

Some basic Quantitative Genetic Theory

Single trait

$$P = A + E$$

→ General Model

$$\text{Var}(P) = \text{var}(A) + \text{var}(E) = V_A + V_E$$

no cov. between A and E

$$\text{cov}(A_i, P_i) = \text{cov}(A_i, A_i) + \text{cov}(A_i, E_i) = V_A$$

if A same animal as P

$$\text{cov}(A_i, P_i) = \text{cov}(A_j, A_i) + \text{cov}(A_j, E_i) = a_{ij}V_A$$

a_{ij} = additive genetic
relationship between i and j

$$\text{cov}(P_i, P_j) = a_{ij}V_A$$

as E's are uncorrelated if not same animal

Some more basic Quantitative Genetics theory

Calculating weights when using information based on a mean of n individuals

	n Full Sibs	n Half Sibs	n progeny
$\text{Var}(\text{mean } P) = \left(t + \frac{1-t}{n}\right) \sigma_p^2$	$t_{FS} = \frac{1}{2} h^2 + c^2$	$t_{HS} = \frac{1}{4} h^2$	$t_{FS} = \frac{1}{4} h^2$
$\text{Cov}(\text{mean } P, A) = a_{ij} \sigma_a^2$	$a_{ij} = \frac{1}{2}$	$a_{ij} = \frac{1}{4}$	$a_{ij} = \frac{1}{2}$

a_{ij} = genetic relationship between members of group and a target individual BV (A)

Some basic Quantitative Genetic Theory

Multi trait

$$\text{cov}(P_{1i}, P_{2i}) = r_p \sigma_{P1} \sigma_{P2}$$

phenotypic covariance as

E's are correlated if same animal

$$\text{cov}(P_{1i}, P_{2j}) = a_{ij} r_g \sigma_{g1} \sigma_{g2}$$

genetic covariance as

E's are uncorrelated if not same animal

$$\text{cov}(A_{1i}, P_{2i}) = r_g \sigma_{g1} \sigma_{g2}$$

if A₁ same animal as P₂

$$\text{cov}(A_{1i}, P_{2j}) = a_{ij} r_g \sigma_{g1} \sigma_{g2}$$

if A1 not same animal as P2

In general,
when between traits, replace variance by covariance

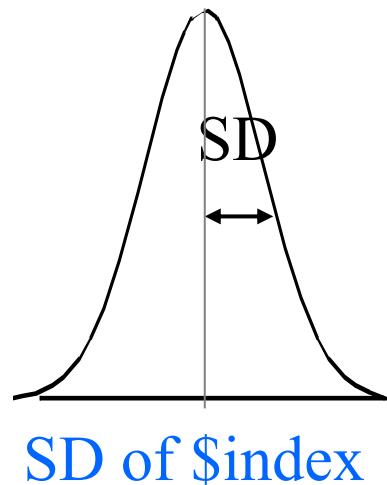
Some formal definitions

$$H = v_1g_1 + v_2g_2 + v_3g_3 \dots \text{etc} = v'g \quad \text{Var}(H) = \sigma_H^2 = v' Cv$$

$$I = b_1x_1 + b_2x_2 + b_3x_3 \dots \text{etc} \quad \text{Var}(I) = b'Pb$$

where $P = \text{var}(x)$

σ_I = SD of Index



$$\text{cov}(x, g) = G$$
$$b = P^{-1} G v$$

G = matrix

V = econ val

$$\text{accuracy} = \sigma_I / \sigma_H$$

$$\text{note: } \sigma_I < \sigma_H$$

Selection index with more information sources (multiple regression)

x = vector with phenotypes (criteria)

g = breeding objective (single trait BV here)

$\text{var}(x) = P = \text{matrix} =$

$$\begin{bmatrix} \text{var}(x_1) & \text{cov}(x_1, x_2) \\ \text{cov}(x_2, x_1) & \text{var}(x_2) \end{bmatrix}$$

$\text{cov}(x, g) = G = \text{vector} =$

$$\begin{bmatrix} \text{cov}(x_1, g) \\ \text{cov}(x_2, g) \end{bmatrix}$$

weights: $b = P^{-1}G$

Selection index with more information sources and with more objective traits (multiple regression)

x = vector with phenotypes (criteria)

H = breeding objective (multiple traits here)

$$= v_1 g_1 + v_2 g_2$$

$\text{var}(x) = P = \text{matrix} =$

$$\begin{bmatrix} \text{var}(x_1) & \text{cov}(x_1, x_2) \\ \text{cov}(x_2, x_1) & \text{var}(x_2) \end{bmatrix}$$

$\text{cov}(x, A) = G = \text{matrix} =$

$$\begin{bmatrix} \text{cov}(x_1, g_1) & \text{cov}(x_1, g_2) \\ \text{cov}(x_2, g_1) & \text{cov}(x_2, g_2) \end{bmatrix}$$

weights: $b = P^{-1}Gv$

v are economic values

Predicting Selection Response

- Total Response to selection (in \$\$)

$$R = i.r_H \cdot \sigma_H = i \cdot \sigma_I \quad \text{in $$ if MT Index}$$

- Response for each trait (in trait units)

$$\delta g_i = b_{gi,I} R = \frac{\text{cov}(g_i, b'x)}{\sigma_I^2} i \cdot \sigma_I = i \cdot b' G_i / \sigma_I$$

Regression of g_i on Index

$G_i = \text{cov}(g_i, x) = i^{\text{th}}$ column of G

See also mtindex.xls