seems most natural:[
zi

log(E[W ])i

]
= Xβ +

[
az,i
aW,i

]
+ ...

Where ai, and especially their covariance, is estimated using the
pedigree. But what matters is relative fitness on the scale upon
which it is expressed... ...but it turns out that the log-link
GLMM has a cool justification:

xi = log(E[W ]i)

FTNS analogue:

∆w̄ = eσ
2
a(x) − 1

STS analogue:

∆z̄ = σ2
a(z, x)

So, theGLMM consistency
measure is:

G−1σa(x, z) = β

Michael Morrissey Phenotypic selection: elaborations

LMM and GLMM analysis of the STS and associated
relationships

GLMM analysis seems most natural:[
zi

log(E[W ])i

]
= Xβ +

[
az,i
aW,i

]
+ ...

Where ai, and especially their covariance, is estimated using the
pedigree. But what matters is relative fitness on the scale upon
which it is expressed... ...but it turns out that the log-link
GLMM has a cool justification:

xi = log(E[W ]i)

FTNS analogue:

∆w̄ = eσ
2
a(x) − 1

STS analogue:

∆z̄ = σ2
a(z, x)

So, theGLMM consistency
measure is:

G−1σa(x, z) = β
Michael Morrissey Phenotypic selection: elaborations



Non-linear selection, example 1
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Non-linear selection, example 2
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Non-linear selection, example 3
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Non-linear selection, example 4
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Non-linear selection, example 5
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Major axes of non-linear selection

The γ matrix can be rotated so that it can be described in a
new set of axes, which experience no correlational selection.
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Care in inferring the shape of (MV) non-linear selection

I traits: mass, leg length, horn length
I variance-standardised analysis

β =

 0.16
0.08
−0.12



γ =

−0.35 0.30 0.15
0.30 −0.33 −0.07
0.15 −0.07 −0.05


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Care in inferring the shape of (MV) non-linear selection
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Bias in directions of selection relative to axes of
phenotype

I simulated bivariate selection gradient analysis
I no relationship between trait and fitness

−3 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

β

−6 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

x

y

major axis of γ

z1

z 2

Michael Morrissey Phenotypic selection: elaborations

Does β reflect the relevance of traits to fitness?

Do black balls make it to the bottom?

Yes. There is selection of black
colour; it is associated with passage
through the toy.
Do does black colour cause balls to
get to the bottom?No, there is no
selection for black colour.

S is widely interpreted as
representing total selection,
something like selection of.
β is erroneously interpreted as
representing something like selection
for ; however, it is something rather
more specific.
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The A→ B → W toy model

A B W

C

S β η

A

3 7 3

B

3 3 3

C

3 7 7
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C

S

β η
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7 3

B 3

3 3

C 3

7 7
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A 3 7 3

B 3 3 3

C 3 7 7

Michael Morrissey Phenotypic selection: elaborations

η, genetic variation, and evolution 1

I a Greek letter (η) does not a selection coefficient make!
I does η have a role in a ∆z̄ = f(genetics, selection)

equation?

Total effects of traits on one another are given by

Φ = (I− b)−1

where b is a matrix containing a certain arrangement of effects
of traits on one another.
It then turns out, if Gε contains genetic variation that is
independent of effects in the path model, then

G = ΦGεΦT

and
η = ΦTβ
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η, genetic variation, and evolution

Key facts from the previous slide:

G = ΦGεΦT

and
η = ΦTβ

So, from the Lande equation

∆z̄ = Gβ

∆z̄ = ΦGεΦTβ

∆z̄ = ΦGεη
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Example of estimation of η
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Example of estimation of η

m60 ∼ dgerm
mass ∼ m60
dtf ∼ m60
rpt ∼ mass+ dtf

mrt ∼ mass+ dtf

w ∼ mass+ rpt+mrt

b =



0 −0.01 0 0 0 0
0 0 −0.20 0.30 0 0
0 0 0 0 −0.58 −0.60
0 0 0 0 0.13 0.39
0 0 0 0 0 0
0 0 0 0 0 0


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Example of estimation of η

b =


0 −0.01 0 0 0 0
0 0 −0.20 0.30 0 0
0 0 0 0 −0.58 −0.60
0 0 0 0 0.13 0.39
0 0 0 0 0 0
0 0 0 0 0 0

 β =



0
0
0

−0.03
0.15
0.21


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Example of estimation of η

b =



0 −0.01 0 0 0 0
0 0 −0.20 0.30 0 0
0 0 0 0 −0.58 −0.60
0 0 0 0 0.13 0.39
0 0 0 0 0 0
0 0 0 0 0 0



Φ = (I−b)−1 =



1 −0.01 0.02 −0.003 −0.002 −0.003
0 1 −0.20 0.30 0.157 0.242
0 0 1 0 −0.580 −0.605
0 0 0 1 0.135 0.396
0 0 0 0 1 0
0 0 0 0 0 1


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Example of estimation of η

βpath =



0
0
0

−0.0333
0.157
0.207


βols =



0.009
0.004
0.040
−0.028
0.142
0.207


η =



−0.001
0.065
−0.216
0.070
0.157
0.207


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