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INTRODUCTION 
 

 

These notes are to accompany module 1 of the 2011 Armidale Animal Breeding Summer 

Course: Statistical methods and design in plant breeding and genomics, to be held at the 

University of New England, Armidale in February March 2011. 

 

Plant breeders are required to know a whole pile of stuff in an array of disciplines ranging 

from the macro to the micro: agronomy to molecular biology. Unfortunately, with the 

expansion of molecular genetics and genomics, opportunities for training in some these 

have reduced as universities and research institutes concentrate on the more popular new 

omics based disciplines. 

 

This loss of training is particularly apparent for statistics and quantitative genetics: never 

popular subjects among biologists. This is unfortunate as the newer disciplines can only 

deliver improved varieties if integrated into practical plant breeding programmes. Such 

integration is most efficiently achieved through application of quantitative genetics and 

statistics. Meanwhile, at the heart of all breeding remain such traditional pursuits as 

designing and analysing yield trials to rank varieties in order of merit. Therefore, at a 

time when more than ever, plant breeding needs staff trained in quantitative methods, this 

training has all but vanished.  

 

This course is an attempt to help stop the rot. I hope first to supply the statistical and 

genetical background to quantitative methods, old and modern, which is relevant to plant 

breeding. Secondly, I shall provide hands-on experience of these analyses. It is too much 

to hope that you actually enjoy the course, but I hope will find at least some of it useful in 

the future. Computers have democratised statistics and data handling. No longer do you 

need a PhD in Applied Mathematics to understand and implement many of the 

sophisticated methods of analysis available: they are within the grasp of all of us, as you 

shall see. 
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SOME MATHEMATICS FOR PLANT BREEDERS  
 

Recommended books 

 

Wikipedia is generally very good on mathematics and statistics. 

CatchUp Maths & Stats for the life and medical sciences, Harris, Taylor & Taylor 

(£13.39 from Amazon), starts off at a very basic level and covers a lot. 

 

Introduction 

 

You won‟t need to know all that is in this section for this course, but I thought I‟d start 

off by giving some formulae and results which will cover everything you‟ll need in the 

next two weeks (and more). I haven‟t given rigorous definitions or proofs, most of which 

are beyond me anyway, but I hope the content will enable you to read many mathematical 

and statistical formulae without quite such a feeling of exclusion or bewilderment at the 

black arts of mathematics and statistics.  

 

 

To start with something easy: 

 

Integers  These are whole numbers - 1, 2, 3…. and -1, -2, etc. 

Rational numbers Ratios (i.e. fractions) of numbers. 

Irrational numbers Numbers which cannot be expressed as rational numbers, although 

they can be approximated by them to any desired degree of 

accuracy. The classic examples are √2 and π. 

Real numbers   Continuous. Include the above three classes. 

  

 

Simple mathematical rules. These are well known and taken for granted, for example: 

  

3 x 2 = 2 x 3 

 

or algebraically: 

 

AB = BA  

 

but this is not the case for some other systems of calculation  (to come). 

 

Algebra 

 

We let symbols and letters stand for numbers. Often the symbols can stand for any 

possible number, but sometimes we constrain the range of possible numbers to lie in 

some interval, for example between 0 and 1 or to include positive integers only.  
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Powers  

 

a
x
 means a times a times a times a x times.  eg 4

3
 is 4 x 4 x 4 = 64. 

 

In this expression, a is called the base and x is the exponent. 

 

a
1/x

  means the xth root of a.    eg 64
1/3

  =  4 as 4 x 4 x 4  = 64 

 

1/ a
x 

means 1/a times 1/a times 1/a x times. eg 1/4
2
 is ¼ x ¼  = 1/16 

 

1/ a
x 

can also be written as a
-x

. 

 

As a consequence, a
x  

times 1/a
y 
is  a

x   
times a

-y  
 which can also be written a

x-y 

 

For example 4
2 

x 4
-3

  is 4
2-3 

is 4
-1

  = ¼.  (16/64 = 1/4) 

 

Thus, you can add and subtract the exponents to simplify the expression. 

 

If x = y,  a
x-y

 = a
 0

 = a
x
/a

y
 =1. Therefore 

 

a
0
 =   1  

 

a
1
 =   a 

 

There is no meaning that can be given to a number raised to the power of an irrational 

number. So for example: 

 

9
π
  has no meaning, but can be approximated by 9

22/7
 

 

There is no straightforward meaning which can be given to (–a)
1/2

 

since, for example, -3 x -3  = 9 and 3 x 3  = 9, so it isn‟t clear what (–9)
1/2

 

means. However, (–a)
1/3 

is straight forward. For example -3 x -3 x -3 = -27. 

 

 

 

Functions: 

 

A function is a mathematical expression relating one or more quantities. So 

 

y = x
2
 is a function. 

 

Functions can be continuous or discontinuous, that is to say the output, y, in the function 

could take any value or could be restricted to specific values, 0 and 1 only, or positive 

integers only. It is usually obvious what sort of a function we are dealing with. 
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A function of y is generally written as y = f(x)  : the variable y is a function (as yet 

undefined) of the variable x. 

 

Here are some common functions you will encounter in this course: 

  

Linear  y = b(x) + c    or more commonly y = bx +c 

 

The standard formula for a straight line; b is the gradient and c is the intercept – the value 

of y when x has the value zero. The point (y=0, x=0) is known as the origin. 

 

Quadratic y = b1 x  +  b2 x
2
  +  c  

 

This is often the first port of call in regression when we are attempting to fit a curve to 

data rather than a straight line and when we have no specific theoretical function we want 

to fit.  Note that in the example below there is a maximum value of y (the peak). 

Depending on the parameter values (the values of b1 , b2  and c) there can be a minimum 

instead. Note too that parts of the line are quite curved and other parts are nearly straight. 

When fitted to real data, we generally use only a small portion of the possible range of x 

values so we can accommodate varying degrees of curviness. However, if we ever 

extrapolate beyond the range of our known x values (that is we predict y for values of x 

outside the range of our observed data)  we need to be very careful – we may cross over 

the maximum (or minimum) and find values of y decreasing with increasing values of x, 

whereas biologically we might expect y to continue to increase.  Extrapolation is always 

dangerous, even when the observed relationship is a straight line. 

 

y = 20x - 2x^2 + 10

0

10

20

30

40

50

60

70

0 2 4 6 8 10

 
 

This form of function can still be viewed as a linear, in the sense that y is a linear function 

of the predictor variables. In this case we have two predictors x and x
2
. The fact that one 

of our predictor variables is the square of the other doesn‟t matter. 

 

Factorial y = x!  

 

x! is mathematical shorthand for x(x-1)(x-2)(x-3)…. 1 

 

x must be a positive integer. 0! is defined as 1 
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Factorials are discontinuous functions – the results are integers. There is an equivalent 

continuous function, the gamma function, written as y = Γx  but we don‟t need it for this 

course. 

 

Exponential.  y = e
x
  

 

e is  the mathematical constant,  2.718…  e
x
 is often written as exp(x). 

 

The exponential function, e
x
  is defined as : 

 

e
x
 = 1 +x + x

2
/2! + x

3
/3!+… 

 

Then x = 1, this gives, 

 

e = 1/0! + 1/1! +1/2! +1/3! + ... =    1 +1 + 1/2 + 1/6 + 1/24 + …    ~ 2.718 

 

y = exp(x)

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5

 
 

 

The reason for the mathematical obsession with e will be explained later. Here we just 

note that  

 

y = e
x
 

 

can be expressed as a more mundane power function 

 

y = a
z
  

 

by searching for the appropriate values of a and z. 

 

A more general form of the curve is  

 

y = ae
bx
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where choice of a and b provides curves which fit many forms of growth and decay in  

biology. Note that this function is non-linear: y is not a linear function of the predictor 

variable. However, it can be transformed to a linear scale: 

 

 f(y) = bx +f(a) 

 

by use of the appropriate function for y and a. As a is a constant, so is f(a). Therefore f(y) 

is the formula for a straight line. The required function is the logarithmic, which comes 

next… 

 

Logarithms. y = logb(x) 

 

Logarithms are all defined in terms of a base (subscript b above) commonly 10, 2, or e. 

The logarithm of a number is the power to which the base must be raised to get the 

number. That is to say, if 

 

 y = logb(x) 

then 

 

 b
y
 = x 

 

 

Before the days of calculators, logarithms (logs) were important as a means of calculating 

the product of large numbers with reasonable accuracy quite quickly using slide rules or 

log tables. This use has vanished, but they remain important because of their role as a 

kind of inverse of power functions. Also, in statistical analysis, some characters with 

which we deal tend to be more amenable to analysis and manipulation if we work on the 

logs of the measurements rather than the original measurements themselves. 

 

The logarithm (log) of a number is the power to which the base must be raised to get the 

number. Logs to the base ten have an easy interpretation and are often used as the scale of 

measurement of strength of evidence for genetic linkage. They are also the scale of 

measurement for pH. 

  

log10(x) = y means that 10 
y
 = x 

 

So: 

 

x  log10(x) 

 

0  undefined  there is no power of 10 which is zero.   

 

1      0    since 10
0
 is 1 

10      1    since 10
1
 is 10 

100      2    since 10
2
 is 100 

1000      3    since 10
3
 is 1000 
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also: 

 

x  log10(x) 

0.1     -1    since 10
-1

    is 0.1 

0.01     -2    since 10
-2

    is 0.01 

0.001     -3    since 10
-3 

   is 0.001 

 

finally: 

 

-100               undefined   since you cannot have the square root of a 

minus number. 

 

In fact, no minus number has a corresponding logarithm. 

 

Note 100 x 1000 = 100,000 

 2 + 3       =  5 

 

Multiplication on the logarithmic scale is mirrored by addition of the corresponding logs  

(The inverse log10 of 5 is 100,000.) Inverse logs are described as antilogs. This useful 

property means that if: 

 

z  = x
y
 

 

then 

 

log(z) = ylog(x). 

 

This is true for logarithms to any base. 

 

Logarithms to the base 10 are easy to understand, but are not the most commonly used. 

When mathematicians and statisticians refer to logs they generally mean logs to the base 

e, referred to as “natural” logs.   

 

Natural logarithms are sometimes abbreviated to “logs” and sometimes to “ln.” 

 

 

Converting log10 to loge  
 

Sometimes we must convert logs from base 10 to base e  or and vice versa. For example, 

in linkage analysis both log of odds (LODs - base 10) and log likelihood ratios (LRT - 

base e ) are used to measure the strength of a signal. There will be more on this when we 

discuss linkage. These conversions are carried out as follows: 
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e
x
 = 10

y
 = z    ie   x is ln(z)  and y is log10(z)

 

 

So  ln(z) = ln(10
y
) = y.ln(10) 

 

and  

 

log10(z) = log10(e
x
) = x. log10(e) 

 

For example if z  = 20 

 

ln(20) = 2.996 

log10(20) = 1.301 

ln(10) = 2.303 

2.303 x 1.301 = 2.996 

 

and  

log10(20) = 1.301 

ln(20) = 2.996 

log10(e) = 0.434 

2.996 x 0.434 = 1.300 

 

This also explains how e
x
 can also be expressed as a

y
 

 

 

Transformation of exponential to linear functions. 

 

For the exponential function: 

 

y = ae
bx

 

 

then  

 

 ln(y) = ln(a)+bxln(e) 

 

  = ln(a) + bx since ln(e) = 1 

 

So taking logs of an exponential or power function  gives a linear relationship on the log 

scale. 

 

 

Binomial (p+q)
n
 =  p

n
 +np

n-1
q + n(n-1)/2! p

n-2
q

2
…. 

 

If p + q = 1 this gives the binomial probability distribution. The coefficients of 

succeeding terms in the binomial can be found by Pascal‟s triangle: 
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n  coefficients 

1         1  

2       1 2 1 

3      1 3 3 1 

4     1 4 6 4 1  

 

The first term and last terms are 1 and the other terms are the sum of the pair of 

corresponding two terms on the line above. So for example: 

 

  (p+q)
4
 

 

coefficients  1 4 6 4 1 

exponent of p  4 3 2 1 0 

exponent of 1  0 1 2 3 4 

 

Putting all this together gives: 

 

1p
4
p

0
 + 4p

3
q

1
 + 6p

2
q

2
 + 4p

1
q

3
 + 1q

0
q

4
 

 

or 

 

p
4
 + 4p

3
q + 6p

2
q

2
 + 4pq

3
 + q

4 

 

 

This provides an easy way of writing down genotype frequencies under Hardy-Weinberg 

equilibrium for polyploid species, which will be discussed in the section on Population 

Genetics. 

 

 

 

Differential calculus 

 

Differentiation is the process of finding how a function changes when its input values 

change. It is a means of studying rates of change. Consider the graph of y=x
2
 below. 

 

-20

0

20

40

60

80

100

120

0 2 4 6 8 10
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What is the rate of change at any point? That is to say, what is the gradient of the graph? 

Around x = 0, there is very little change in y as x changes, so we would expect the 

gradient to be close to zero. However, as x increases, the slope gets steeper and steeper. 

 

If the graph is a straight line rather than a curve, the rate of change is constant over the 

whole range and can be found as: 

 

(y2-y1)/(x2-x1)  which gives the value  of  b in y= bx +c 

 

For more complex functions, although the gradient is not constant over the whole range, 

we can find the gradient at any particular point [x,y] by considering the most miniscule 

change in values to x (and therefore to y). This miniscule change can be written as a 

change from [x,y] to [x+δx, y+ δy].  Then the gradient can be approximated by 

 

[ (y+ δy)-y] /  [ (x+δx)-x]  = δy/δx 

 

For example, take the function y=x
2
. 

 

Then as x moves to   x+δx, 

 

y moves from x
2
 to   (x+δx)

2
  

 

so the change in y is   x
2
+2x δx + δx

2  
- x

2 
 = 2xδx + δx

2
 

 

The gradient is therefore 2x δx + δx
2 

 / δx = 2x + δx 

 

As δx gets smaller and smaller it effectively disappears (“tends to zero”), at which point 

the gradient is 2x. Formally we say that 

 

δy / δx ~ 2x 

 

  and as x tends to zero 

 

  dy/dx = 2x 

 

Note the subtle difference in symbols δ and d. The differential of a function f(x)is some 

times written as f ’(x). Differentiation for a second time, is written as d
2
y/d

2
x or f ’’(x). 

 

Similar reasoning will give the differential (ie the gradient) for other functions. However, 

for most standard functions it is easier to look them up (eg in Wikipedia) or to remember 

some standard results:
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Some standard differentials 
 

d(c)dx  = 0  the differential of a constant is zero 

d(x
n
)dx  = nxa

n-1
  

d(k+cx
n
)dx = nca

n-1 
 this is the one to remember 

d(e
x
)/dx  =  e

x
 

 

That d(e
x
)/dx  =  e

x
 is one of the reasons that mathematicians have such an enthusiasm for 

the exponential function.  It follows directly from the definition of e: 

 

de
x
/dx = d(e

x
 = 1 +x + x

2
/2! + x

3
/3!+…)/dx 

 

The differential of each term in the series is identical to the term to its left, apart from the 

first term which vanishes. As the series is infinite, differentiation leaves the whole 

function unaltered. 

 

Not all functions are this simple to differentiate, but differentiation can often be 

accomplished by stringing together these results with two additional rules: 

 

 

Differentiation of a product 

 

If y = uv and u and v are themselves functions of x,  

 

Then  

 

dy/dx = udvdx + vdudx 

 

eg 

 

y =  xln(x)   

 

dy/dx = x(1/x)+ln(x).1 = 1+ln(x) 

 

The trick is deciding how to split the function up into a u and a v. 

 

 

Differentiation of a function of a function 

 

If y = f(x) can be viewed as a function of a function: y = f(u) and u=f(x), then  

 

dy/dx = dy/du . du/dx 

 

eg 

 

y = log(x
3
) 
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Set u = x
3 

 

dy/du = 1/u = 1/ x
3
 

 

du/dx = 3x
2
 

 

So dy/dx = 3x
2 

/ x
3 

=3/x 

 

 

Differentiation to fit models to data. 

 

An example of differentiation which is frequently encountered is in the estimation of the 

best set of parameters to explain observed data. For example, the data could be yield and 

the parameters could be variety performances. Any set of parameters, however obtained, 

can be used to produce predicted, or fitted, values of what the data would have been if 

those parameters provided a perfect explanation of the data. The best estimate of the 

parameters is then that which gives the closest fit to the observed values of the data.  

 

If we have a function which measures the goodness of fit, then by varying the parameter 

values, the minimum or maximum value of the goodness of fit function (depending on 

the nature of the function) will give us our best set of parameter estimates. For any 

function y = f(x), at the point at which y rises to a maximum, or falls to a minimum, the 

gradient is zero: y is neither increasing nor decreasing as x changes (infinitesimally) at 

this point. So the best estimate of our parameters is given by the value of the parameters 

at which the differential of our goodness of fit function, with respect to the parameters, is 

zero. More on this later. 

 

 

 

Integration 
 

Integration is the opposite of differentiation. That is integration is the antiderivative of 

differentiation. There is a slight complication: 

 

y= bx +3 

 

dy/dx = b     There is a unique answer. 

 

But ∫ b dx  = bx + any constant  There are an infinite number of answers. 

 

This is usually not a problem because the constant can often be found in other ways. It is 

always a problem if you forget about it, however. 

 

(Note the symbol  ∫ to denote integration.) 
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Integration can also be viewed as the area under the curve: this is the way in which it is 

usually encountered.  This sounds sensible but can be hard to see. Try this: 

 

Consider the function plotted below 

 

y = f(x). 

 

 
 

Let the area under the curve between two values of x be A. Then let‟s increase the area a 

tad (δA) Provided that  δA is small enough, this increase can be approximated by adding 

a rectangle of size f(x) δx   : a thin sliver of height f(x) and width δx. 

 

So  δA ~  f(x) δx 

 

Therefore δA / δx   ~  f(x) 

 

So, as for differentiation, as δx  0 

 

 dA/dx = f(x) 

 

In other words, if we know the function which gives the area under some curve, 

differentiation of that function for the area gives the function for the curve. Therefore the 

antiderivate, or integral of a curve gives the area underneath the curve. 

 

∫ f(x) dx  = A 

 

Some standard results for integration are given below: 

 

 

∫ x
n
 dx    =  x

(n+1)
/(n+1) + C except for n = -1 
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∫ x
-1

 dx  = ∫ 1/x dx  =  ln(x) +  C 

 

 ∫ e
x
 dx     = e

x 
+  C 

 

In practice, when we integrate, we usually want to find the area between some values of x 

(though these can sometimes range from +∞ to -∞). 

 

For example suppose we want to find the area under the curve  

 

y = x
2
 

 

between x = 1 and x = 10. 

 

We write this as 

 


10

1

2dxx   =  10

1

3

3
cx   

 

   =  (1000/3 + c) – (1/3 +c) 

 

   = 333 

 

 

Note that the constant C cancels out when we are working with definite integrals. 

 

This business with areas is related to the fundamental theorem of calculus:  “The integral 

of a continuous function always exists and integration is the inverse of differentiation.” 

 

For integration of more complex functions there are additional methods equivalent to the 

rules for differentiation of complex functions which we won‟t go into. In fact, most 

functions can‟t be integrated algebraically, but we can still calculate the areas 

numerically. 

 

 

Numerical integration 

 

At one extreme, numerical integration amounts to plotting the curve on graph paper and 

counting the squares under the curve. This can be quite accurate. Better is to use the 

trapezoid rule:  

 

Split the area under the curve into n vertical strips - calculate the area of each vertical 

strip as average height times the width and add the areas. 
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0

160

0 5

 
 

This method has the advantage of simplicity – you can implement it in Excel for 

example. It is also clear that the greater the number of strips, the greater the accuracy. 

Methods are available to evaluate its possible error but we shall not go into those.  

 

There are other methods. A popular one is Simpson‟s rule. Rather than splitting the area 

under the curve into multiple trapezoids, this considers three y values at a time, fits a 

quadratic curve to the three points and calculates the area under the curve by integration. 

Adjacent sets of three are then added up. This can also be managed in Excel and is more 

accurate that the trapezoid rule since it approximates the shape of the function with 

multiple curves rather than multiple straight lines. 

 

 

Taylor’s series 

 

This is difficult; don‟t worry if you don‟t understand it. We are more interested in the 

results that the method can provide. Some of these are given at the end of this section. 

 

Taylor‟s series approximates other functions as of “polynomials of infinite degree.” You 

are unlikely to have to use it yourself but you will come across it and use its results. Its 

utility lies in that, although infinite, usually all but the first two or three terms can be 

ignored. Without proof, for the function f(x) = f(a+h) (ie evaluate the function for a value 

of x = a+h. 

 

f(a+h) ≡ f (a) +f ’(a)h + f ‟‟(a)h
2
/2! +f ’’’(a)h

3
/3!....  .  

 

f’ and f’’ etc stand for the first differential, the second differential and so on. The second 

differential is got by differentiating the function with respect to x twice. eg : 

 

f’’(x
3
)/dx = 6x. 

 

You will also come across Maclaurin‟s series which is just a special case of Taylor‟s with 

„a‟ set to zero 

 

f(x) ≡ f (0) +f ’(0)x + f ’’(0)x
2
/2! +f ’’’(0)x

3
/3!....   

 

Some examples: 
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Instead of defining e as the series given earlier, we could have defined the exponential 

function y = e
x 
 as the function for which dy/dx = y – ie differentiation gives us the same 

function.  

 

So f (x) = f ’ (x) = f ’’(x) etc. 

 

f (0) = e
0
 = 1 since the value of any number raised to the power zero is 1. 

 

So using Maclaurin‟s theorem we get: 

 

e
x
 = 1 + x + x

2
/2! +x

3
/3!+… as before. 

 

Some other useful approximations to come out of Taylor‟s series which we may call upon 

are: 

 

(1+x)
-1

 = 1-x+x
2
 –x

3
+x

4
…     Converges if   -1<x <1 

 

ln(1+x)  = x –x
2
 / 2 +x

3
 /3 - x

4
/4 ….    Converges if -1<x≤1 

 

In the last example, when x is small, ln(1+x) ~ x 

 

eg x = 0.1, ln(1.1) = 0.095 

 

 

Matrix algebra 

 

Basics 

 

Matrix notation is a means of writing down a compact summary of expressions and 

equations which would otherwise take up a lot of space. There are then rules for handling 

matrices algebraically. These provide easy ways of solving simultaneous equations, 

among other things. To manipulate matrices arithmetically by hand is steady work. 

However, they are readily handled by computer (and also within Excel for modest sized 

matrices). So in the treatment given here, I shall assume all the hard work will be done by 

a computer and just outline the notation and manipulations that are carried out. 

 

Suppose we have a set of variables -  a1, a2, a3, a4 

 

We call  a = 



















4

3

2

1

a

a

a

a

 a column vector. Vectors and matrices are usually written in bold. 
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a’ =  4321 aaaa  is a row vector. 

 

The ’ symbol means transpose the matrix – swap row and column positions. 

 

A matrix with r rows and c columns has individual elements aij 

and is referred to as  

 

 

A = [aij] = 








2221

1211

aa

aa
  Note the bold A to stand for the whole matrix 

 

i indexes the rows and j the columns. That is, rows first, then columns. 

 

If aij = aji for all i and  j – the matrix is symmetrical – the rows and columns can be 

interchanged. 

 

In this case, A’ = A 

 

Matrices can be added if they have the same number of rows and columns. All that 

happens is that the corresponding elements of the two matrices are added. 

 

Matrices can be multiplied if the number of columns of the first matrix is equal to the 

number of rows of the second matrix. The result is a matrix with row number equal to the 

number of rows in the first matrix and column number equal to the number of columns in 

the second matrix. The multiplication operation is complicated. The product of the 

elements in row i of the first matrix and of column i of the second matrix are added to 

produce element ij of the product. eg 

 


























121

213

63

52

41

=





















12153

9121

691

 

 

In matrix form this would be written as 

 

AB = C 

 

Beware, AB ≠ BA 

 

Matrices can be multiplied by single numbers (called scalars). Here all elements of the 

matrix are multiplied by the same number. To distinguish them from matrices, scalars are 

not written in bold. Multiplication of a matrix by a scalar is the same as multiplying by a 

square matrix in which all elements are zero except those on the diagonal where every 

element has the value of the scalar. Row and column numbers must still conform to the 
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rules for matrix multiplication however. If the scalar is 1, then such a matrix is called the 

identity matrix, usually denoted by the letter I: 

 

















100

010

001

 = I 

 

If we have two square matrices such that 

 

AB = I 

 

Then A is said to be the inverse of B and vice versa. This is written as A
-1

 = B. In this 

case, AB = BA. 

 

For square matrices of two or three rows and columns, the inverse can be calculated by 

hand. Larger matrices require a computer. 

 

 

Some other useful results 

 

ABC = (AB)C = A(BC) 

 

(AB)’ = A’B’ 

 

A(B+C) = AB + AC 

 

 

 

Calculus for matrices 

 

Results are given without proof – try a couple of simple numerical examples if you wish. 

 

Suppose we have an equation: 

 

y = x1 + 2x2 + 3x3 

 

The three variables x1, x2, x3 could represent numbers of apples, oranges and pairs: 

anything. 

 

In matrix form: 

 

 


















3

2

1

321

x

x

x

y  
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or 

 

y = a’x = x‟a  (as the answer is a scalar) 

 

with a’ = [1  2  3] 

 

 

If we were to differentiate y with respect to each variable separately: 

 

 

dy/dx1  = 1 

 

dy/dx2  = 2 

 

dy/dx3  = 3 

 

 

In matrix form this is: 

  

 

dy/dx  = d(a‟x)/dx  

 

  = d(x’a)dx = [1 2 3]  = a’ 

 

 

This is the matrix equivalent of the d(kx)/dx = k. 

 

 

Suppose now there are multiple values of y, each with a different value of a. 

 

For example: 

 

y1 =   x1 + 2x2 + 3x3 

y2 = 2x1 + 4x2 + 5x3 

 

or 

 

y = Ax 

 

where A = 








542

321
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dy/dx is taken to mean 

























3

2

3

1

2

2

2

1

1

2

1

1

dx

dy

dx

dy

dx

dy

dx

dy

dx

dy

dx

dy

 

 

 

As a result, dy/dx = d(Ax)/dx = A‟ 

 

 

Note the result is A‟ and not A as one might expect. Fortunately, in the form in which 

differentiation of matrices if often met in statistics, A is often symmetrical, so this makes 

no difference. 

 

 

Some other standard results for matrix differentiation are given below: 

 

y  =  f(x)  =  k    y is a constant whatever the values of x: 

 

df(x)/d(x)  =  0  

 

This is the matrix equivalent of the differential of a constant being zero 

 

 

y  =  f(x)  =  a‟x  

 

df(x)/d(x)  =  d(a’x)/dx  =  d(ax‟)/dx  =  a 

 

This is the matrix equivalent of the d(bx)/ bx = k, where k is a constant, as we have just 

seen. 

 

 

y  =  f(x)  =  x‟Ax      where A is symmetrical, then 

 

df(x)/d(x)  =  d(x‟Ax)dx  =  2xA 

 

 

This is the matrix equivalent of d(x
2
)dx = 2x. We require this result in estimating 

parameters by least-squares as we shall see later. 
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Use of matrix notation and matrix algebra to solve simultaneous equations: 

 

Suppose we have a set of equations: 

 

y1 = b1x11+b2x12+b3x13 

y2 = b1x21+b2x22+b3x23 

y3 = b1x31+b2x32+b3x33 

  

The vector y could be the expected yield at each of three farms.  X could represent 

rainfall, fertilizer and sunlight at each of the three farms. [b1 b2 b3]  = b’ are then 

(regression) coefficients relating these three environmental measurements to yield. (For 

this example, assume these have been established elsewhere in some experiment or 

other.) In matrix form, the whole set of equations can be written as 

 

y = Xb 

 

If we know X and y but not b (we lost them somehow), we can find it as: 

 

 X
-1

y = X
-1

Xb = Ib = b 

 

This is just like normal algebra except we have to be careful about the order in which 

things get multiplied or divided: yX
-1

 wouldn‟t work, for example. We‟ll use this 

procedure extensively later on. Although it may not seem like it at the moment, 

manipulating complex sets of equations through matrix algebra is easier and simpler than 

manipulating the individual equations themselves. If we expanded this example to have 

300 independent variables (the x‟s) rather than 3, the matrix form of the equations would 

remain unchanged. 

 

 

 

Eigenvalues and eigenvectors – aka characteristics roots and vectors. 

 

These are used in a common multivariate analysis called principal component analysis 

(PCA). PCA is often used in genetic diversity studies and to study relationships among 

multiple related phenotypic traits. It is worth knowing something about how this works, 

even if all you ever do is take output from a standard statistical package. The description 

I give below is not the standard one, but it fits in directly with this common statistical use 

and I find it easier to understand.  

 

Suppose we have a square symmetrical matrix Y. We want to approximate this matrix by 

a vector such than 

 

Y ~ kk’ 

 

For example, given 
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 Y =   

















1514

1106

465

 

 

we can use k’ =  [-1.89 -1.86 -3.29] as an approximation. Then  kk’ =  

 

  

















83.1012.622.6

12.646.352.3

22.652.358.3

 

 

Not fantastically good, but could be worse. Suppose we try to increase the precision of 

the approximation as: 

 

Y ~ kk’ + jj’ 

 

Then if j’ = [-1.05 -2.53  2.04],  jj’ =  

 























16.417.515.2

17.542.667.2

15.267.211.1

 

 

 

 

and  kk’ +jj’ =  

 

















98.1496.007.4

96.089.919.6

07.419.669.4

 

 

This isn‟t bad. 

 

 

We could add a third term: 

 

i’ = [0.56  -0.34  -0.13] 

 

in which case we find:  

 

Y = kk’ + jj’ + ii’ 
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So the original matrix has been decomposed into three vectors. The utility of this 

approach is that for much larger matrices, a few vectors, often only one or two, give an 

adequate approximation of the whole matrix and can greatly simplify the interpretation of 

the data.  

 

The vectors k, j and i are orthogonal – they are independent of each other – the variability 

in the matrix accounted for by j is independent of that accounted for by k. Algebraically 

this means that if we form a matrix by butting up the columns 

 

Z = [k:j:i] 

 

then 

 

 Z’Z is a diagonal matrix  - all the off-diagonal elements are zero. 

 

The vectors are not normally presented in the form given above. Each vector is scaled up 

or down such that the sum of squares of the elements = 1. For the example above:  

 

k‟ = [-1.89  -1.86 -3.29]   = sqrt(17.865)  [-0.447  -0.440 -0.778] 

j‟  =    [-1.05  -2.53   2.04]   = sqrt(11.690) [ -0.308 -0.741  0.597] 

i‟  =    [ 0.56  -0.34  -0.13]  =  sqrt(0.445)  [  0.839 -0.507 -0.196] 

 

and  (0.447
2
 + 0.440

2
 + 0.778

2
 =1)  etc. 

 

In this case Z’Z = I     : the unit matrix 

 

The scalars are called eigenvalues or latent roots and the scaled vectors are called 

eigenvectors or latent vectors. Finally, we can put the whole thing together as 

 

Y  = ZLZ’  

where 

 

Z is the matrix of eigenvectors, (scaled so the sum of squares of each column = 1) 

L is the diagonal matrix of eigenvalues. 

 

The advantage of this way of writing down the vectors is that the eigenvalues give a 

measure of the importance of that vector in describing the matrix and that the elements of 

the eigenvector give a measure, for that eigenvalue, of the importance (or “loading”) of 

that row or column of the matrix in the approximation. In the example above, there are 

two large and one small eigenvalues, and we found that use of the vectors associated with 

the two large values gave a good approximation to the whole matrix. 

 

This dry mathematic interpretation can frequently be given some biological meaning. For 

example, the matrix Y could be a matrix of correlation coefficients among traits 

measured on a set of varieties. The eigenvectors define an alternative set of uncorrelated 

derived traits. (For each variety or individual, each trait value is multiplied by the 
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corresponding element in the eigenvector. Add these up to get the derived trait value 

associated with that eigenvalue for that individual.) A few of these derived  traits, those 

with the largest eigenvalues, often approximate the original correlation matrix so well 

that we feel justified in simplifying our analysis by working just with these.  Moreover, 

the magnitude and sign of the elements of an eigenvector may also be interpretable, 

indicating for example that the new variable it is a measure of, say, early growth. This is 

the crux of principle component analysis. 

 

 

Singular value decomposition 

 

Singular vectors and values are the equivalent of eigenvectors and values, but the 

matrices are not required to be square. The singular value decomposition underpins a 

popular form of analysis of genotype x environment interaction termed AMMI which we 

shall come to in due course. You don‟t need to understand svd to carry out this type of 

analysis but if may help demystify the process. 

 

The singular value decomposition of a rectangular matrix X with r rows and c columns is 

 

 X = USV‟ 

 

S is a diagonal matrix with dimensions = minimum (rows, cols) of X. 

U has r rows and the same number of columns as S 

V has c rows and the same number of columns as S. (but nb it is V‟ in the equation). 

 

The singular values in S are analogous to eigenvalues and the vectors in U and V are 

analogous to eigenvectors. S, U and V are ordered in descending value of the singular 

values in S. Just as the sum of the eivenvalues
2
 = 1  and the off diagonals of ZZ‟ were all 

zero, so too here, we have 

 

 U’U = I 

 VV’ = I 

 

 

X can be written as 

 

 X = U1s1V1‟ + U2s2V2‟ …UpspVp‟ 

 

where the subscripts refer to column vectors extracted from U and V and to each singular 

value in turn. This is called singular value decomposition or spectral value 

decomposition. 

 

An increasingly accurate approximation to X is then given by inclusion of successive 

terms in the sum. 

 

All this is easiest to see in an example. 
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 X = 



















252

931

673

125

 

 

 U = 



























460.0374.0358.0

333.0675.0605.0

332.0186.0668.0

753.0608.0246.0

 

 

 S = 

















155.300

0661.50

00353.14

 

 

 

 V = 























264.0636.0725.0

672.0418.0611.0

692.0649.0317.0

 

 

 

U1s1V1‟ = 



















0.358-

0.605-

0.668-

0.246-

14.353   725.0611.0317.0     

 

  = 



















728.3141.3631.1

293.6302.5754.2

948.6854.5040.3

563.2159.2121.1

 

 

Not a spectacularly good approximation but we can see that it‟s trying its best. However  

 

U1s1V1‟ + U2s2V2‟ = 



















383.2024.4000.3

723.8706.3274.0

277.6295.6725.3

373.0598.3356.3

 

 

is better. 
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The column vectors in U can be viewed, for each singular value in turn, as showing the 

importance, for that singular value, of each row in the original matrix. The column 

vectors in V can be regarded as the loadings, for that singular value, of each column of 

the original matrix. In fact there is a close relationship between singular values and 

vectors and the eigenvalues and vectors of some closely related square matrices: 

 

Using our rules for matrix algebra 

 

XX’ = [USV‟][USV‟]‟ 

 

= [USV’][(US)V’]’ 

 

= [USV’][V(US)‟] 

 

= [USV’][VS’U’] 

 

 = USIS‟U‟  since VV’ = I 

 

 = USS‟U‟ 

 

This is just a decomposition of XX‟ into a matrix of eigenvectors U and a diagonal matrix 

of eigenvalues SS‟ (also a diagonal matrix). 

 

Working the other way around we get 

 

X‟X = VSS‟V‟ 

 

So V is also the set of eigenvectors of XX‟ and U is the set of eigenvectors of X‟X, the 

eigenvalues of X‟X and XX‟ are identical and are given by SS. 

 

All this is arid and complicated, but as stated earlier, we can use these results in the 

analysis of genotype x environment interaction (among other applications), in which rows 

will be varieties, columns sites, and the elements of the matrix are the g x e terms for 

each variety-site combination. Just as with principle component analysis, we are 

searching for simple patterns among varieties and among sites which may indicate some 

hidden structure and explanation of genotype x environment interaction. 
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INTRODUCTION TO STATISTICS 
 

The subject of statistics concerns the collection, summary and analysis of data. If all 

plants and all plots of a variety always produced the same yield, no matter where they 

were grown or in what season, then the yield of one plant grown on one occasion would 

suffice to assess yield potential of the variety for evermore. 

 

There is however, in all biological material, an inherent variability which cannot be 

attributed to any specific cause; so called 'chance' variation.  This variability results in 

plant-to-plant differences in yield even under controlled environment conditions, and 

under normal farming conditions plant responses to environment also vary.  Intuitive 

estimates of yield and comparisons of one variety or treatment with another are based on 

experience, i.e. on an accumulation of evidence.  The precision of such estimates and 

confidence in them is linked with the level of consistency or repeatability of results.  This 

existence of chance variation necessitates replication in order to provide evidence of the 

level of variation against which to draw conclusions. 

 

Before considering ways of measuring variation and assessing the confidence that may be 

placed in experimental results, we will study the types of data and distributions that may 

be encountered. 

 

 

1 Types of data 

 

 As scientists we need to examine many different types of data in the course of our work. 

 

Some of the data (Examples 1 and 2) are not given in a numerical form and we may need 

to convert it into numbers before it can be processed. 

 

Example 1 Has the seed germinated?  Write:   1 for YES 0 for NO 

 

Then the data become:   1 1 0 1 0 0 1 0 0 0 1 1 

 

Example 2  Give ranks to the different letters (best = 1, worse = 6). Then data become: 

 

  A B  C D  E F 

 Taster 1 1 5 2 3 4 6 

 Taster 2 2 1 4 3 6 5 

 

We must be careful to distinguish between numbers and numerals. 

 

Numbers may be divided into 3 types: 

i. Nominal - e.g. seed lot number, plot number. 

ii. Ordinal - representing a position, e.g. colour rating, harvest date. 
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iii. Interval and ratio scales - quantities that may be added and subtracted (and for 

ratio scales - multiplied and divided) e.g. temperatures in 
°
C, heights above the 

ground in cm, dry matter yields in tonnes/ha. 

 

The best data are measurements on an interval and ratio scale because when 

communicating the results, a much more precise description may be given. 

 

When recording data it is important to record it to the correct accuracy.  Data quality may 

always be downgraded but it is impossible to upgrade data.  Data may be converted from 

interval to ordinal scale but in doing so information is thrown away. 

 

E.g. measurements  2.6 3.8 6.0 

 ordinal scale  1 2 3 

 

With the ordinal scale the difference between 2.6 and 3.8 (1.2) is given the same weight 

as the difference between 3.8 - 6.0 (2.2) 

 

Data recorded on a nominal/ordinal scale may be collected in such a way that they may 

be used as interval scale data e.g. data from 10 plants scored for presence or absence of 

disease may be converted to an interval scale by calculating % of plants infected. 

 

Type (iii) data (i.e. interval and ratio scale) is that which we most commonly need to 

process statistically.  This may be subdivided into 2 types: 

i. continuous 

ii. discrete 

 

Continuous data is that which can take any value within a given interval e.g. the diameter 

of a sweetcorn cob would be expected to be somewhere between 4.0cm and 5.5cm.  No 

value in this range could be excluded.  There are an infinite number of possible values 

that the diameter can take within this range.  Discrete data may take only distinct discrete 

values e.g. the number of weed seeds in a sample of 50 seeds must be a whole number, 

and is therefore discrete. 

 

NB Data that have been rounded to the nearest whole number may at first sight appear to 

be discrete, when in fact they are continuous. 
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2 Summarising Data 

 

 For large quantities of data it is helpful to summarise it graphically or by presenting 

some measures which describe some attribute of the data. This can be illustrated in 

the example below 

 

Example: The following data represent moisture content percentages observed in 

different Winter Barley varieties in the same trial in 1997. 

 

Original data values: 

 

15.40 14.80 17.20 16.60 17.10 17.00 

16.00 16.30 14.90 15.30 17.60 16.50 

15.30 17.00 16.80 18.10 18.30 17.90 

15.60 16.70 16.00 15.20 15.00 16.40 

15.40 15.20 14.70 14.20 15.30 14.20 

16.00 15.60 14.20 15.30 14.90 14.50 

14.30 15.20 15.10 14.60 14.30 14.60 

15.50 15.20 17.00 15.40 15.70 14.60 

15.40 16.00 15.20 16.10   

 

Summary of data in groups: 

 

Range of values frequency 

14.00 - 14.90 13 

15.00 - 15.90 19 

16.00 - 16.90 11 

17.00 – 17.90 7 

18.00 - 18.90 2 

 

Graph of data as Histogram (or bar chart): 
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Measures of central tendency or location 

 

 

a) Mode - this is the value or range which contains the most values. 

                     (15.00 -15.90 in the above example). 

 

b) Median - This is the middle value when all values are ranked in order of 

magnitude. In the above example there are 52 values.  The middle value will lie 

between the 26th and 27th values when they are arranged in order.  This value 

is 15.40. 

 

c) Mean - this is obtained by summing all the values and dividing the total by the 

number of values. 

   mean 
n

x

x i

i
  

In above example 

 

Measures of spread or dispersion 

 

a) Range - this is the difference between the highest and lowest values. 

 

              In the above example the Range = 18.30 - 14.20 = 4.10 

 

b) Semi-interquartile range - this is the difference between the values which define 

the upper and lower quarters of the data when all values are ranked. 

 

 

                The lower quarter is delineated by the 13th value = 14.90  

                The upper quarter is delineated by the 39th value = 16.40 

 

                Hence the semi-interquartile range = ½(16.40 - 14.90) = 0.75 

 

c) Variance - this is a measure of dispersion about the mean and is estimated from 

  s

x x
i

n

i

2

2

1





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 n-1 is referred to as the number of degrees of freedom ie. the number of 

independent data values required for the estimate. The disadvantage of the 

variance is that the units are not on the same scale as the original data. 

 

The standard deviation s is the square root of the sample variance. 

 

For the above example s = 1.060. 

 

d) Coefficient of variation 

 In practice for many variables the variability increases with the mean (eg higher 

yields may mean higher standard deviations).  The coefficient of variation 

expresses the standard deviation as a percentage of the mean. 

 

   CV = 
s

x
100  

 

 

 

3 Populations and samples 

 

The total aggregate of observations that might occur as the result of performing a 

particular operation in a particular way is referred to as the population of observations, 

e.g. all crops of wheat in East Anglia in 1999 define a population of yields.  In theory the 

population can be thought of, as an infinite number of observations but in practice is 

made up of N observations where N is very large. 

 

In statistical experimentation it is normally impracticable to record the entire population 

so estimates would be based on a sample of the population.  In statistical terms we 

observe the sample but wish to apply the conclusions to a population.  It is important that 

the sample is collected in a way that achieves this objective. 

 

 Population - the total aggregate of all observations which might occur as the result 

of performing a particular operation in a particular way.  

 

 Sample - the actual observations taken which are usually a small proportion of the 

population. 

 

 The objective of statistical inference is to draw conclusions about the population 

based on the results from the sample. It is important that samples are randomly 

selected from the population of interest. 
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4 Distributions 
 

 Certain families of distributions are particularly useful. 

 

4.1 Discrete distributions 

 A discrete distribution consists of a set of possible values together with associated 

probabilities of occurrence for each of these values. 

 

a) Binomial 

 A binomial distribution typically arises when we are interested in the number of 

members of a randomly selected group of individuals that possess a certain 

characteristic eg. 

 - the number of heads, r, obtained in 10 tosses of a coin. 

- a certain type of seed contains 1% off-types.  Provided that the off-types are 

randomly distributed then the number of off-types in samples of size 100 seeds 

follows a binomial distribution. 

 

For a sample of size n with constant probability p,  

the mean is np and the variance np(1-p). 

 

The model for a Binomial distribution is: 

 

P( X = r) = ncr x p
r
 x (1-p)

n-r 
,  r = 0,1,2,…,n 

 
 
where 0 < p < 1, and ncr is n!/r!(n-r)!,  r! = 1x2x…xr, 0!=1 

 

 

b) Poisson 

 

 If events are occurring randomly then the number of events occurring in a given 

time or space interval follows a poisson distribution. 

 

For a Poisson random variable, the probability that X is some value x is given by the 

formula  

                            P(X = x)  =  (e
-μ 

x μ
x
)

 
/ x!,    x=0,1,2,… 

 
where μ is the average number of occurrences in the specified interval.  

 

Example 

 

The number of false fire alarms in a suburb of Houston averages 2.1 per day. Assuming 

that a Poisson distribution is appropriate, the probability that 4 false alarms will occur on 

a given day is given by  

 

 P(X = 4)  =  (e
-2.1 

x 2.1
4
)
 
/ 4! = 0.0992 
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4.2 Continuous distributions 

 

 Continuous random variables can theoretically take any value on a continuous scale 

eg yields 

 

 Exponential 

 

If events are occurring randomly, then the time (or distance) between successive 

events follows an exponential distribution and is characterised by a probability 

density function: 

 

        P(x)    =    μe
-μx 

 

Example 

 

In a seed lot, the times between the germination of successive seeds follows an 

exponential distribution. 

 

 

5 The Normal Distribution 

 
 The family of normal distributions is particularly useful and has the following 

properties. 

 

(i) the mean, mode and median of the distribution are equal. 

 (ii) the distribution is symmetrical about the mean. 

(iii) the frequency distribution of values can be completely defined in mathematical 

terms if the mean and standard deviation of the values are known. 

(iv) 95% of the values lie within 1.96 standard deviations of the mean. 

(v) 99.8% of the values lie within 3.09 standard deviations of the mean. 

 

No simple formulae exist for probabilities associated with normal distributions. 

Tables can be used eg. Cambridge Elementary Statistical Tables - D.V. Lindley and 

J.C.P. Miller C.U.P.1952.  These always refer to the N(0,1) distribution - the so-

called standard normal distribution with mean 0 and variance 1. More commonly 

and with greater flexibility, statistical packages or functions within spreadsheets 

provide these probabilities. 

 

 The importance of the normal distribution lies with an important result called the 

Central Limit Theorem which states that if a random sample of size n is taken 

from any distribution (not necessarily normal) with mean µ and variance σ2
 then if 
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n is reasonably large the sample means will follow a normal distribution with mean 

µ and variance σ2
/n (as n → ∞). 

 
 We say: x ~ N (μ, σ2

/n).  

  

 If this approximation holds then probabilities associated with the sample 

mean x can be evaluated approximately using the normal distribution tables.  How 

large n needs to be depends on how near the underlying distribution is to a normal 

distribution. 

 

 

 
 

 

 

6 Estimators 

 

6.1 Point Estimates 

 

 Point estimates are single numbers estimating population parameters calculated 

from the sample data. 

 

 Each population distribution has one or two measures (parameters) associated with 

it that are needed to enable us to determine the probability density function and 

hence the theoretical frequencies of the distribution.  We hope the statistics derived 

from the sample will be good estimates of the population statistics but as the 

sample statistics are subject to random variation they will not necessarily exactly 

equal the true (population) values. 

 Listed below are estimators for the distributions previously mentioned. 
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 Although 

point estimates are 

useful it is often 

necessary to know 

how precise is the 

estimate. 

 

    

 

 

 

 

 

6.2 Interval Estimates 

 

 An interval estimate is a statement that the population parameter lies within 

specified limits.  A confidence interval is an interval estimate to which some 

specified level of confidence can be allocated.  It has the property that in repeated 

sampling a known percentage of the confidence intervals will include the 

population parameter. 

 

 

Using the properties of the normal distribution previously mentioned 

 95% of  the x values lie within 1.96 standard errors of the mean 

 99.8% of  the x values lie within 3.09 standard errors of the mean 

 

 However in reality we usually only have one value of x  and we are trying to find 

out something about the population mean .  The following confidence intervals 

can be calculated: 

 95% confidence interval for              
n

x
n

x





96.196.1   

 99.8% confidence interval for   
n

x
n

x





09.309.3   

 

 The 95% confidence interval means that if we calculate many such intervals, 95% 

will contain the true population value  and 5% will not ie. we expect to be wrong 

1 in 20 times.  The reliability of the estimate can be improved by using the 99.8% 

confidence interval but this may be too wide to be useful. 

 

 This interval relies on an accurate assessment of the population variance 
2
.  If this 

has to be estimated from the sample the confidence intervals are calculated as 

follows: 

 95% confidence interval for   
n

s
tx

n

s
tx nn 025.0,1025.0,1     

 Distribution Parameter(s) Estimator(s) 

(i) Binomial n 

p 

sample size 

n

x
p ˆ  

(ii) Poisson    x  

(iii) Normal 


2
 

  x  

 
s

x x

n

i2

2

1







 

(iv) Exponential   
1

x
 




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 99% confidence interval for   
n

s
tx

n

s
tx nn 005.0,1005.0,1     

 

 The value tn-1 is the value of the t-statistic based on n-1 degrees of freedom and the 

required probability for the confidence interval.  The t distribution differs according 

to the size of sample.  The larger the sample the closer the approximation to the 

normal distribution. 

 

 

 

7 Least significant differences between two sample means 

 

In comparing the means of two populations, sample means x1 and x2 are used to estimate 

the population means 1 and 2.  The difference between the 2 sample means is also 

normally distributed with mean 1-2 and variance 1
2

 + 2
2

 equations.  

 

The standard error of the difference between these 2 sample means is given by the 

equation: 

 

 se(difference) = √2 x se(mean) 

 

 

Where the variance is equal for both populations and the number of observations is the 

same for each sample, the variance for the difference between the sample means is given 

by  

 

tn-1  se(difference). 

 

The least significant difference (or LSD) calculated as t x se(difference) - usually the 5% 

level is the value which must be exceeded for the difference between the means to be 

considered different from 0 at the stated level of significance. The t value is taken from 

tables of the t distribution for the required level of significance and the degrees of 

freedom used in the calculation of the variance. 

 

 

 L.S.Ds should be used with care as misleading conclusions can be obtained if 

indiscriminantly used. 

 

 

 

8 Hypothesis Testing 
 

We have seen how we can use statistical theory to provide ourselves with confidence 

intervals for point estimates.  Now we shall see how to use it to test assertions and 

scientific theories. 
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Example 1 

 

A nutrition expert attached to the LEA claims that the average fat consumption in a 

canteen meal is 40g.  A sample of 89 children gave a mean fat consumption of 52g with a 

standard deviation of 23g.  Is the claim justified? 

 

What can we say about the distribution of fat consumption? 

 

What can we say about the distribution of the mean of a sample of size 89? 

 

We are testing a hypothesis 

 

H0 (the null hypothesis) - the mean of the population μ = 40g 

 

against 

 

H1 (the alternative hypothesis) - the mean of μ ≠ 40g. 

 

We can use our previous theory to find a confidence interval for μ. 

 

The 95% confidence interval is 

 

x  - 1.96 σ ≤ μ ≤ x  + 1.96 σ 
   √ n    √n 

 

i e. 52 - 1.96 x 23 ≤ μ ≤  52 + 1.96 x 23 

    √89  √89 

 52 - 4.78 ≤ μ ≤  52 + 4.78 

 

 

There are 2 conclusions we can come to: 

 

(i) we have chosen one of the 5% of samples which give us a confidence interval not 

containing μ. 

 

(ii) the assertion of the nutrition expert is incorrect. 

 

If we calculate the 99.8% confidence interval, we find μ ≤ 52 ± 7.5. 

 

Hence, conclusion i) becomes 

 

i) We have chosen one of the 0.2% of samples which give us a confidence interval 

not containing μ. - i.e.  it seems even more unlikely. 

 

We reject the null hypothesis (i.e. μ = 40) at the 0.2% level of significance. 

 



 47 

NB It is important to include the last part of the sentence since we are stating our 

chances of being wrong. 

 

 

Example 2 

 

The percentage of onions of a certain variety with a diameter 40mm or more is 25%.  A 

farmer believes that his onions do better than this.  Out of 110 bulbs chosen at random, 

33 had a diameter greater than 40mm.  Does this indicate that the farmer is correct? 
 

H0: p = 0.25 
 

H1: p ≠ 0.25 
 

95% confidence interval for p is- 

 

 p - 1.96 √ p(1-p)         ≤    p  ≤   p + 1.96√ p(1-p)  

           n                           n    

 33 - 1.96 √0.25 x 0.75 ≤  p  ≤   33 + 1.96 √0.25 x 0.75 

 110  110      110       110 

  

               0.3 - 0.08 ≤  p   ≤  0.3 + 0.08 

                   0.22          ≤  p   ≤   0.38 

 

0.25 is included in this confidence interval, and therefore we have no reason to reject the 

null hypothesis. 

 

i.e. The results do not provide evidence that the farmer is correct. It is often easier to 

rewrite the 95% confidence interval as 

 

 - 1.96 ≤  x – μ ≤ 1.96  where the estimate of the mean = x  

     σ/√n 

                             

OR - 1.96 ≤ p – p(hat)   ≤ 1.96     where the estimate of the proportion p(hat) = ̂  

  √p(1-p) 

        n 
 

To test the null hypothesis in case i), we calculate x – μ, where μ is the value given by H0. 

                                 σ/√n 

 

H0 is rejected  (at 5% level of sig.) if this value is ≥ 1.96 or ≤ -1.96. 

 

(at 0.2% level of sig.) if this value is ≥ 3.09 or ≤ 3.09.  

 

To test the null hypothesis in case ii), we calculate 

 



 48 

(p - p(hat))       where p is the value given by H0.  

√p(1-p) 

      n  

 

H0 is rejected (at 5%) level of significance if this value ≥1.96 or ≤ -1.96. 

H0 is rejected (at 0.2%) level of significance if this value ≥ 3.09 or ≤-3.09. 

 

 

 
9 Comparison of Means 

 

When carrying out an experiment or a survey to investigate the differences between 

samples, we should try and eliminate as much of the underlying variability as possible by 

good experimental design. 

 

Example 1 

In the comparison of the two diets, the diets were compared on mice which were 

genetically similar (i.e. from the same litter). 

 

Example 2 

In an experiment to compare the effects of methyl methacrylate and paraffin on the 

clotting times of human blood, one sample of blood was used for each pair of treatments.  

This was done to eliminate the variability between blood samples from different people. 

 

The above examples are referred to as 'paired samples', since each value in one sample 

has a natural partner in the other sample. 

 

Sometimes it is not possible to devise an experiment in this way and therefore we need to 

be able to test for differences between means when the samples are not paired. 

 

Example 3 

It is wished to compare the effectiveness of two different reading methods.  A group of 

100 children are randomly allocated to either method A or method B, and after 1 year 

their reading abilities are assessed by means of a test.  The results are as follows:- 

 

X is the score obtained using method A and Y using method B. 

 Method A n1 = 45 Σ45 
xi  = 423 s1 = 2.2 

                                                  
i = 1 

 Method B n2 = 55 Σ55 
yi = 567 s1 = 1.9 

                                                                           i = 1
 

Since the samples are large we can assume that 

 

 x ~ N (μ1, s1 
2
/n1)  and y ~ N (μ2, s2

2
/n2) 

 

Since we are interested in the difference between x  and y, given the above, we can say 
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 x – y ~ N(  μ1- μ2 , s1
2
/n1 + s2

2
/n2 ) 

 

Using Normal theory, therefore 

 

    -1.96   ≤   x – y  - (μ1 - μ2)    ≤    + 1.96 

    

                              √ (s1
2
/n1 + s2

2
/n2 ) 

 

 

for 95% of samples. 

 

In this case, the null hypothesis  H0 : μ1 = μ2  

and the alternative hypothesis  H1 : μ1 ≠ μ2 
 
therefore z =       x  – y            =       423/45 - 567/55 = -2.18 
    

        √ (s1
2
/n1 + s2

2
/n2 )        √ (2.2 

2
/45 + 1.9

2
/55 ) 

 

Since the calculated z value lies outside the limits ± 1.96, we reject H0 

at 5%, and conclude that there is a difference in the effectiveness of the reading methods. 

 

In the above example, the samples were sufficiently large to estimate accurately the 

standard deviations of the distributions from which they were taken.  Sometimes this is 

not the case, but we may still proceed, provided that the samples are both taken from 

Normal populations with the same variance. 

 

 

 

10 Comparison of variances 

 

Sometimes we need to test whether two samples are taken from populations with the 

same variances. 

 

If we are sure that the samples are taken from normally distributed populations, then 

 s1
2
 = Σ( xi – x )

2 
     Σ( yj –  y )

2 
  

 s2
2           

(n - 1)           (m - 1) 

 

follows an  F distribution with n-1 and m-1 degrees of freedom, and this can be used to 

test the significance of the ratio of the variances. 

 

e.g. For the example given above the null hypothesis H0 : σ1
2 
= σ2

2
  

the alternative hypothesis  H1: σ 1
2 ≠ σ 2

2
 

 

If H0 is correct, then σ1
2 
= 1 

          σ2
2
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To test, calculate s1
2
   =     2.2

2 = 1.34 

      s2
2 
           1.9

2
 

 

(in order to use the tables you will need to ensure that the larger estimate is divided by the 

smaller). 

 

This follows an F distribution with 44 and 54 degrees of freedom.  According to the 

tables, for 95% of values,  

                                   
             (1 / 1.60 ) ≤  F

44
  ≤ (1.60).   

                                    
54 

 

 

The calculated value lies within these limits and we therefore accept H0, i.e. the samples 

are taken from populations with the same variances. 

 

 

 

11 The t distribution 

 

In many scientific experiments it is impracticable to use large samples.  Our previous 

theory is dependent upon the fact that we have a sufficiently large sample to estimate σ, 

if we are sampling from a Normal distribution.  Suppose we only have a sample of size 5.  

When testing a 

 

hypothesis about μ, we calculate the statistic  x - μ   and expect that 95% 

       σ/√n 

 

of the time it will lie in the interval (± 1.96). 

 

What difference does it make if we calculate  x - μ 

        s/√n 

Where s =   √∑(xi - x )²  

                      n – 1 

 

We can test this by simulation.  The distribution of t obtained when a sample of size 5 is 

drawn from a Normal distribution and x and s are calculated from the sample, 

 

t = x - μ        can be simulated 

      s/√n 

 

The distribution looks almost Normal, although it can be seen to be rather more widely 

spread than the Normal.  A calculation of the coefficient of kurtosis (skewness and 

Peakness of the data) would also reveal departures from Normality. 
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If we were to take a larger sample (e.g. 20), then the distribution of t would be closer to 

the Normal, since the estimation of σ  is more accurate. 

 

The exact distribution of t differs according to the size of the sample n. Probability points 

are tabulated against n - 1, known as the degrees of freedom. 

 

The tables indicate that if we calculate the t statistic described above, 

 

then 95% of the time it will lie in the interval ± 2.78 (for n = 5).  

 

Example 1 

The lengths of 8 birds eggs taken at random points in the colony of a particular species 

are as follows: 

 

3.2 2.9 3.0 3.1 3.0 2.8 2.9 3.0 

 

Give a 95% confidence interval for the mean length of all the eggs of this bird species. 

 

x = 2.9875 s = 0.1246 t7 = 2.36 (at 5%) 

 

 

-2.36 ≤   2.9875 - μ    ≤ 2.36 

     0. 1246/√8 

 

2.9875 - 2.36 x 0.1246 ≤ μ ≤ 2.9875 +2.36 x 0.1246 

       √8       √8 

 

2.88 ≤ μ ≤ 3.09  at the 95% confidence interval.  

 

 

Example 2 

Consider the results of an experiment to compare the effects of methyl methacrylate and 

paraffin on the clotting time of human blood. The following results were reported by 

Hirschboeck of the clotting times observed in 10 pairs of blood samples.  One out of each 

pair was chosen at random and treated with methacrylate and the other with paraffin.  The 

results are shown below. 

 

 Sample 1 2 3 4 5 6 7 8 9 10 

 Paraffin 10 27 11 18 19 16 16 18 22 26 

 Methacrylate 13 20 9 12 11 14 19 12 11 18 

 Difference d -3 7 2 6 8 2 -3 6 11 8 

 

What is the mean difference between the clotting times and is it likely to be due to 

chance? 
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d = 4.4  s = 4.74  t9 = 2.26 (5%) 

 

95% confidence limits 4.4 ± 2.26 x 4.74 

√10 

 

    = 4.4±3.39 

 

Therefore the true mean value for the difference in clotting times lies between 1.01 and 

7.79 with 95% confidence, and is not zero. 

 

 

 

12 Comparison of Means of Small Samples 

 

In order to compare the means of 2 small independent samples (size n1 and n2)  taken 

from Normal distributions which have the same variances we can use the fact that 
 

x  – y  

      

       s√(1/n1 + 1/n2) 

 

follows a t distribution with n1 + n2 - 2 degrees of freedom. 

 

s
2
 is called the pooled variance and is calculated from both samples by 

 

s
2
  =  (n1 – 1) s1

2     
+  (n2 – 1) s2

2 

                       
n1    + n2   - 2 

 

Example     

 

A homogeneous block of land was sown with 9 plots each containing one of two varieties 

of winter wheat A and B. 

 

A farmer needs to decide whether there is any real difference between the two varieties.  

What assumptions does she need to draw conclusions?  What might she conclude?  Give 

reasons for your answer.  The dry matter yields in tonnes/ha were as follows 
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A B 

6.7 4.5 

8.0 7.1 

10.6 8.7 

8.3 5.3 

8.9  

 

             na           =  5                  nb           =  4 

 

 Σxi  = 42.5  Σyj = 25.6 

 

Σxi
2
  = 369.35 Σyj

2
  = 174.44 

 

 x  = 8.5  y  =   6.4 

 

s1
2 

= 2.025 s2
2 

= 3.533 

 

She needs to assume that the dry matter yields are normally distributed, and that the 

variances of each population A and B are equal. 

 

The latter assumption may be tested using an F - distribution 

 

F
3

 = s2
2
 = 3.533 = 1.74  

   4
  s1

2  
2.025 

which is not significant at 5%  (cf tabulated value 4,3 degrees of freedom 0.05 is 9.12). 

 

Therefore the samples come from populations with equal variances. 

 

To test whether the means are the same, first calculate 

 

s
2 

= 2.671 

 

Under H0 this quantity has a t distribution with 7 degrees of freedom. Therefore 

 

 8.5 - 6.4       =    1.92,  which is not significant at 5% ( t7 at 5% = 2.365) 

        √2.671(1/5 +1/4) 

 

Hence we conclude that variety A is not higher yielding than variety B at the 5% level of 

significance. 
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13   Non-Parametric Tests 

 

In order to use the t-test to derive confidence intervals and test hypotheses about the 

mean, we have to assume that (i) the samples are taken from a normal distribution (ii) 

that the observations are independent and identically distributed and (iii) that if there is 

more than one sample the distributions from which they were taken have equal variances.  

If these conditions are not satisfied it may be possible to use non-parametric or 

distribution free tests.  However, most of these tests do require the condition that 

observations are independent.  (Yield of successive plots in a field trial may be correlated 

and therefore not independent) examples of the use of some of these tests are given 

below: 

 

Wilcoxon signed-rank test (ref. Ridgeman 1975) (for paired samples) 

 

In an experiment to assess the virulence of 2 strains of pea blight, 10 plants were taken at 

random and the first trifoliate leaflets inoculated with the bacteria, one race to each outer 

leaflet at random.  After 10 days, the extent of the resulting chlorosis was estimated.  The 

data obtained are given below:- 

 

Plant Race A Race B Diff (A-B) Rank              Sign 

 1 15.6 14.3 +1.3 5 + 

 2 17.8 16.7 +1.1 4 + 

 3 13.2 14.1 -0.9 3 - 

 4 4.1 4.3 -0.2 1 - 

 5 5.5 2.2 +3.3 7 + 

 6 2.0 2.3 -0.3 2 - 

 7 8.7 4.0 +4.7 9 + 

 8 6.7 2.4 +4.3 8 + 

 9 7.5 1.7 +5.8 10 + 

 10 18.0 15.6 +2.4 6 + 

 

Now sum separately the ranks which belong to the positive differences and those which 

belong to the negative differences. 

 

R + = 49 R - = 6 

 

The normal approximation for this statistic is valid only for samples of size 8 or greater, 

and so the procedure calculates this approximation z, where 

 

z = ( WS - n(n+1)/4 ) / √{ n(n+1)(2n+1)/24 } 

 

where WS = n x (n+1)/4 - (modulus total sum of signed ranks) /2 

 

Where n is the number of observations 

 

only use if the sample size is at least 8. 
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E.g. WS = (10 x (10+1)/4) – (43/2) = 6             (43 = 49 – 6) 

 

z = (6-(10 x (10+1)/4) / √{10 x (10+1) x (2(10) + 1) / 24} 

 

= -21.5/9.81 

 

=-2.19 

 

Tables indicate the probability of the more extreme values of R + and R - for non-zero 

differences when the two populations are the same.  In the present case, with n = 10, the 

one-tail probability is 0.0143.  Since the alternative hypothesis is that the two races 

simply differ in virulence, either positively or negatively, we need to double the 

probability (i.e. 0.0286).  Hence the races are different at the 5% probability levels. 

 

Alternatively, the smaller of R + and R – can be compared directly with the appropriate 

table: 

 

Critical value R, for U at P=0.05 where n =10 is 8. R – is less than 8 and therefore we 

reject the hypotheses that the samples are the same. 

 

 

The Sign Test (ref Ridgeman 1975)  

(for paired samples) 

 

This is even easier, but the test is not so powerful since it uses less of the information. 

 

There are 7 plants for which Race A is more virulent than Race B and 3 plants for which 

Race A is less virulent than Race B.  If the null hypothesis is true, these values should 

follow a binomial distribution.  The probability of obtaining exactly 7 to 3 in favour of a 

particular race is 0.1172, so the probability of the difference is 2 x 0.1172 = 0.2344.  

Hence we cannot reject the null hypothesis using this particular test.  

 

To find the probability of obtaining at least 7 to 3 in favour of a particular race, the 

probability of obtaining 0, the probability of obtaining 1, the probability of obtaining 2 

and the probability of obtaining 3 would have to be found. Each of these probabilities 

would then have to be added together. The probability of obtaining at least 7 to 3 is 

0.1719. The probability of the difference is 2 x 0.1719 = 0.3438. Again the null 

hypothesis cannot be rejected using this test.  
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The Mann-Whitney U Test (ref Box, Hunter & Hunter 1978) 

(for unpaired samples) 

 

An experiment was performed on a manufacturing plant by making in sequence 12 

batches of a chemical using the standard production method (A), followed by 8 batches 

of a chemical using a modified method (B).  The results from this plant trial are given 

below.  What evidence do the data provide that method B is better than method A? 

 

Method B A A A B B A B A A 

Observation 79.3 79.7 81.4 81.7 82.6 83.2 83.7 83.7 84.5 84.5 

Rank 1 2 3 4 5 6 7½ 7½ 9½ 9½ 

 

Method B A A A B B A B A A 

Observation 84.7 84.8 85.1 86.1 86.3 87.3 88.5 89.1 89.7 91.9 

Rank 11 12 13 14 15 16 17 18 19 20 

 

Calculate the sum of the ranks for each method separately. 

 

For A, rank sum = 130½  For B, rank sum = 79½ 

 

For this test the smaller sum is used with appropriate “U“ significance tables. 

 

The model used is: 

     Uk = n1 x n2 + nk x (nk+1)/2 - Rk,  k=1,2 
 

Where nk is the sample size of sample k and Rk is the sum of ranks for sample k 

 

E.g. using Sample from method B    

 

Ub =  8 x 12 +8(8+1)/2 – 79½ = 52½ 

 

It seems that we cannot conclude that there are differences between the methods using 

this non-parametric test. 

 

Other non-parametric tests exist for one-way and two-way analysis of variance. 

For further reading see SIEGEL, S., 1956 Non parametric Statistics for the 

Behavoural Sciences McGraw-Hill, New York. 
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DESIGN AND ANALYSIS OF VARIETY TRIALS 
 

 

1 Introduction 
 

Because all biological material has inherent variability, replicated plots are needed to 

assess the performance of a variety.  To compare the relative performance of several 

varieties under the same conditions, replicated plots of all the varieties are grown on a 

contiguous area.  These plots are collectively referred to as a variety trial. 

 

In addition to the data from the trial providing information about the relative performance 

of varieties under the same conditions, the analysis of the data is used to assess the 

confidence that we have in the results.  More confidence can be placed in the results of a 

trial with a lower level of variation than one with a higher level of variation. 

 

Trial designs suitable for variety trials are dealt with in the following sections. 

 

 

2 Completely randomised design 
 

Suppose that 6 varieties were to be compared in a design of 4 replicates. 

 

This can be done by randomly assigning the varieties, A, B, C, D, E and F, to the 24 

experimental plots as shown below. 

 

C A E C B D 

F C F B F C 

A D D F E B 

A E E A D B 

 

 

The random allocation of varieties to the plots ensures that each variety has an equal 

chance of being assigned to each plot.  Randomisation also protects against source of bias 

and is also necessary if significance tests are to be made. 

 

One disadvantage of the design is that the allocation of varieties to plots may be 

advantageous to some varieties and not to others.  Another disadvantage is that if the trial 

area is large, the trial could be subjected to positional effects such as fertility gradients or 

previous cropping which will produce inaccurate variety comparisons. 
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The design will be most useful in a controlled environment experiment or when the area 

covered by the experiment is small, for example in a growth chamber or in single plant 

experiments covering a small area. 

 

 

Example of the above data is given below: 

 

Treatment/Rep 1 2 3 4 Total Mean 

A 8.4 7.9 7.0 8.3 31.6 7.9 

B 7.3 7.1 7.5 8.9 30.8 7.7 

C 6.6 6.8 6.3 5.5 25.2 6.3 

D 7.6 6.5 6.5 6.2 26.8 6.7 

E 5.9 7.9 7.3 7.3 28.4 7.1 

F 6.6 7.0 8.5 7.9 30.0 7.5 

     172.8 7.2 

 

When there are only two treatments, we tested if there was a difference between the 

population means by comparing the differences between the two sample means with the 

natural variation estimated from the variation between members having the same 

treatment.  With more than two treatments we cannot get a single difference to represent 

the treatment effect, but it is not unreasonable to think that we could assess the variation 

between treatments as the square of the deviations of the treatment means from the 

general mean.  Thus if there was no natural variation and no treatment effect, we might 

expect treatment means A, B, C, D, B and F all to have a mean of 7.2 and any deviation 

from that value would be a measure of the treatment effect. 

 

It follows therefore that the effect for treatment A is 7.9 - 7.2 = 0.7. Similarly effects can 

be calculated for the other treatments. 

 

The total variation of the 24 yields about the trial mean is: 

 

 total SS = (8.4-7.2)
2
 + (7.9-7.2)

2
 +……+ (8.5-7.2)

2
 + (7.9-7.2)

2 

 

= 8.4
2
 + 7.9

2
 +..…+ 8.5

2
 + 7.9

2
 - (l72.8)

2
 

               24 

 

This total variation in the trial may be split into two parts: 

a) variation due to treatment differences 

b) natural variation. 
 

Assuming that the yield of each plot is the result of the additive effect of the factors, it 

follows that 
 

plot yield = trial mean + treatment effect + residual. 

 

If this additive model correctly explains how the plot yields arise, 
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total SS = treatment SS + residual SS 

 

treatment SS = 4(7.9-7.2)
2
 + 4(7.7-7.2)

2
 + .... + 4(7.5-7.2)

2 

 

 = 3l.6
2
 + 30.8

2
 +……+ 30.0

2
 - (l72.8)

2
 

4              24 

 

residual SS = total SS - treatment SS 

The residual SS is a measure of the natural variation within treatments and alternatively is 

called error SS. 

 

It may also be computed from the sum of the squares of the differences between the 

observed yields and the yields estimated from the additive model. 

 

Degrees of freedom 

 

The sum of squares measuring squared deviations of n sample values about the sample 

mean has n-1 degrees of freedom associated with it and gives rise to a variance calculated 

as: 

 

variance = mean square = sum of squares / degrees of freedom. 

 

The degrees of freedom are the number of independent observations of which a sum of 

squares is composed.  For example the total sum of squares has been derived from the 

differences between the 24 observations and their mean.  If we knew 23 of these and the 

mean, we could derive the twenty fourth.  Consequently only 23 of these are independent, 

and we say that the sum of squares has 23 degrees of freedom associated with it. 

 

Residual Mean Square 

 

The residual mean square is assumed to estimate the random variation in the trial data.  If 

the treatment means are all estimates of the same value of a population mean ie there is 

no significant difference between the treatments, then the variation amongst the recorded 

treatment means is a consequence of random variation and the variance calculated from 

the treatment mean square is estimating the same "true" value of random variation as is 

the residual mean square. 

 

treatment ms = 1.52 = 2.81 

residual ms  0.54 

 

This ratio follows the F-distribution.  The tabulated value of an F variate corresponding 

to P=0.05 (5, l8 df) is 2.77 and at P=0.01 is 4.25.  The calculated value is therefore of 

such magnitude as would occur by chance with probability of between 5% and 1% and 

the assumption of no significant differences between the treatment means is discredited at 

a minimum of P=0.05.  Having ascertained that real differences exist among the 
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treatments it is appropriate to apply the 't' test to assess the magnitude of differences 

necessary to achieve significance. 

 

The variance of a single plot yield s
2
  = 0.54. 

 

The variance of a treatment mean of 4 plots = s
2
 4 = 0.135 

 

se(treatment mean) = 0.135 = 0.367 

 

The variance of the difference between treatment means =   2 x 0.135 = 0.27 

 

se(difference treatment means) = 0.27 = 0.520 

The variance, s
2
, is estimated with 18 df and the corresponding value of t at the 5% 

probability level is 2.101. 

 

The least significant difference between treatment means is therefore 

se(difference treatment means) x t 0.05= 0.53 x 2.101 = 1.1 

 

Any two treatment means differing by more than 1.1 are said to differ significantly at the 

5% probability level (P=0.05). 

 

ie LSD(treatment means) = 1.1 

 

Coefficient of variation for the trial is 

 
√se per plot x 100 = √0.54 x 100 = 10.2 

 trial mean 7.2 

 

The disadvantage of the design is that an undesirable allocation of treatments can occur 

which is advantageous to some treatments and not others eg. if there was a fertility trend 

in the land with high fertility due at the right, treatment F would be at a considerable 

advantage compared to the other treatments.  Similarly B might be at a disadvantage with 

2 plots out of 4 being at one end of the trial area. 

The design will be most useful in controlled environment experiments eg. growth 

chambers or when the area covered by the experiment is small eg. single plant 

experiments or when the land is uniform. 

If we know, or anticipate that there are or might be positional effects, a much sounder 

experimental procedure is to use both blocking and randomisation. 

 

Analysis of variance 

 

Sources of variation df SS ms F 

Between treatments  

Residual 

5 

18 

7.60 

9.72 

1.52 

0.54 

2.81* 

Total 23 17.32   
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Total SS = (8.4 - 7.2)
2
 + (7.9 – 7.2)

2
 + …. + (8.5 – 7.2)

2
 + (7.9 – 7.2)

 2 

 

  = 8.4
2
 + 7.9

2
 + …. + 8.5

2
 + 7.9

2
 – (172.8)

 2
 

               24 

  = 17.32 

 

treatment SS = 4(7.9 – 7.2)
 2

 + 4(7.7 – 7.2)
 2

 + … + 4(7.5 – 7.2)
 2 

 

  = 31.6
2
 + 30.8

2
 + …. +30.0

2
 – (172.8)

 2
 

    4                 24 

  = 7.60 

 

residual SS = 0.5
2
 + 0.0

2
 + (-0.9)

 2
 + … + 1.0

2
 + 0.4

2
 

  = total SS – treatment SS 

  = 17.32 – 7.60 

  =          9.72 

 

 

Standard errors and least significant differences 

 

se(treatment mean) =     √0.54 

    4 

   = 0.37 

 

LSD (treatment means) =       √2 t18 x se(treatment mean) 

     = 1.414 x 2.101 x 0.37 

     = 1.1 

 

 

3 Complete (or randomised) block design 
 

If we know, or anticipate that there are or might be positional effects, or even if we know 

nothing about the trial area, a much sounder experimental procedure is to use blocking.  

This is a device used to minimise within block variation from sources other than the 

factors under test and utilises the fact that plots close to each other are more likely to be 

similar than those farther apart.  The trial area is divided into homogeneous units known 

as blocks and in a complete block design all varieties are grown once in each of these 

blocks (replicates).  A different randomisation is used for each replicate. 

 

An example of a complete block design with 6 varieties, A, B, C, D, E and F, in 4 

replicates is shown below.  Each variety has been randomly assigned to one plot within 

each replicate. 
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 Replicate 1 

C E B D F A 

 

 Replicate 2 

F D E B C A 

 

 Replicate 3 

E C A F D B 

 

 Replicate 4 

D A F E B C 

 

 

Complete block designs are very commonly used in agricultural experimentation due to 

their simplicity and ease of analysis.  In the absence of any knowledge about the trial 

area, the trial should be laid out so that the area covered by a replicate is approximately 

square, and within each replicate the plots are long and thin so that they sample the 

remaining block differences equally.  Replicates can be used advantageously to spread 

work on a trial, for example by drilling/harvesting one replicate on one day, the others on 

another day.  In this case replicate differences would reflect a combination of positional 

and time effects (if they exist). 

 

Replicate size increases as the number of varieties increases. All plots in a replicate 

should be contiguous and therefore the larger the replicate the more likely it is that large 

variation between plots within the replicates will occur.  Unless the trial site is known to 

be very uniform then an experiment containing a large number of varieties (usually 15 

varieties or more) might be better conducted using an incomplete block design. 

 

 

4 Incomplete Block designs 
 

When there is a large number of varieties to test, say 25 instead of 6, each replicate of 25 

plots is likely to cover a large area of land with an increasing risk of lack of uniformity 

within the replicate.  To insure against such lack of uniformity, further blocking is carried 

out with each replicate being sub-divided into smaller units known as blocks.  It is 

assumed that there is greater homogeneity within each block than can be expected 

between the blocks.  Such designs are called incomplete block designs. 

 

Included in these designs are specific incomplete block designs such as balanced, square 

and rectangular lattices but these designs are restrictive.  The requirements of the 

statutory and non statutory variety led to the development of generalised lattice designs.  

(Patterson and Williams 1976)  The original catalogue of designs provides designs 

suitable for any number of treatments up to 100, grown in 2,3 or 4 replicates.  The 

experimenter is able to specify the size of the block and hence to fix the number of blocks 

per replicate.  Additionally, if the total number of varieties does not factorise exactly, the 

design will permit some blocks to contain one more or one fewer plot than all the other 
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blocks.  Thus a trial of 46 varieties may be grown with each replicate having 46 plots, 

subdivided into 8 blocks, 6 of these containing 6 plots and 2 containing 5 plots. 

 

An example of an incomplete block design for 14 varieties (A, B, C, etc.) grown in 2 

replicates each containing 3 blocks is shown below. 

 

 

Replicate 1 

 

H I E L B K D G N A F M J C 

2 2 2 2 2 1 1 1 1 1 3 3 3 3 

 

Replicate 2 

 

L A E J C D K I H N B G M F 

1 1 1 1 3 3 3 3 3 2 2 2 2 2 

 

 

For incomplete block designs, the number of plots per block should be chosen so that the 

area covered by a block is approximately square.  With the plot sizes used for the 

National List and Recommended List cereal variety trials, this results in a block size of 

between 4 and 8 plots. All plots within a block must be contiguous. 

 

 
5 Other single treatment factor designs 
 

Latin Square designs are also suitable for using for variety trials but again their restrictive 

nature makes them impractical for use for trials containing a large number of varieties. 

 

Row and column designs may also be used and use blocking in two directions to reduce 

variation. 

 

 

6 Analysis of variance 
 

The analysis of variance is a technique which enables the estimation of components of 

variance from several sources, e.g. replicates, varieties and blocks, and provides a mean 

of simultaneously assessing whether there are significant differences amongst the variety 

means.  Before applying this technique it is necessary to assume that the variety effects 

are additive and that experimental errors are independently and Normally distributed. 

 

Most biological quantitative measurement data - yield, length - are suitable for 

application of the analysis of variance.  Percentage data which covers a wide range of 

percentages is an example of a variable which may only be suitable for analysis in this 

way after transformation. 
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7 Analysis of variance for a complete block trial 
 

With a complete block design, two specific factors, variety and replicates (reflecting 

positional effects) contribute to the overall variation in yield. 

 

Assuming that the yield of each plot is the result of the additive effects of the factors, 

each plot value may be derived as follows 

 

  plot value = trial mean + variety effect + replicate effect + residual 

 

The residual term is assumed to indicate the amount of random variation present and is 

the difference between the recorded plot value and the fitted plot value (= trial mean + 

variety effect + replicate effect). 

 

If this additive model correctly explains how the plot values arise then: 

 

  Total ss = Replicate ss + Variety ss + Residual ss 

 

The replicate and variety sums of squares are derived from the replicate and variety totals 

respectively, and the total sums of squares is derived from the individual data items.  The 

residual ss is found by subtraction.  The components of variance (mean squares) in the 

analysis of variance table are derived from these sums of squares (ss). 

 

The residual mean square is assumed to estimate the variance arising from random 

variation in the trial data.  If the variety means are all estimates of the same value of 

corresponding population means i.e. there is no significant difference between varieties, 

then the variation among the recorded variety means is a consequence of random 

variation and the variance calculated from the variety mean square is estimating the same 

"true" value of random variation as is the residual mean square. 

 

Under the assumption of no significant difference between varieties the variance ratio, 

(variety ms)/(residual ms), has an F distribution.  The calculated value of this ratio is 

compared with the tabled F variate and if the calculated value exceeds the tabled value 

then the assumption of no significant differences between the variety means is 

discredited. 

 

Having ascertained that real differences exist amongst the variety means it is appropriate 

to apply the "t" test to assess the magnitude of difference necessary to achieve 

significance.  This is done by computing the LSD (variety means).  Any pair of variety 

means differing by at least the LSD (P=0.05) are said to differ significantly at the 5% 

probability level. 

 

LSD (variety means) (P=0.05) = se (variety mean) x 2 x t, where  is the df of the 

residual mean square. 
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Example for a complete block trial 

 

The trial is a complete block design with 10 varieties and 3 replicates. 

Parameter: dry matter yield in t/ha. 

 

Variety Mean %control (c) Plot data 

 

A (c) 3.52 86  - 3.72 3.75 3.10 

B (c) 4.72 115  + 4.86 4.73 4.56 

C (c) 4.08 99  4.08 4.41 3.74 

D 2.48 60 - 2.46 2.74 2.23 

E 4.85 118  + 4.82 5.15 4.57 

F 4.07 99  4.12 4.31 3.76 

G 3.95 96  3.94 4.10 3.80 

H 3.38 82  - 3.32 3.50 3.32 

J 4.39 107  + 4.47 4.53 4.16 

K 3.21 78  - 3.33 3.35 2.96 

 

Trial mean 3.86   Mean 3.91 4.06 3.62 

Control mean  4.11 

SE (variety mean) 0.067 1.60 

LSD (pairs) 0.201 4.9 

LSD (v control) 0.164 4.0 

V sig 0.1 

DF                                         18 

CV                                         3.0 

 

Analysis of variance table 

 

Source of variation df sums of squares mean squares F ratio 

     

Replicates 2 0.9913 0.4956 31.58*** 

     

Varieties 9 14.2735 1.5859 116.07*** 

     

Residual 18 0.2460 0.0137  

     

Total 29 15.5108 0.5349  

 

The calculated F ratio for varieties has a value of 116.07.  The tabled value of the F 

variate corresponding to P=0.05 (9,18 df) is 2.46 and to P=0.001 is approximately 5.76.  

The calculated value is therefore of such magnitude as would occur by chance with 

probability of less than 0.1% and the assumption of no significant difference between the 

variety means is discredited at P=0.001. 
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The significant F ratio for replicates indicates that blocking has been worthwhile. 

 

Residuals for the complete block data 

 

 Plot Rep 1 Plot Rep 2 Plot Rep 3 

 1 -0.06 11 0.05 21 0.18 

 2 0.04 12 0.07 22 0.09 

 3 -0.11 13 -0.07 23 0.10 

 4 0.07 14 -0.05 24 -0.09 

 5 -0.05 15 -0.06 25 -0.03 

 6 0.01 16 0.04 26 0.02 

 7 -0.06 17 0.11 27 -0.06 

 8 0.09 18 0.14 28 -0.01 

 9 0.14 19 -0.04 29 -0.18 

 10 -0.07 20 -0.18 30 -0.01 

 

 

The fitted value for plot 1 (variety G, rep 1) = 3.86 + (3.95 - 3.86) + (3.91 - 3.86) = 4.00 

 

Residual = recorded value - fitted value = 3.94 - 4.00 = -0.06 

 

A positive residual indicates that the variety is performing better than expected in that 

plot and a negative one that the variety is performing worse than expected.  Because the 

residuals are Normally distributed with a mean 0 and a variance equal to the residual 

mean square, any plot with a residual that differs from 0 by at least 2 x sd has only a 5% 

chance of occurring and could indicate an atypical plot.  Such plots should be 

investigated.  Groups of residuals that all have the same sign, e.g. groups of large 

negative or large positive residuals, indicate lower/higher yielding areas in the trial and 

also may warrant further investigation. 

 

 

8 Analysis of variance for an Incomplete Block Design 
 

The analysis of variance for an incomplete block design is very similar to that for a 

complete block design except there is an additional component of variance due to the 

extra blocking factor. 

 

Because the design is resolvable (i.e. each variety occurs once in each replicate) the data 

may be analysed as if it was from a complete block design.  This is useful if for some 

reason some of the plots in the trial fail and invalidate the incomplete block design. 

 

Incomplete block designs are usually more efficient (i.e. produce a lower residual 

variance) than complete block designs and this is seen from the last table in the example 

below. 
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Example for an Incomplete Block Design 

 

Trial randomisation 

 

Design for 21 varieties, 3 replicates and 3 blocks per replicate 

 
 

Variety    Plot Rep. Blk Vty. Plot Rep Blk Vty.                       Plot      Rep Blk   Vty. 
A 1 1 2 J 22 2 3 P 43 3 3     J 

B 2 1 2 AA 23 2 3 W 44 3 3      R 

C 3 1 2 E 24 2 3 D 45          3 3    X 
D 4 1 2 B 25 2 3 T 46 3 3     S 

E 5 1 2 P  26 2 3 Z 47 3 3    AC 

G 6 1 2 X 27 2 3 C 48 3 3     C 
H 7 1 2 T 28 2 3 M 49 3 3     D 

J 8 1 3 M 29 2 1 AA 50 3 1     E 

M 9 1 3 R 30 2 1 E 51 3 1    M 
N 10 1 3 Y 31 2 1 A 52 3 1    T 

P 11 1 3 V 32 2 1 R 53 3 1    A 

R 12 1 3 AC 33 2 1 H 54 3 l     Y 
S 13 1 3 C 34 2 1 V 55 3 1    N 

T 14 1 3 G 35 2 1 X 56 3 1    Z 

V 15 1 1 D 36 2 2 AC 57 3 2   W 
W 16 1 1 Z 37 2 2 S 58 3 2    B 

X 17 1 1 W 38 2 2 G 59 3 2     P 
Y 18 1 1 A 39 2 2 J 60 3 2    H 

Z 19 1 1 N 40 2 2 B 61 3 2    G 

AA 20 1 1 S 41 2 2 N 62 3 2   V 
AC 21 1 1 H 42 2 2 Y 63 3 2   AA 

 

Average efficiency factor 0.8658 
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Summary of results and data values for dry matter yield in t/ha 

 

 Mean  % control (c) Plot data 

Variety (adj) 

A (c) 10.55 103  10.58 10.54 10.85 

B (c) 10.11 99  10.57 9.08 10.10 

C (c) 10.94 107 + 11.14 10.72 11.23 

D (c) 9.38 91  9.33 9.30 9.61 

E (c) 10.34 101  10.34 10.33 10.82 

G  10.27 100  10.77 9.88 9.59 

H  9.44 92 - 9.60 9.76 8.88 

J  9.46 92 - 9.86 8.40 9.92 

M  10.56 103  11.19 10.38 10.40 

N  10.62 103  11.34 9.14 11.03 

P  9.48 92 - 10.25 8.92 9.13 

R  10.26 100  10.99 10.02 10.28 

S  10.15 99  10.50 9.54 10.06 

T  10.45 102  10.80 10.25 10.56 

V  9.70 95 - 10.29 9.76 9.17 

W  10.09 98  10.02 9.52 10.42 

X  8.74 85 - 9.40 8.37 8.90 

Y  10.19 99  10.79 9.19 10.42 

Z  9.30 91 - 9.71 9.14 9.15 

AA 9.54 93 - 9.82 9.77 9.11 

AC 9.25 90 - 9.19 9.05 9.34 

 

Trial mean 9.94 

 

Control mean (t/ha) 10.26 

 

Se (variety mean) 0.220 2.15 

 

LSD (pairs) 0.633 6.2 

 

LSD (v Cont) 0.491 4.8 

 

V sig 0.1 

 

DF 34 

 

CV% 3.6 
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***** Analysis of variance ***** 

 

 

Variate: Data 

  

Source of variation     d.f.       s.s.       m.s.         v.r.      F pr. 

  

Rep stratum                2       5.6626     2.8313   15.03 

  

Rep.*Units* stratum 

Variety                       20     20.4731    1.0237    5.43   <.001 

Residual                     40     7.5367     0.1884 

  

Total                     62    33.6724 

 

This shows there is a definite difference between variety yields 

 

ie F pr <.001 

 

* MESSAGE: the following units have large residuals. 

  

Rep 2     *units* 20         -0.993   s.e. 0.346 

  

  

***** Tables of means ***** 

  

Variate: Data 

  

Grand mean  9.945 

  

  Variety     A(c)       AA       AC      B(c)     C(c)     D(c)        E(c) 

               10.657    9.567    9.193    9.917   11.030    9.413   10.497 

  

  Variety        G           H          J           M          N            P           R 

                 10.080    9.413    9.393   10.657   10.503    9.433   10.430 

  

  Variety        S            T           V         W          X          Y          Z 

                 10.033   10.537    9.740    9.987    8.890   10.133    9.333 

  

  

*** Standard errors of differences of means *** 

  

Table              Variety 

rep.                     3 

d.f.                    40 

s.e.d.              0.3544 
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9 Validation of trials data 

 

Trial results may be invalid because either the variation in the trial as a whole is too great 

compared with the variation expected from previous experience or because the conditions 

under which the trial was conducted may be atypical of conditions to be expected in 

agricultural practice in the future. e.g. severely frosted. 

 

The statistical parameters available from the analysis of variance are for assisting in the 

interpretation and validation of trials data and should not be used as strict guidelines for 

the omission of trials data.  Data/trials should never be omitted just because the results 

seem peculiar. 

 

 

10 Measures of internal variation 
 

One practice sometimes used for omitting the results from a trial is to set an upper limit 

on the coefficient of variation (CV) and to consider omitting a trial if its CV exceeds this 

limit.  The weakness of this criterion is that the CV is inversely proportional to the trial 

mean and hence exclusion of trials with high CVs may result in the exclusion of a higher 

proportion of low yielding trials.  A more satisfactory method is to study the error 

variance and mean yield of the trial in question and to see if the residual variance is 

consistent with the other trials or not. 

 

The majority of variety trials contain varieties with a wide range of yields and the 

analysis of variance should therefore give a highly significant F ratio for varieties. 

(significant at P=0.001)  If this does not happen then this may indicate that the residual 

variance of the trial is unusually high (i.e. that there is a large variety x replicate 

interaction).  A study of the plot residuals for the trial will highlight plots which have 

high residuals and hence are contributing most to the residual variance.  Calculation of 

the range of yields for each replicate in the trial will show whether or not all replicates 

are equally variable. 

 

 

11 Measures of external variation 
 

Having studied the parameters from the analysis of variance for the individual trials' data, 

the trial series may then be considered as a unit.  (A trial series is for example all the 

winter wheat Recommended List trials grown in 2001.) 

 

Calculation of standardised residuals for the variety x site matrix will show in which 

trials a variety is yielding more than (or less than) expected.  A positive residual indicates 

a variety performance higher than expected, a negative value that the variety is 

performing lower than expected at that site. Values greater than 2 indicate that the 

(observed - fitted) value differs significantly from 0 at the P=0.05 level of significance. 
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The standard deviation ratio (sd ratio) is derived from the standardised residuals for 

each trial/variety and is a measure of the relative variation of each trial/variety compared 

with the overall variation.  A value of 1.0 indicates that the trial/variety has average 

variation and a value greater/less than 1.0 indicates above/below average variability.  For 

trials with sd ratios greater than 1.2, the relationship between the standardised residuals 

and any agronomic records taken on the trial will be investigated, with the aim of 

explaining the high variation. 

 

The correlation coefficient relating an individual trial's performance with the mean 

performance over all trials indicates how well the individual trial's results agree with the 

overall mean.  Cereal variety trials' yield usually give correlation coefficients greater than 

0.40 and therefore a trial with a correlation coefficient of less than this is an indication 

that the varieties are performing very differently at that site, i.e. that there is a variety x 

site interaction. 

 

 

12 Over trials analysis 
 

Variety trials are usually carried out at more than one site in a season and for more than 

one year and there is a requirement to amalgamate the results from all trials to produce an 

overall measure of performance.  Because it is impossible to test all varieties in all trials 

in every year, the variety testing system gives rise to both complete and incomplete sets 

of data. 

 

a) Reports based on complete sets of data. 

 

Reports based on a complete data matrix, i.e. with all varieties grown at all sites, are 

relatively straightforward to analyse. 

 

If the table has two factors such as varieties and sites, and if the requirement is to produce 

relative variety performances irrespective of whether there is a variety x site interaction, 

then it is reasonable to compute an analysis of variance using the variety means at each 

site, with the sites as replicates.  The LSD (variety means) is computed from the residual 

variance (= variety x site variance). 

 

A data set with more factors, such as years, sites and varieties is more complicated to 

analyse, but most statistical computer packages provide methods of doing this. 

 

b) Reports based on incomplete data sets 

 

A different statistical method is used to analyse the results from a set of trials in which all 

varieties are not grown.  The method used is REML and this makes adjustment for the 

non-occurrence of varieties in some trials. The variety means produced are all 

comparable. 

 

A simple example of the method is given over the page. 
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Variety 

Year Unadjusted 

mean 

Adjusted 

mean 

 1996 1997 1998 1999 2000 

A 5.10 4.79 3.74 3.27 5.16 4.42 4.42 

B 4.53 4.42 3.52 3.27 4.68 4.08 4.08 

C - - 4.26 4.05 5.52 4.61 * 4.86 

D - - 3.95 3.72 5.04 4.24 * 4.49 

E 4.58 4.95 4.07 3.64 5.34 4.52 4.52 

F 4.39 4.60 3.55 3.20 5.05 4.16 4.16 

G 4.39 4.42 3.42 3.23 5.12 4.12 4.12 

H 4.79 4.42 3.42 3.27 4.86 4.16 4.16 

I - 5.20 4.20 3.75 5.40 4.64 # 4.74 

J 4.44 4.10 3.24 3.18 - 3.74 # 3.94 

 

 * 3 year mean # 4 year mean 

     l996-97 1998-2000 1996-2000    

Mean of varieties A, B, E, F, G, H  4.62  3.99  4.24          

Difference from 5 year mean   -0.38  +0.25                                              

Adjusted mean for variety D  = 4.24 + 0.25 =   4.49 
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 Glossary of statistical terms 

 

1 xi is the ith value. 
 

2 n is the number of values in a data set. 
 

3  is the population mean. 

   is the estimate of the population mean. 

 x is the sample mean 
  x x x

n

n1 2 ...
 

            

 x

n

i

i  

4 
2
 is the population variance. 

 

 s
2
 is the sample variance 

 






 x x
i

n

i

1

2

 

 

5 s is the standard deviation = √variance 
 

6 se is the standard error. 
 

7 ms = mean square = variance. 

8 se(mean) = standard error of the mean 
s

n
 

9 se(difference) = √2  se(mean) 

 

10 LSD (or Sig.Diff.) = the least significant difference 

                                      = √2  tn-1   se(mean) 

                                      = tn-1  se(difference) 

 

 where tn-1 = Student‟s t-value with n-1 degrees of freedom. 

 

11 CV = coefficient of variation
100 s

mean
 

 

12  Significance levels: 5% = p 0.05   = * 

     1% = p 0.01   = ** 

            0.1% = p 0.001 = *** 

 

13 SS = sums of squares 

14 CF is the correction factor =
 x

n

i
2
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STATISTICS: PROBABILITY, DISTRIBUTIONS, MEANS, 

VARIANCES, SIGNIFICANCE, POWER. 
 

 

This is an attempt to put a little more rigour and theory into the background of the 

statistics that you probably all know. It might not help too much with the application of 

what you know, but hopefully it will give you some comfort as we move out of familiar 

territory. I hope there will be some new stuff too. These are advanced notes: they are not 

intended to show you how to calculate a correlation coefficient or carry out an analysis of 

variance. However, this is not a mathematically rigorous exposition: I may lie and cheat a 

little.  

 

 

 

Some perceptions of statistics 

 

“We see that the theory of probabilities is at bottom only commonsense reduced to 

calculation: it makes us appreciate with exactitude what reasonable minds feel by a sort 

of instinct.” PS Laplace 

 

“The true ratio of the numbers can only be ascertained by an average deducted from the 

sum of as many single values as possible; the greater the number, the more are merely 

chance effects eliminated.” G Mendel 

 

“The statistician cannot excuse himself from the duty of getting his head clear on the 

principles of scientific inference, but equally no other thinking man can avoid a like 

obligation.” RA Fisher 

 

“The equanimity of your average tosser of coins depends upon a law, or rather a 

tendency, or let us say a probability, or at any rate a mathematically calculable chance 

which ensures that he will not upset himself by losing too much, nor upset his opponent 

by winning too often. This made for a kind of harmony and a kind of confidence; it 

related the fortuitous and the ordained into a reassuring union which we recognised as 

nature. The sun came up about as often as it went down in the long run, and a coin 

showed heads about as often as it showed tails. Then a messenger arrived. We had been 

sent for. Nothing else happened. Ninety-two coins spun consecutively have come down 

heads ninety-two consecutive times…”    T Stoppard (Rosencrantz & Guildenstern Are 

Dead) 

 

Three men are in a hot-air balloon. The mist comes down and they are lost. One of the 

three men says, "I've got an idea. We can call for help.” So they all lean out of the basket 

and shout: "Helllloooooo! Where are we?"  Fifteen minutes pass. Then they hear a faint 

voice: " Helllloooooo! You're lost!!" One of the men says, "That must have been a 

statistician." Puzzled, one of the others asks, "Why do you say that?" The reply: "For 

three reasons. (1) he took a long time to answer, (2) he was absolutely correct, and (3) his 

answer was absolutely no use to anyone." 
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For me, statistics is a set of methods which can make sense of messy data and tease out 

signal from a noisy background. In addition, knowledge of these methods can lead to the 

design of better experiments and often prevent the generation of messy and 

uninterpretable data in the first place. Biological experiments, in particular, often require 

statistical design and analysis. Statistical methods provide me with a framework for 

thinking about scientific problems. 

 

And finally, statistics is far too important to be left in the hands of statisticians. 

 

 

Probability 

 

If you do genetics you need to know something about probability – see the quote from 

Mendel above. 

 

Some examples: 

 

Ten coins are tossed and come down as heads six times and are left to rest. Then if I 

select one of these coins without looking, the probability that it is heads-up is 6/10. 

 

Given a coin that we believe to be fair, the probability that it will come down heads if we 

toss it is 0.5: it is equally likely to be heads as tails. 

 

Another coin is tossed a very large number of times, 1,000,000 say. It comes down heads 

200,000 times. We now believe that the probability that the coin will come down as 

heads if we toss it again is 0.2. 

 

Underlying the examples above is the concept of a population of events. There is also the 

concept of probability both in predicting the future and/or of describing or summarizing 

the past. In the first example, it is clear that we have a population of size 10 and that we 

are summarizing the past. In the second example we are predicting the future on the basis 

of prior knowledge – we believe on the basis of experience and what we know about 

physics and the Royal Mint, that the coin is unbiased. In this example, the population of 

events is effectively infinite – we believe that if the coin was tossed an infinitely large 

number of times that it would come down as heads ½ the time. In the final example, we 

are explicitly using historic events to predict the future. 

  

Note that in the last example, we have modified out belief. Before tossing the coin, we 

had an a-priori probability that the coin would come down heads of ½. After many tosses, 

we modified this prior belief to a new value – the posteriori probability. It is fairly 

obvious in this case, but suppose we had tossed the coin only 10 times and observed two 

heads - would we modify our probability to 0.2, leave it at 0.5, of move it to somewhere 

in between the two? 
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Think of probability as a frequency or as a proportion: we count the number of times an 

outcome occurs (or we think it will occur) on a number of occasions. In some 

circumstances, we can count over a population of conceptually infinite size. We don‟t 

always have to define probability in terms of categorical outcomes (heads/tails or 

male/female). We can have the probability that a man is over 1.8m tall: what proportion 

of men exceeds this height? In this case, we would have to be careful about defining our 

population again – do we mean UK males, Dutch males (tend to be taller in my 

experience) or all males. What age range are we considering, etc? 

 

 

Some rules and definitions for probability 

 

Probability is usually written as p(x) = 0.05, meaning the probability that event x (eg 

being male and > 2m) occurs is 0.05. 

 

If events are mutually exclusive, then probabilities can be added. For example, with a 

biallelic locus segregating in an F2: 

 

p(AA) = 0.25 

p(Aa) = 0.5 

p(aa) = 0.25 

 

So if allele A is dominant, the probability of observing the dominant phenotype is 

p(dominant) = p(AA)+p(Aa)  =0.75 

 

Note that over all possible outcomes, probabilities add up to 1.  

p(AA)+p(Aa)+p(aa) = 1 

 

If two different outcomes are independent, the probability of both outcomes is the 

product of the probability of each outcome: 

 

p(male) = 0.5 

p(believe in Santa) = 0.1 

 

P(male and believe in Santa) = p(male) x p(believe in Santa) = 0.05 

 

 

Different outcomes are often not independent eg 

 

p(male) = 0.5 

p(like football) = 0.3 (I‟m guessing). 

 

But liking football is much more a male than a female thing. Perhaps the probability of 

liking football if you are male is 0.6. We write this as 

 

p(football | male) = 0.6. 
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The „|‟ stands for “conditional on.” In words: 

 

p(likes football conditional on being male) = 0.6. 

 

Note that p(football | male)  is not the same as p(male | football) – which we‟ll check out 

to see if works as a diagnostic test for sex. 

 

As a general rule of probability: 

 

p(football | male).p(male) = p(male | football).p(football). 

 

So we can work out p(male | football) : 

 

0.6 x 0.5  =  p(male | football) x 0.3  

 

so 

 

p(male | football) = 1.0 

 

It follows that p(female | football) = 0, and also that p(male | don‟t like football) = 0.4 

 

For this simple case, it is easy to see what is going on if we lay out the probabilities in a 

contingency table: 

 

   male  female  total 

like football  0.3  0.0  0.3 

dislike football 0.2  0.5  0.7 

 

total   0.5  0.5  1.0 

 

Note that conditional probability is not necessarily the same as the probability that both 

events happen. So p(male | football) is 1.0 but p(male & football) is 0.3. 

 

In this case, liking of football is very good at eliminating females – it has high specificity 

for males. However it has low sensitivity in that it doesn‟t detect them all. These 

definitions are important in medical statistics: maleness could be a disease and football a 

screening method. 

 

 

p(A | B).p(B) = p(B | A).p(A) is better known as Bayes‟ theorem, more generally written  

as : 

 

p(A | B) = p(B | A).p(A) / p(B) 

 



 78 

In this context, p(A|B) is often called the posterior probability of A and p(A) the prior 

probability. Bayes theorem accounts for how our prior belief in A is modified by 

additional information coming from B.  

 

 

Probability distributions. 

 

Going back to our height example, we stated  p(>1.8m) as 0.05. There must also be a 

p(>1.7m), a  p(>1.6m
2
) and so on.  There is also a p(<1.8m and >1.6m). Every interval or 

subset will have a probability and the complete description of probabilities over all 

possible subsets is given by the probability distribution. Probability distributions are 

important for two reasons. Firstly they allow us to summarise data succinctly. For 

example, for height in males, we could tabulate the probability of men having heights 

between 1.5m and 1.6m then 1.6m and 1.7m and so on. However, if height tends to 

follow a particular frequency distribution, then we can summarise the distribution better 

by describing the properties of that distribution. In addition, if we know the distribution 

to which an observation or event is meant to belong, then we can assign a probability to 

that observation. If the probability is particularly low, we may reconsider our knowledge 

and decide that the observation is not quite what we thought. 

 

Probability distributions can be split into those for outcomes which we can count – males, 

females, genotypes and so on, and those where the outcome is continuous, such as height 

and weight – most of the measurable phenotypes we come across in plant breeding. The 

former are called discrete distributions, and the latter continuous.  

 

For discrete distributions, the function giving the probability for a particular outcome is 

called the probability mass function (p.m.f). For continuous distributions the equivalent 

function is the probability density function (p.d.f). This is more complex conceptually 

since it isn‟t really a probability at all. In the pedantry of probability, we can‟t attach a 

probability to someone having a height of exactly 2m, since no one is exactly 2m tall. All 

we say is that their height lies between two values, say 2m and 2+δm. To find the 

probability of someone‟s height being in this interval we have to integrate the p.d.f  

between these values. 

 

Below are the some commonly encountered forms of both distributions, starting with 

discrete. There is more than you require here, but you should at least read about the 

binomial and normal distributions. 

 

 

Bernoulli distribution. 

 

This is the distribution of single events – something happens or it doesn‟t. A coin tossed 

once is the obvious example. A child could be a girl or a boy. I can win a race or not win. 

A positive outcome is given the value one and a negative the value zero. What you call 

positive or negative is arbitrary. The average of a Bernoulli distribution is just the 
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probability that the event happens: p. So for me to win a race, the probability is very 

small – both empirically and a priori. That is all there is to be said. 

 

 

Binomial distribution 

 

We observe an event a number of times, say n, and count the number of successes (r). 

The complete distribution is given by the binomial expansion : 

 

 

p(r successes out of n) = )()1(
)!(!

! rnr pp
rnr

n 


   

 

This function for the distribution is called the “probability mass function” and gives the 

probability that the particular number of outcomes is observed. 

 

If the probability of a success is p, then the mean number of successes is np. If we don‟t 

know what p is, then the best estimate is r/n.  

 

We shall cover a lot of cases in which p is the probability of allele A being observed and 

(1-p) is the probability of allele a being observed. 

      

The Bernoulli is a special case of the binomial with n =1 

 

 

Multinomial 

 

We observe n events as before, but there are more possible outcomes – AA, Aa and aa. 

say, for three possible genotype classes. 

 

In this case, p(AA)+p(Aa)+p(aa) = 1  where p(xx) is the probability of observing 

genotype xx. The expected number of AA individuals in our sample of n is therefore 

n.p(AA) with  n.p(Aa) individuals and n.p(aa). For the three outcomes, the complete 

distribution is given by the multinomial expansion: 

 

p(r1, r2, r3 outcomes in n) = 
321

321

321 !!!

! rrr
ppp

rrr

n
   

 

r1, r2 and  r3  are the observed numbers of each class.  and p1, p2 and p3 are the 

probabilities of observing each class. If these are unknown they can be estimated from 

the data as r1/n, r2/n and  r3/n. 

 

The expansion to more than three outcomes is obvious. 

 

The binomial is a special case of the multinomial distribution. 
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Poisson 

 

This distribution is often followed by counts of events (usually rare events) which occur 

in an interval of time or space. A classic example is the number of soldiers killed by 

horse kicks in the Prussian army. Another might be the number of new mutations 

observed in a population, or the number of ergot infected ears of wheat in a plot. If p is 

the probability of the rare event occurring, then the average number of occurrences is 

generally given as λ. With k as the number of events, the complete distribution is given 

as: 

 

 p(k events)  = e
-λ

λ
 k

 / k! 

 

Note that the Poisson distribution has a probability for every number of outcomes count 

from 0 to infinity. In practice, however, these probabilities become vanishingly small as 

the number of counts rises.  

 

The Poisson distribution is close to the binomial distribution if n (for the binomial) is 

large and p is small. This is because, given the binomial distribution 
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with p = λ/n  is 

 

 )()1(
)!(!

! rn

r

r

p
nrnr

n 



 

 

and 

 

 

n!/(n-r)! n
r
  1 

 

(1-p)
(n-r)
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with 

 

(1-p)
n
   e

-np
 = e

-λ
  

 

and 

 

(1-p)
–r

   e
-rλ/n 

 1 

 

Put all this together:  
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This comes in handy sometimes. 

 

For large λ, the Poisson distribution can be approximated by a normal distribution 

(introduced below) with both variance and mean equal to λ. 

 

 

Uniform distribution 

 

Every outcome is equally likely. The uniform distribution can be either discrete or 

continuous. An example of a discrete uniform distribution would be the probability of a 

letter in the alphabet being chosen at random. An example of a continuous uniform 

distribution is the distribution of lengths of a broken stick, where the break has occurred 

at random along its length. 

 

To my mind this is the easiest of the continuous distributions. The distribution of values 

is uniform between the range a and b. It is easy to see that the mean of a set of numbers 

drawn at random from the same uniform distribution is expected to have a mean equal to 

the mid point 

 

mean  = (a-b)/2 

 

 

length of stick

0 10 20 30 40

 
 

 

In the example, a = 0  and b 40. 

 

A special case is the distribution of real numbers in the range 0 – 1. This is often the 

expected distribution of probability itself: a probability between 0.01 and 0.02 is just as 

likely as a probability between 0.5 and 0.51, but a probability of between 0.5 and 0 is 

much more common than a probability between 0.0001 and 0. 
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Normal distribution 

 

The bell –shaped curve. Also called the Gaussian curve.  

 

-6 -4 -2 0 2 4 6

 
 

This is the probability distribution with which we shall be dealing with most in this 

course. Its probability density function is: 
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This complicated looking formula has two parameters. Mu (μ) is the mean, also the 

median (the midpoint of the distribution) and the mode. (For continuous distributions the 

mode is the value of x for which the probability density is a maximum. For discontinuous 

distributions it is, more simply, the most common class or value). Sigma squared (σ
2
) is 

the variance, to which we shall return. The square root of the variance, σ, is called the 

standard deviation and is related to the spread of the distribution. 

 

For continuous distributions, the probability of any single outcome is infinitesimally 

small.  No-one is exactly 2m tall. As precision of measurement increases, we may be able 

to say that someone‟s height lies between 1.99999m and 2.00001m. But within this 

interval, for a continuous distribution, there are still an infinite number of other intervals 

– and so on. To assign probability we integrate the pdf to find the area under the curve 

between our desired limits. So although no one is 2m tall, we can do sums like 
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to find the probability that someone‟s height lies between 1.999m and 2.001m. This is 

good enough for basketball and the police. Of course, these calculations are usually 

carried out by statistical software or using spreadsheet functions. 

 

Most commonly we want to find the probability of an unusual observation. The normal 

distribution has a range of -∞ to +∞. To quantify how strange an unusually large 

observation is, we would calculate the probability 
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This is to say, we calculate the probability of finding an observation as large or greater 

than the one we actually have. ie p(outcome ≥ x). We can calculate the probability of an 

unusually small observation by integrating between -∞ and x.  

  

Often we want to find the probability that  an observation deviates from the population 

mean to the extent observed. Here we integrate between x and +∞ as before, but double  

the probability to account for the fact that deviations from the mean this large are equally 

likely to be positive as negative: the normal distribution is symmetrical about the mean as 

you can see in the figure. 

 

The normal and binomial distributions are related – as the population size of the binomial 

gets larger and larger (ie n in the binomial formula), provided that p is not too close to 

zero, then the shape of the two distributions is pretty much the same. For example, the 

curve below is for a binomial distribution with n = 10 and p = 0.5.  
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The standard normal distribution is a normal distribution with a mean of zero and a 

standard deviation of 1. Data from any distribution can be standardized by subtracting 

from each observation the mean and then divide by the standard deviation: 

 

 z = 


x
 

 

 

This is useful when it comes to comparing data - maybe for different traits or for different 

variety trials - since it puts all measurement on the same scale. Note however that if the 

original distribution is not normal, the standardised distribution will also not be normal.  

 

Although the pdf for the normal is an ugly looking thing, the normal distribution has 

many useful properties, It is symmetrical for one. Importantly, many traits of interest in 

plant breeding – eg yield – are approximately distributed as normal. Even when traits are 

not distributed normally, it often makes very little difference to the outcome of our 

statistical analysis if we treat them as such, as we shall explain shortly. In addition, 

simple transformation to the raw data, for example taking logs, often generates 

transformed variables which are closer to normal. 

 

To indicate that a variable X is normally distributed, we write X ~N(μ,σ
2
) so ~ N(10,100) 

would indicate a distribution with a mean of 10 and a variance of 100. 

 

 

The chi distribution 

 

If we take a standard normal distribution N(0,1) and either ignore all the negative values, 

or take the absolute values (or square everything then take the square root) we get a chi 

(χ) distribution. For obvious reasons, this is also referred to as the half-normal 

distribution. The pdf is a complex looking thing that needn‟t concern us. 

 

We give the chi distribution only because it leads to: 

 

 

The chi square distribution 

 

If we square a standardised normal distribution with a mean of zero, we get a chi-squared 

distribution with one degree of freedom (df – to be explained later). With one df the 

distribution looks like this: 
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If we have observations for a set of individuals from a number, n,  of N (0,1) distributions 

and the data in each are independent of each other (we say they are independently and 

identically distributed i.i.d.) and we square then sum the values of each observation for 

each individual, we get a chi-squared distribution with n degrees of freedom. You might 

ask why we would want to do this, but the chi-squared distribution comes up in a lot of 

significance testing. A chi squared distribution with 10 df is shown below 

 

Histogram of sort(rchisq(1e+06, 10, 0))

sort(rchisq(1e+06, 10, 0))
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As the number of df increases, the chi-squared distribution can be approximated by the 

normal, although the approximation is not that good in this case. 

 

The pdf is even more unpleasant than the normal distribution but fortunately we won‟t be 

required to use it directly in this course. 

 

The mean of a chi-squared distribution is equal to its df. 
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The F distribution 

 

This also features heavily in significance testing, has a horrible p.d.f., but is related to chi 

sq and therefore ultimately to the normal distribution. 

 

The F distribution is defined as the ratio of two chi-squared distributions, each first 

divided by its degrees of freedom: 

 

  (χ
2

a/a)/ ( χ
2

b/b) 

 

The pdf is therefore quite unpleasant. The shape of the distribution depends on the 

degrees of freedom of both numerator and denominator. An example for 5 and 100 df is 

shown below. 

 

 

Histogram of rf(1e+06, 5, 100, 0)
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Although the pdf is horrible, we can summarise some properties of the distribution. 

 

If the denominator df are large, and the numerator df are a then aF is approximately 

distributed as  χ
2
 with df equal to a. 

 

If the numerator df is 1 then F is distributed as (Students‟ t-distribution )
2
, described 

below. 
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Student’s t-distribution 

 

Named after Student (pseudonym of William Gossett). 

 

This is an extension of the normal distribution to cases when we don‟t know what the 

standard deviation or variance is. However, we can estimate it from the data, as we shall 

see. If we used this estimate directly in the p.d.f. for a normal distribution to assign 

probabilities to our observations they would look slightly more extreme than they 

actually are. To avoid this, we ought not apply the p.d.f. for a normal distribution to 

calculate probabilities, we should use t-distribution instead. Again the pdf is quite a nasty 

looking item which need not concern us.  

 

A plot of the t distribution looks very similar to the normal distribution, but the tails of 

the distribution are longer – there is more chance of observing extreme values. The graph 

below plots 10,000 sorted random normally distributed numbers against a corresponding 

set of 10,000 numbers from a t-distribution with 5 df. You can see that between values of 

about +2 and -2 there is very good agreement between the two, but after this values from 

the t-distribution become more extreme.  

 

 

 
 

 

The mean of the t distribution is zero. As the number of observations in the sample 

increases, this distribution approximates to a standard normal distribution. Here is the 

plot corresponding to that above for t with 100 df. 
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The relationships is close to 1:1 over the whole range, so with this number of degrees of 

freedom, we will get very similar answers whether we treat the data as normally 

distributed or distributed as t.  

 

It we square a variate distributed as t with n df, then the squared variate is distributed as F 

with 1 and n df. 

 

 

 

The normal distribution again: variance, standard deviation, central limit theorem 

and standard error. 

 

For any population, whatever the distribution, variance is defined as  

 

  E(x-Ex)
2
  

 

The „E‟ stands for “expected value”, ie the mean. Ex is therefore the mean of the 

population. x-Ex  is the deviation of an observation from its mean. Obviously sometimes 

this deviation will be positive and sometimes it will be negative. By squaring it, it is 

always positive. E(x-Ex)
2 

 is thus the mean of the deviations squared. As such, for any 

probability distribution, it is a measure of the spread of the data around the mean.  

 

For the normal distribution, E(x-Ex)
2
 = σ

2
 . The square root of the variance, the standard 

deviation, σ, is the distance from the mean to the point of inflection of the distribution. 

The point of inflection is the point as you go up a slope where it stops getting steeper and 

starts to get flatter. Mathematically, it is the point where the second differential of a 

function (f ‟‟) is zero. Remember the first differential, f ‟, detects maxima and minima.  
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Generally, we work in variances rather than standard deviations: they are easier to 

manipulate but harder to understand. For example, variances but not standard deviations 

can often be added across datasets. However, the units of measurement of variance are 

those of the variable squared, whereas those of the standard error are identical to the raw 

data. So if I‟m told that the mean salary of a plant breeder is £30k (say) but that the 

standard deviation among breeders is £15k (say) then that means more to me than being 

told that the variance is £225k.  

 

Even if data are not normally distributed, it is worth calculating the variance, for two 

reasons. 

  

1) Often, we are not interested in the probability distribution of the raw data, we are 

interested in the distribution of the means of the data. The variance of the mean of a set of 

n observations is the variance of the observations divided by n. So if we had a set of 100 

males and took their average height, the variance of the average is the variance among the 

males themselves divided by 100. By the variance of the average, what we mean is that if 

we repeated this experiment a very large number of times, preferably an infinite number 

of times, then calculated the variance of these means, we would get the same variance as 

if we divided the variance among the individual males by 100. This is important, because 

it means that we can use an estimate of the variance of the mean as an indication of how 

accurately we have measured that mean in the first place without the requirement of 

repeating the experiment many times. The square root of the variance of the means is 

called the standard error. Standard deviation refers to the population and its estimate is 

independent of sample size. Standard error refers to the mean and its estimate goes down 

as sample size goes up. 

 

2) The central limit theorem – raised to almost religious status by Francis Galton 

(Darwin‟s cousin and early biometrician).  

 

“I know of scarcely anything so apt to impress the imagination as the wonderful form of 

cosmic order expressed by the “Law of Frequency of Error” [ie the central limit 

theorem]. The law would have been personified by the Greeks and deified if they had 

known of it. It reigns with serenity and in complete self-effacement amidst the wildest 

confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is 

its sway. It is the supreme law of Unreason.” F Galton  Natural Inheritance (1889) 

 

The central limit theorem states that for a given distribution, not necessarily normal, with 

mean μ and variance σ
2
, then sample means of size n taken from this distribution will also 

have a mean equal μ (obviously) and a variance σ
2
/n, but most amazingly the distribution 

of means will itself approach normality. This is true for almost all probability 

distributions, and certainly for all the ones that you will encounter in practice. (There are 

some distributions which have no mean or variance so the central limit theorem can‟t 

apply, but are still proper probability distributions: their integral = 1. Don‟t ask.) So 

whatever the original probability distribution, the distribution of the average of samples 

drawn from that distribution will tend to normal – with all the advantages of manipulation 

and interpretation that that gives. Of course, the closer to normal the original distribution, 
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the smaller the sample size need be to get a normal distribution of sample means, but 

even for horrible U-shaped distributions, it works eventually. In fact, in the days of less 

powerful computers, one method of deriving normally distributed random numbers was 

to take the mean of samples of uniformly distributed random numbers (which are easier 

to generate.) Here is an example.   

 

 

   
 

The  distribution on the left is of 1,000,000 uniformly distributed random numbers. That 

on the right is of the means of those numbers taken ten at a time. 

 

In addition to allowing us to infer properties about estimates of means, in plant breeding 

the central limit theorem has another consequence. It probably accounts for why many 

phenotypes appear to be roughly normally distributed – they are the average of a whole 

host of underlying environmental and genetical factors. Each of these can have an 

unknown distribution but by the time they are averaged to generate a phenotype, the 

resultant distribution can look pretty normal. 

 

Having raised the profile of the variance, we shall now back track quickly and look at 

what the variance is for the distributions we have considered so far: 

 

    mean   variance 

Bernoulli   p   p(1-p) 

binomial   np   np(1-p) 

multinomial   pi   n pi(1- pi) for each class i in turn 

Poisson   λ   λ 

uniform   (a+b)/2   (a-b)
2
/12   

normal    μ   σ
2
 

standardized normal  0   1 

chi-square   df   2df 

F    df2/(df2 -2)     messy  mean is ~ 1. 

t    0   df/(df-2) 

 

df = degrees of freedom. 
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Manipulating variances 

 

If y = kx where k is any constant, Vy = k
2
Vx 

 

This follows from the definition of a variance: 

 

Vy  =  E[y – Ey]
2
   

  = E[kx – E(kx)]
 2
 

 

The mean of a variable multiplied by a constant is the same as the constant multiplied by 

the mean of the variable:  it makes no difference, other than convenience, whether we 

measure variety yield in tonnes per hectare or pounds per acre. 

 

E(kx)  =  kE(x) 

 

So 

 

Vy  =  E[kx – kEx]
2
   

  = k
2
 E[x – Ex]

2
   

 

This is common sense – the variance is measured in units of x squared, so if we change 

the scale of measurement by a factor k, then scale of measurement of the variance is 

changed by a factor k
2
. 

 

We have already commented that variances are additive. So if we have a variate y and a 

variate x, the variance of (x+y) is Vx + Vy. This also follows from the definition of the 

variance as E(x-Ex)
2
.  For example, if z = x + y 

 

E(z-Ez)
2
  =  E[x+y-E(x-y)]

2
.   

 

The mean of a sum is the same as the sum of the means so  

 

Ez = E(x+y)   = Ex +Ey. 

 

So 

 

E(z-Ez)
2
  = E[x+y-Ex-Ey)]

2
   

 

   = E[ (x-Ex)
2
 + (y-Ey)

2
 +2E(x-Ex)(y-Ey)] 

 

   =  E(x-Ex)
2
 + E(y-Ey)

2
 + 2E(x-Ex)(y-Ey) 

 

For independent variables, the value of x is unrelated to the value of y so the third, cross 

product, term is zero. (It is actually the covariance – see below.) So 

 



 92 

 E(z-Ez)
2
  =    Vx    + Vy     +    0   

 

   

If one variate is a function of another: y  = f(x) and  

 

Vy ~ (dy/dx)
 2

 Vx.   (This can be proved by Taylor‟s theorem.) 

 

If one variate is a function of two other variables:  z = f(x,y), and 

 

 Vz ~ (dy/dx)
2
 Vx + dz/dx)

2 
Vy  

 

 

NB – these formulae are only correct for independent (uncorrelated) variates, although 

they can be modified to include correlation. 

 

 

Correlation and covariation 

 

Independent variables generally present no problem: the joint probability of an 

observation (x,y) say, is just p(x).p(y). 

  

If the variables are correlated, life is a little harder. We shall restrict the discussion to 

variables considered in pairs. This usually gets us most of what we require. The simplest 

way to study the relationship is to plot one variable against another. This is always worth 

doing. 

 

To quantify the way in which the two variables vary together, we use the covariance, 

which is analogous to the variance for a single variable. It is defined as: 

 

E(y-Ey)E(x-Ex) 

 

cf – variance = E(y-Ey)
2
 so the if y = x the Cov(x,y) = V(x). 

 

Thus, rather than averaging the square of the deviations from the mean as in the 

calculation of variance, we average the product of the deviations for one trait with the 

deviations from the other.  

 

In passing, and referring back to the previous section, note that for two correlated traits, x 

and y, the variance of the sum is: 

 

 V(x + y) = Vx + Vy + 2Cov(x,y) 

 

Also,  V(x +x)  = Vx + Vx + 2Cov(x,x) 

 

   = 4Vx  
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as it should since V(x +x) = V(2x).  

 

Note that the covariance can be negative. 

 

Covariances can be calculated for any pair of traits, whatever their distribution, but the 

interpretation of covariance is most easy if the two distributions are themselves normally 

distributed. 

 

If two distributions are standardized to have zero mean and variance of one (so they are 

N(0,1) if they were normal on the original scale), then the covariance between the 

rescaled traits cannot be lower than -1 or greater than +1. The covariance between pairs 

of traits rescaled in this manner is called the correlation coefficient – it is easier to 

understand than the raw covariance because of the -1 … +1 scale. High values indicate a 

strong positive linear relationship; low values a strong negative linear relationship and 

values close to zero the absence of a relationship. 

 

In fact, there is no need to go through the rigmarole of transforming the data as described 

above. The correlation coefficient is just: 

 

cov(x,y) /  √(V(x).V(y)) 

 

The correlation will not pick up all relationships between pairs of traits. In extreme cases, 

where a plot of one trait against another is U shaped, then there is a clear relationship but 

the correlation is zero. I must say, however, that I‟ve never come across a relationship 

between traits like this, but for example, if extreme phenotypes tend to die  and 

phenotype is plotted against survival, then this relationship could arise. (This is called 

stabilizing selection: an intermediate phenotype has highest genetic fitness.) Also, 

when one or both traits have non-normal relationships, single data points can render the 

correlation close to +1 or -1 even though for the majority of the data the relationship is 

much weaker. The moral is always to plot your data, don‟t just look at the correlation 

coefficient. 

 

 

Estimation 

 

The discussion above has described distributions in terms of their known means, 

variances and other parameters. Most of the time, we have a set of data from which we 

wish to estimate parameters – most commonly the mean and variance. Below, without 

commentary, we state how these parameters are estimated. Then we try to justify this, 

and therefore show by extension how we can proceed to estimate parameters in more 

complex cases. 
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mean     ̂  = Σ xi / n 

 

variance    2̂  = Σ (xi - ̂ )
2
 /(n-1) 

 

alternative formula   =  ( Σ xi
2 

– (Σ xi )
2
 /n) / (n-1)  

 easier for hand calculation 

 

variance of mean   V ̂  = 2̂  / n 

      

standard deviation   s.d. = 2   

 

standard error    s.e. = 
n

2̂  

 

covariance    covxy = Σ (xi - x̂ )
2
 (yi - y̂ )

2
 /(n-1) 

 

 alternative formula     ( Σ xi yi
 
– (Σ xi Σ yi) /n) / (n-1) 

 easier for hand calculation 

  

 

correlation.coefficient   rxy = covxy  / √(VxVy) 

 

 

There are various conventions for distinguishing between data, parameters and estimates 

of parameters. Those that are followed frequently depend (at least in my case) on the ease 

with which they can be typed in your favourite word processor. 

 

Greek letters  parameters 

Latin letters  data 

^ sign over a letter generally means “estimate of” 

- sign over a letter generally means “average of” 

 

 

Why are these estimates the ones to use? Others are possible. For example, for the normal 

distribution, why not use the mode or median as an estimate of the mean rather than the 

arithmetic average? They all have the same expectation. 

 

In this course, we shall rely predominantly on two commonly used estimation methods – 

least squares, which is particularly appropriate for parameters associated with the normal 

distribution, and maximum likelihood, which is more broadly applicable. The two give 

similar, but not necessarily identical answers. Historically, least squares came first, but 

we shall deal with maximum likelihood first. In addition I shall attempt to explain 

something about Bayesian estimation. This is used little in the course, but is becoming of 

increasing importance in complex estimation problems in genetics and bioinformatics so 
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you will inevitably come across it or end up using software which implements Bayesian 

methods. 

 

 

Maximum likelihood 

 

Maximum likelihood estimates have the following properties: 

 

bias:  ML estimates can often be biased in small samples but: 

consistent: ML estimates home in on the true values as the sample sizes increases. 

sufficient: ML estimates use all the information available in the sample 

efficient: ML estimates have no unbiased competitors which are more precise  

(in large samples). Essentially ML estimates have the smallest variance. 

  

It is unfortunate that ML estimates can sometimes be biased, but generally, for the 

samples sizes used in most sensible experiments, there is little need to worry.  

 

The method of maximum likelihood searches for values of parameters which maximize 

the fit of the parameters to the data in our sample. In other words we search for values of 

the parameters which make the data more likely. In a sense, we select the parameter 

values which maximize the probability of observing our data. There is a problem here in 

that we are treating the parameters as if they themselves belong to a probability 

distribution. To avoid saying we want to maximize p(parameters | data) we say that we 

want to maximize the likelihood of the parameters given the data, l (parameters | data). 

What we actually work with, however is the probability of the data given the parameters, 

which we can calculate from the p.d.f. of the distribution describing the data. 

 

 l (parameters | data) = p (data | parameters) 

 

So to maximize  l (parameters | data) we treat  it  just as if it were a probability.  This is 

all a bit philosophical. If you are one of those happy folk who neither worry nor care 

about this, then I envy you. It is all easier to follow with an example.  

 

We have a set of observations [x1,x2…xn] from a normally distributed population from 

which we wish to estimate the mean and the variance. What are the maximum likelihood 

estimates? 

 

The mean first: 

 

Using the pdf of the normal distribution,  

 

 

  l (xi) = 

2

2

ˆ2

)ˆ(

2ˆ

1





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e
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We wish to find the values for ̂  and 2̂  which maximize l. Each observation is 

independent of the others, so likelihood, just like probability, can be multiplied together 

to get the total likelihood of the sample  

 

  l (x) = l (xi) . l (x2)… l (xn)  = ixl
 

 

The Π symbol stands for multiplication of all the following terms. 

 

This product, which involves working directly with the pdf is too hard. In general, with 

likelihood, it is easier to work with natural logs.  

 

  L(x) = Σ ln(1/(̂ √2π) + Σ (xi- ̂ )
 2

 / (2 2̂ ) 

 

We could solve this numerically by plotting  L(x) against ̂ and finding the value 

of ̂ which maximizes L. In complex problems, this can be the only way we can proceed, 

although the search for the maximum is carried out by computer using algorithms 

designed for this purpose. In this case, however, we can solve the equation. The 

maximum value of L(x)  is given when  

 

d (L(x))/d ̂  = 0 

 

The differential is found using the “function of a function” rule: 

 

 d (Σ ln(1/(̂ √2π) ) / d( ̂ ) is zero because it has no terms in ̂  

 

 For the second term, setting  (xi- ̂ ) = z and remembering dy/d ̂  = dy/dz. dz/d ̂   

 

d Σ z
 2

 / (2 2̂ ) / d ̂  =  Σ 2(xi- ̂ )
 
 / (2 2̂ ) . d((xi- ̂ ) / d ̂  

 

    = Σ -2(xi- ̂ )
 
 / (2 2̂ ) . 

 

Therefore: 

 

  d (L(x))/d ̂  = - Σ  (xi - ̂ ) /  2̂  

 

 

 

Setting this to zero: 

 

  0 = - Σ  (xi - ̂ ) /  2̂  

  0 = - Σ  (xi - ̂ )  

  0 = -Σ xi + n ̂  
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  ̂  = Σ xi / n   as we would expect. 

 

 

For the variance, differentiation is harder but still only requires the “function of a 

function rule”  

 

 d (L(x))/d
2̂  = Σ -̂  (√2π) ̂ -2 

 / (√2π)    –    Σ [(xi- ̂ )
2 

/2](-2̂ -3
 ) 

 

  n̂ -1
 = Σ [(xi- ̂ )

2 
/2]2̂ -3

  

 

  n̂ 2 
=

 
Σ (yi- ̂ )

2 
 

 

   ̂ 2 
= Σ (yi- ̂ )

2 
/ n 

 

 

So we have the maximum likelihood estimates. ML approaches will find the parameters 

for other p.d.f. too. An easier one to try is to find the ML estimate of p for the binomial 

distribution (you need the “function of a function rule” and to remember that d(log(x)/dx 

= 1/x ). Often it is not possible to solve the ML equations algebraically as here. However, 

if you can write the likelihood down, then you can usually find the ML estimates 

numerically, sometimes even in Excel, as we shall  see.  

 

The ML estimate of the variance is biased. The bias arises because the ML solution to the 

variance treats the mean as known. But if the mean is unknown and has also been 

estimated from the data, then the unbiased variance is no longer  

 

  ̂ 2 
= Σ (yi-μ)

2 
/ n 

 

 

but 

 

  ̂ 2 
= Σ (yi- ̂ )

2 
/ (n-1) 

 

 

The sum of squared deviations is divided by the degrees of freedom. The degrees of 

freedom are n minus the number of parameters estimated: one here because we have 

estimated the mean. If n is large, the bias is small. Generally, when analyzing data, we fit 

more that just a mean and include parameters to account for varieties and other factors. 

The unbiased estimate of error remains the (sum of squares) / ( degrees of freedom ) or   

SSQ/df  but the df for error is now (n-k) where k is the number of parameters estimated 

(including the mean). In this case SSQ are deviations from the fitted model, not just from 

the mean. 

 

Even after dividing the variance by (n-1), there remains a very slight bias which is 

usually ignored but can occasionally crops up when working with very small populations. 
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Suppose that we sampled the whole population. We can now calculate the mean and 

variance exactly, rather than merely estimate them from a sample. In this case, the divisor 

for SSQ should be n, and not n-1. Now suppose we sampled all but a single member of 

the population. Intuitively, it seems unfair to reduce the df from n to n-1 just for a single 

observation – surely the bias in the estimate of variance can‟t be that great. This is 

correct. If the population size is N and the sample size is n, the unbiased estimate of error 

is 

 

 

   ̂ 2 
= (SSQ/n)  [n/(n-1)][(N-1)/N] 

 

Written this way, the unbiased estimate is the ML estimate (ie divide by n) multiplied  by 

n/(n-1) to correct for the estimation of one parameter (the mean) then multiplied by (N-

1)/N to correct for the proportion of the population we have sampled. N will usually be so 

large that this correction isn‟t worth bothering about. If N=n, then we have sampled the 

whole population and the ML estimate is unbiased. 

 

 

Bayesian Estimation. 

 

“Proof,” I said, “is always a relative thing. It‟s an overwhelming balance of probabilities. 

And that‟s a matter of how they strike you.” Raymond Chandler. Farewell, My Lovely 

 

Another view of ML estimation is derived from Bayes‟ theorem. Bayesian statisticians 

have fewer hang-ups about talking of maximizing the probability of parameters. I 

describe the approach superficially here. We are not going to get into Bayesian statistics, 

but you will come across many references to it. Remember Bayes‟ theory is: 

 

p(A | B).p(B) = p(B | A).p(A) 

 

Suppose A are the parameters we want to estimate and B are the data. 

 

p(parameters | data) .p(data) = p(data | parameters). p(parameters)  

 

p(data) is fixed, it doesn‟t depend on anything else and is treated as a “normalizing 

constant” – a constant that balances the equation.  

 

p(parameters | data)     p(data | parameters). p(parameters) 

 

 p(parameters | data)  =  l (parameters | data). p(parameters) 

 

 

p(parameters | data) is called the posterior probability of the parameters. It is not the 

same as the likelihood of the parameters given data. 

 

p(parameters) is the prior probability of the parameters. 
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l (parameters | data) is the likelihood of the parameters and can be viewed equal to, or at 

least proportional to p(data | parameters). 

 

So the posterior probability of the parameters is the likelihood of the parameters given the 

data multiplied by the prior probability of the parameters. The data can be regarded as 

modifying our prior beliefs. The means of the parameters from the posterior distribution 

are  the “Bayesian point estimators.” 

  

The contentious issue with Bayesian statistics is whether we should include 

p(parameters) or not. If we ignore it, or treat all possible parameter values as equally 

likely, then  maximizing p(data | parameters) and p(parameters | data) give identical 

results so maximum likelihood estimation and Bayesian estimation is equivalent. If we 

have strong priors, then the results can be quite different. Much of the time, fortunately, 

they give near identical answers. (Part of the reason for this is that Bayesian statisticians, 

for all their enthusiasm, often use something called “weak priors.”) The strength of 

Bayesian statistics is that it takes account of the fact that, to quote one its great advocates 

“it is impossible to know nothing about anything.”  

 

As an example consider the coin tossed 92 times and coming down heads each time in 

Tom Stoppard‟s play “Rosencrantz & Guildenstern are Dead.” The maximum likelihood 

estimate of p(heads) is therefore zero. However, they started the coin tossing with some 

prior belief (seemingly different for each of the two characters) that the coin was fair. In 

this simple case, the strength of this belief can be quantified through “pseudocounts.” 

These are (not necessarily imaginary) counts of heads and tails outcomes in previous coin 

tossing experiments. Suppose we select pseudocounts of 500 heads and 500 tails. A 

simple modified estimate of the probability that the coin turns up heads (the posterior 

probability) is  

 

p(heads) = (500 + 0 ) / (1000 +92) = 0.46  

 

If we were less confident a-priori that the coin was fair, we might set our pseudocounts to 

5, in which case we the posterior probability is  

 

p(heads) = (5 + 0) / (10 +92) =  0.05 

 

The posterior probability is small but is still not zero. The elimination of such zero 

estimates can be viewed as a strength of the method. A frequentist (ie non-Bayesian) 

approach to avoiding an estimate of zero could be to search for the value of p(heads) 

which just rendered the observed result non-significant at some value. For a 5% level of 

significance this corresponds to p(heads) = 0.04. 

 

The pseudocounts can also be used to define the prior probability distribution of p(heads) 

from which we think our coin has been sampled. If the prior was binomially distributed, 

the pseudocount of 500 would imply a standard deviation (sqrt(pq/N) of 0.0158: we 

expect that in nearly all cases that our coin has a true p(heads) close to 0.5. With the 
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pseudocounts of 5, the standard deviation is 0.158: so we should not be  too surprised to 

find p(heads) departing from 0.5. 

 

What is clear is that the final answer depends very strongly on the prior probability, in 

addition to the observed data. In the case of the “weak prior” (pseudocounts of 10) the 

estimate is not far removed from the simple maximum likelihood estimate of 0. 

 

In fact, the prior distribution generally used in Bayesian estimation of binary outcomes is 

the Beta distribution, which we have not encountered before, though it is closely related 

to the binomial. It ranges from 0 to 1 but within those limits can take on a range of quite 

different shapes, from U shaped to near normally distributed. It is characterised by two 

parameters, a and b. For positive integer values of a and b, a-1 can be viewed as the 

pseudocount of heads and b-1 the pseudocount of tails. For Bayesian estimation of binary 

outcomes, it turns out that the use of a Beta prior means that the posterior estimate of p 

also has a Beta distribution, but with different values of a and b. These become  

 

a = pseudocount of heads + observed heads – 1 

b = pseudocount of tails   + observed tails    – 1 

 

The mean of a Beta distribution is a/(a+b) so for our examples the posterior estimates are: 

 

p(heads) = (501+92) / (1002 +92)  

p(heads) = (11 +92) / (22 +92) 

 

These are very similar but not identical to those calculated previously. 

 

This simple (?) example shows one the strength of Bayesian analysis in that it can 

incorporate prior knowledge and a weakness in its sensitivity, at least in this case, to the 

distribution of the prior. A further weakness for many (including me) is that it is hard to 

understand. However, the approach is opening up avenues of analysis for very large 

datasets, complex problems and datasets with more parameters than observations, that are 

less amenable to other methods. 

 

 

 

Least squares 

  

Historically this method precedes ML, and is much used for data for which error can be 

approximated by the normal distribution. It is also probably the easiest of all methods to 

understand. Least squares does what it says on the tin – it minimizes the squared 

deviation between observed and expected values. So to estimate the mean, E(y) we want 

to minimize Σ(yi – Eyi)
2
 

 

Differentiate this, set the answer to zero and solving gives E (yi/n) as for ML estimation. 

The variance here is left to look after itself – it is the variance we are minimizing in 

estimating the mean.  
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Error and confidence limits 

 

Now we know how to estimate parameters, we ought to know how accurately that mean 

is estimated. We know that the variance of the mean is just the variance of the sample/n.  

We can also demonstrate that for a normal distribution, 95% of observations will lie 

within +/- two (more precisely 1.96) standard errors of the mean.  

 

So we can assign 95% confidence limits to the mean as: 

 

 ̂  + 1.96 s.e and ̂  - 1.96 s.e 

 

 

Although everyone quotes confidence limits, there is confusion, if not controversy, about 

how they should be  interpreted. We can‟t say that we are 95% certain that the true value 

lies in this interval, although that is very often the impression given. All we can really say 

is that if we repeated this experiment multiple times, we would expect 95% of the repeat 

estimates to lie in this interval. Don‟t worry about it. 

 

 

Estimation in more complex cases – regression and the analysis of variance 

 

We want to fit a straight line of the usual form y = ax +c. 

 

For reasons which we become apparent shortly, we‟ll label this as: 

 

y = b0 +b1x. 

 

 

Suppose y = farm yield,  x = fertilizer added. 

 

b0 is then the expected yield with no fertilizer (the intercept) 

b1 is the regression coefficient to translate added N into the predicted increase in yield. 

 

 

We have an observed yield and a yield predicted or estimated from our regression 

equation. The observed yield will not generally be perfectly predicted by the regression. 

To account for this we add an error term, almost always designated as e. 

 

observed:  y =  b0 +b1x + e 

expected ŷ  = b0 +b1x 

 

We can use maximum likelihood or least squares (for normally distributed variables) 

to find the best fitting line. Since most of the time we can get away with treating our data 

as normally distributed we shall use least squares here. We wish to minimize the error 

sums of squares, totalling over all our observed data: 
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Σ(y - ŷ )
2
  = Σ (y  - b0  -  b1x)

 2
   = Σ e

2
 

 

 

We want the estimates of b0  and b1 which minimize Σ e
2
 

 

 d [Σ (y  - b0  -  b1x)
 2

] / d b0 = 0 

 d [Σ (y  - b0  -  b1x)
 2

] / d b1 = 0 

 

Start with b0, using the “function of a function” rule again (or you can multiply out the 

brackets). 

 -2Σ (y  - b0  -  b1x)
 
  = 0 

 

   Σ b0   = Σ y  -  Σ b1x
 
   

   n b0   = Σ y   -  b1 Σ x
 
   

   b0   = Σ y/n -  b1 Σ x
  
/n   

    

We need to know b1 to estimate  b0 

 

b1: 

 

 -2Σx (y  - b0  -  b1x)
 
  = 0 

-2Σxy+ 2b0 Σx  +  2b1Σx
2
 = 0 

 

 

substitute for b0 

 

 -Σxy+  (Σ y   -  b1 Σ x)/n . Σx  +  b1Σx
2
 = 0 

  -Σxy + Σ yΣ x/n   -  b1 Σ x Σx/n  +  b1Σx
2
 = 0 

  b1Σx
2
 - b1 Σ x Σx /n    = Σxy - Σ yΣ x /n 

  b1(Σx
2
 - Σx Σx /n )    = Σxy - Σ yΣ x/n    

   b1 SSx     = SPxy 

   b1      = SPxy / SSx 
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The linear regression coefficient, b1, is the sum of products  /  sum of squares of x, or 

equivalently, Cov(xy) / Var (x). Once we have estimated b1 we can estimate  b0  by 

substitution. In fact, if this substitution is made, the regression equation can be rearranged 

as: 

 

   y- y = b1(x- x ) + e 

 

a regression of  y- y  on x- x  which has identical slope but passes though the origin. 

 

Note that for least squares estimation, it is the distribution of e that matters and not of y. 

In fact, depending on the magnitude of the bs and xs, the distribution of y could be 

bimodal, or anything. This is important and often causes confusion – it is the distribution 

of errors that we are concerned with and on which the assumptions of our estimation 

methods are based. (The same is true for ML estimation – the p.d.f. we adopt is that for 

the errors, not for the effects we are interested in estimating. 

 

 

In matrix form, the regression can be written as: 

 

y = Xb+e 

 

y’  is the observed data  [y1, y2, y3…yn] 

 

b‟ = [b0 , b1] 

 

X is a matrix of two columns with the independent variables 

 

1   x1  

1   x2 

1   x3 

 

etc., 

 

The first column of 1‟s is the coefficient by which the value of the intercept (b0) will be 

multiplied, just as x is the value of the coefficient for the regression (b1).If we set the first 

column to 0 or left b0 out of the model, we would be fitting a regression line which is 

forced through the origin of the graph (the point 0,0 – forcing yield to be zero when no N 

is added). In this example we don‟t want to do that but there are instances when it can be  

biologically meaningful to do just this. 
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We want to minimize: 

 

(y- Xb)
2
  =  e

2
 

 

nb – e
2
 = e’e is the error sum of squares  

 

Multliply out    

 

y’y-b’X’Xb-2b’X’y  = e
2
 

 

differentiate with respect to b and set to zero 

 

 -2’X’Xb– 2X’y  =  0 

 

X’ Xb  =  X’y 

 

(X’X)
-1

X’Xb   =  (X’X)
-1

X’y 

 

b  =   (X’X)
-1

X’y 

 

 

For just one or two parameters in b this looks no more simple than writing out the 

equations long hand. However, with several parameters (b0 , b1 … bn) each with an 

associated column in X, the matrix method is more simple and concise. 

 

Once we have fitted our model, we can get the estimate of error variance by 

  

(y- Xb)
2  

/ df 

 

Note, this also gives us a procedure for testing how well our model fits – we can add or 

drop columns to X, refit the model, and compare the change in sum of squares of the 

error variance before or after adding columns. This is the basis of the analysis of variance 

table. Note that the columns of X do not have to be uncorrelated – the correlation is taken 

into account in the X’X term. However, if a pair of columns is identical, the model fitting 

will fail – you are trying to fit the same thing twice. This is a special case of linear 

dependence – one column is a simple linear function (involving addition and 

multiplication only) of the other columns. In this case the model fitting will fail too. That 

aside, you can‟t have more columns in X than you have data in y.  Each column accounts 

for 1 df. The first column, all 1‟s, fits the mean effect. You do not get off scot-free if the 

columns of X are correlated, however. In  this case, the order in which a column is added 

makes a difference to the change in sums of squares associated with the corresponding 

parameter. If b1 is added before b2, then the sum of squares associated with b2 is that after 

the effect of b1 has been accounted for and can be smaller than the sum of squares for b2 

if it is fitted before b1. As a result, the parameters fitted first in a model can sometimes 

appear more important than they should. However, the total change in sums of squares 

due to fitting b1 and b2 is identical whatever order they are fitted. There is an example of 
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this in the R tutorial. When X represents a design matrix from a planned experiment, then 

the columns are frequently independent and this problem does not arise – an advantage of 

a designed experiment. 

 

If, instead of an independent variable like N application, we want to study the effect of 

colour (of seed say) or the effect of variety, we still proceed in exactly the same way. 

Suppose we have two varieties and want to model the difference in yield between them. 

Our first attempt at the design matrix, X,  might be: 

  

mean V1 V2 

1 1 0 

1 0 1 

1 1 0 

… … … 

 

In the first three rows we have two observations on variety 1 and one on variety 2. Any 

observation is going to be on either V1 or V2. This doesn‟t work - the columns of X are 

not independent: the „mean‟ column is the sum of columns V1 and V2. We know that if 

the variety isn‟t V1 then it must be V2. So one column is redundant. We can delete it 

column or more conventionally, we fit: 

 

mean V1 

1 1 

1 -1 

1 1 

 

V2 is now estimated as - V1. 

 

With three varieties we would start with: 

 

mean V1 V2 V3 

1 1 0 0 

1 0 1 0 

1 1 0 0 

1 0 0 1 

 

which also won‟t fit as V1+V2+V3 = mean. So we estimate V3 as -V1-V2: 

 

mean V1 V2 

1 1 0 

1 0 1 

1 1 0 

1 -1 -1 

 

In the same manner, with more varieties we would equate the last variety to -(sum of all 

the other variety effects). 
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The reduction in the error sums of squares attributable to the inclusion of varieties in the 

model  is the difference in fit between including the modified columns of X for V1 and 

V2 and dropping them, with 2 df  accounting for the effect of three varieties.  

 

Although for balanced designs and in standard cases, one would not normally analyse the 

data in this way, for non-standard analyses this approach can be best, especially if you are 

carrying out the calculations yourself. Statistical packages have very general analysis 

algorithms which are more sophisticated than the method outlined here, but they are 

much closer to these matrix methods than to the standard methods for hand calculation 

given in old statistical text books. 

 

 

Power, significance, and multiple testing 

 

Power, in the statistical sense, is a word frequently used and little understood. It is related 

to statistical significance, which is often also misunderstood. Hopefully these notes will 

help. 

 

 

Significance 

 

“Old statisticians never die they just become non-significant.” 

 

The null hypothesis 

Classical (frequentist) statistics assumes – at the start of the experiment – that there is no 

effect of the treatment(s) for which you designed the experiment to detect. This is a 

convenient fiction. If you really believed this, you wouldn‟t bother to do the experiment.  

 

This assumption of no effect is called “the null hypothesis” (NH), sometimes abbreviated 

to just “the null”. In a variety trial, the NH would be that all the varieties are the same. In 

genetical experiments it could be that some binary trait (eg short/tall or susceptible / 

resistant) is under simple genetic control – so we would expect a 3:1 ratio in an F2.  

 

After we have analysed the results of our experiment, we may decide to reject the NH – 

and conclude, for example, that several of our new varieties yield more than the existing 

standards, or we may accept the null-hypothesis – the ratio of short : tall plants is in 

agreement with a 3:1 segregation ratio. Owing to noisy measurement and assay, 

particularly in biological experiments, unexpected results do sometimes occur. A fair 

coin tossed ten times will sometimes come down heads all ten times (1 in 1024 times in 

fact). In this particular example, most people, after five or six tosses coming down heads, 

would begin to smell a rat and would reject the null hypothesis and believe the coin to be 

biased. However, even after 10 such occurrences, they may be wrong: they were just 

unlucky. On average, with a fair coin, they would be unlucky 1 in 1024 times. That is to 

say, they would have falsely rejected the NH that the coin was fair. (For the Bayesian 

view of biased coins, see the earlier section on Bayesian estimation.) 
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Significance is just the probability of rejecting the null hypothesis when it is true. (1/1024 

in the example above). It is the probability of a false positive when the null hypothesis is 

true. 

 

A false positive is also called a type I error or an error of the first kind. 

 

Note that significance doesn‟t mean that over a lifetime of coin tossing experiments that 

we should on average observe 1/1024 ten-times-heads-up experiences. This would only 

be the case if all the coins we encounter were fair. Depending on the company we keep, 

some proportion of them could be biased, so what we observe over our lifetime could be 

greater than 1/1024. 

 

The value of 1/1024 in this coin tossing exercise is called the significance level of the 

experiment. We can choose whatever level we wish - it depends entirely on how 

desperate we are to find a genuine difference (on which more below) and how damaging 

we feel rejecting the null-hypothesis falsely might be. However, conventional levels are 

5% (significant), 1% (highly significant) and 0.1% (very highly significant). These levels 

are abbreviated by convention as *, ** and ***.  These standards were adopted in pre-

computer days. Nowadays, probability can be calculated directly in Excel, or in statistical 

software. It is better to report the exact probability of rejecting the null hypothesis when 

true (abbreviated to p-value). This allows the reader to decide for him/herself how much 

faith to put on the results. An easy way to annoy a statistician is to insist that “there is no 

effect” when the p-value is 0.055 but that “there is an effect” at 0.045. 

 

To get their revenge,  the significance level is sometimes referred to by statisticians, but 

by nobody else, as “size” – as in “the size of the test” – which is easily confused with the 

size of the experiment, which is something else entirely. 

 

Note that there is no requirement to describe in any way what the alternative to the null 

hypothesis might be. When the null hypothesis is rejected, all we need to say is that it 

seems improbable. Not only is the choice of significance level entirely in the hands of the 

experimenter, but so too is the interpretation of the result after the NH is rejected. 

 

 

Power 
 

Statistical power is generally understood to represent how likely it is that an experiment 

will detect the effect you are searching for: how likely are you to discover that a set of 

varieties are genuinely different in yield. This interpretation is broadly correct, but the 

definition is quite precise: 

 

Power is the probability of accepting the alternative hypothesis when true. 

It is (1 – probability of rejecting the alternative hypothesis when it is false.) 

It is (1 - the probability of a false negative.) 
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A false negative is termed a “type II error” or an error of the second kind. 

 

Note we are now talking about an “alternative hypothesis.” To make any statement about 

power, we must first have in mind an alternative hypothesis in addition to the null 

hypotheses and have fixed a desired significance level. The alternative hypothesis is 

usually expressed as the magnitude of the difference or differences that we are hoping to 

find.  

 

For example, we may want to detect a difference between a candidate variety and a 

control variety of 8% in yield. A variety showing this much improvement in yield will 

earn our employer top dollar, so we want our proposed experiment to be 95% certain to 

detect such a variety. We are not too worried about rejecting the NH falsely - in which 

case we would believe our candidate variety to be much improved over the control when 

in truth it has much the same yield – so we will select a significance level of 10%. This 

means that of the subset of varieties which are not different to the control, we are 

prepared to submit 10% to the official testing authority. (We can only do this because the 

fees charged by the testing authority are so reasonable.)  So we have selected a 10% 

significance level and 95% power. We can then design an experiment on a sufficiently 

large scale which meets these objectives. If we drop the desired power, we would get 

away with a smaller experiment. If we increased the significance level to 1%, we would 

need a larger experiment: power cannot be calculated or expressed without an explicit 

statement of the adopted significance level. 

 

Note that we cannot make statements in advance of the experiment about the likelihood 

of any selected line genuinely being 8% better than the control. This depends on the 

distribution of lines to be tested, which we usually do not know. If sufficient lines are 

tested, we may be able to make statements after the experiment is completed about the 

proportion of selected lines which are genuine improvements and the proportion for 

which we falsely rejected the null hypothesis (a “false discovery”). This is discussed 

later. 

 

Note that examples of power above all refer to the planning of experiments, and it is in 

this context that power is best talked about – what size of effect are you interested in 

detecting, and therefore how large an experiment you should conduct. In general, plant 

breeders rarely do this sort of thing. This could be because they don‟t know how to, or it 

could be that after virtually a century of scientific testing of improved varieties, there is 

an accurate but largely empirical  feel for the correct scale of testing. In contrast, in 

research in medical genetics, much effort is put into consideration of power before an 

experiment is started. After an experiment has been carried out, then the results are 

statistically significant or not and power calculations are less interesting. An exception to 

this is when a statistician is called in to carry out a post-mortem – why did it fail to detect 

the hoped for effect. This can be very instructive – no significant result (at the 5% level 

say) was found because in this experiment the candidate variety would have to yield 35% 

more than the control.  
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“To call in the statistician after the experiment is done may be no more than asking 

him to perform a post-mortem examination: he may be able to say what the 

experiment died of.” RA Fisher 
 

A good on-line account of power and significance, together with an excellent interactive 

display of their interrelationship  is given at: 

 

http://www.intuitor.com/statistics/T1T2Errors.html 

 

http://www.intuitor.com/statistics/CurveApplet.html 

 

 

A more simple illustration version is given below.  

 

 

Distribution of trait under the null hypotheses. 

 

 
 

 

 

Falsely reject the null hypothesis: 

Type I error rate set by the significance 

level. 

 

Accept the null 

hypothesis. 

http://www.intuitor.com/statistics/T1T2Errors.html
http://www.intuitor.com/statistics/CurveApplet.html
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Distribution of trait under the alternative hypotheses. 

 

 
  

 

In this example, the two distributions might represent the yield of plants carrying 

alternative forms of a QTL. We wish to select plants carrying the increasing allele. In the 

absence of QTL or marker information, a plant is classified as carrying the increasing 

allele if it falls to the right of the vertical line and as carrying the decreasing allele if it 

falls to the left. Probabilities of rejecting the null hypothesis and the alternative 

hypothesis when they are true and given by the shaded areas. The location of the vertical 

line is entirely in the experimenter‟s hands. 

 

 

The use of power 

 

The principal use of power should be in the design of experiments. For example, in a 

mapping experiment, we could calculate the size of the F2 population required to detect a 

QTL accounting for 10% of the phenotypic variation, at a genome wide significance level 

of 0.01 with 80% power. If we established that we needed to grow 50,000 plants, we 

would consider the experiment uneconomic and abandon it. If we established we would 

need to grow only 50 plants, we would move forward with confidence. Somewhere in the 

middle, we might find that we needed 1000 plants, but if we accepted a lower 

significance level, maybe 0.05, then power would remain acceptably high.  

 

In practice, for any experiment, once any two of significance, power, and magnitude of 

effect are fixed, the third can be calculated. We may also require an estimate of the 

magnitude of error – most probably from similar previous experiments. For yield trials, 

this is not usually a problem. We can therefore use power calculations to design 

experiments more rationally – in terms of the size of populations required for mapping 

populations or the number of replications that need to be grown in a field trial. 

 

Accept the alternative 

hypothesis, or power 

Falsely reject the alternative 

hypothesis: 

Type II error rate set by the 

design of the experiment 
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Power calculation can also be used after an experiment has been completed (typically 

after it has failed to detect any significant effect). Here, retrospective calculations, using 

the observed error variation can give some idea about how large an effect we might 

reasonably have expected to see. If this effect is very large, then the experiment was too 

small – it was under-powered and may need to be repeated. 

 

 

Calculation of power 

 

For tests comparing two normally distributed means, power can be fairly easily 

calculated using a spreadsheet. The example below will calculate the power to detect a 

difference in the two means given in the second and third columns of the top row, with a 

variance given in the second row.  The significance level is also entered by the user and 

power is calculated – in this case it is 52% for a 2.5% significance level. The formulae 

that do the work are also displayed. Although these look complicated, all they are doing 

is computing the appropriate areas of the normal distributions shown in the diagrams on 

the previous page. 

 

 

null alternative

mean 0 2

variance of mean 1

significance value 0.025

cut-off 1.960 NORMINV(1-B4,B2,SQRT(B3))

power 0.516 1-NORMDIST(B6,C2,SQRT(B3),TRUE)  
 

 

This spreadsheet is strictly only correct for large sample sizes – such that testing for 

significance using a normal distribution is valid. Strictly, we should be using a t-

distribution. The effect that we wish to detect – here the difference between the two 

means, is called the “non centrality parameter.” In R, this can be fed directly into “pt”: 

the command for calculating probabilities under the t distribution. (If you are unfamiliar 

with R, consult the R tutorial.) Using the example above, but first assuming a very large 

number of observations: 

 

1) Calculate the threshold for significance for our desired significance level: 

 
qt(0.0250,df=1000000,lower.tail=F) 

[1] 1.959966 

 

2) Calculate the probability of exceeding this threshold in a t test with a true difference 

between means of 2.0 (ie the non centrality parameter is 2.0) 

 
> pt(1.96,df=100000,ncp=2,lower.tail=F) 
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[1] 0.5159552 

 

Thus we get the same answer as in Excel, as we should. 

 

We can now drop the degrees of freedom to something more realistic: 

 
> pt(qt(0.0250,20,lower.tail=F),df=20,ncp=2,lower.tail=F) 

[1] 0.4775688 

 

In this case, there is little difference in power between using the t distribution with 20 

degrees of freedom, and using a normal distribution. 

 

The chi-squared distribution also has a non centrality parameter. This can be used to 

calculate power in contingency chi-squared tests. If the usual chi-squared test is 

calculated using the made-up numbers that you expect under the alternative hypothesis, 

the value is the non-centrality parameter and can be used to calculate power. For 

example, suppose we suspect segregation distortion at a locus and want to test for this in 

a backcross of 100 individuals. Under the null-hypothesis we expect a 1:1 segregation. 

Suppose the true segregation pattern were 6:4 rather than 1:1. Then we would expect to 

observe 60 offspring of one type and 40 of the other. This gives a chi-squared value of 

(60-40)
2
/100 = 4 In R: 

 
> pchisq(4,1,0,lower.tail=F) 

[1] 0.04550026 

 

> pchisq(4,1,4,lower.tail=F) 

[1] 0.5000317 

 

The first call to pchisq returns a p-value close to 0.05, the correct p-value for a chi-sq 

of 4.0 with 1df.  The third term in  the pchisq function  is the non-centrality parameter, 

zero by default but declared explicitly here.  

 

The second call to pchisq returns a p-value of 0.5, calculated from a chi-squared 

distribution with a non-centrality value of 4. This makes sense: the expected segregation 

distortion gives a chi-squared statistic of 4, so it seems reasonable that when carrying out 

such experiments for real, half the time we would expect our result to exceed this 

threshold and half the time to be smaller, giving us the p-value of 0.5.  (Note that this is 

not the mean chi- squared statistic, but the median. The mean is the non-centrality 

parameter plus the degrees of freedom: 5 for our alternative hypothesis and 1 under the 

null-hypothesis.)  

 

R is even more helpful, since commands are supplied – power.t.test and 

power.prop.test which can be used directly to calculate power, significance and 

sample size. Consult the R manuals or type help(power.t.test)or 

help(power.prop.test) for details. The “odds-and-sods” spreadsheet also has a 

workbook to calculate power for 2x2 contingency chi-squared tests. 
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A conceptually simple way to calculate power is by computer simulation, and 

increasingly this approach is used. For more complex situations, for example establishing 

significance levels for genome wide linkage analyses or for cases where the distribution 

of the test statistic itself is not known, this may be the only accurate method. A simple 

simulation example is given below. 

 

Consider rogue observations from a normally distributed population with a mean of 2 and 

a variance of 1. We wish to discriminate these from a normally distributed population 

with a mean of 0 and variance of 1. With a one-tailed significance level of 2.5%, the 

threshold to be exceeded is 1.96 and this will occur for close to 50% of the rogue 

observations. What is the effect of power if the rouge observations are log-normally 

distributed with the same mean and variance?  

 

1) Generate 100,000 log-normal random numbers with a mean of two and a variance of 1. 

 

> a<-(rnorm(100000,0,1))    generate N(0,1) observations 

> b<-exp(a)      b is log normal 

> c <- (b-mean(b))/(sqrt(var(b))) +2 set mean =0, var = 1 
> mean(c) 

[1] 2       correct 

> var(c) 

[1] 1       correct 

 

2) Count the proportions which are equal to, or exceed the threshold: 
 

> length(a[a>=1.96])/100000  significance  threshold is correct 
[1] 0.02502 

 

> length((a+2)[a+2>=1.96])/100000 power  if rogue distribution is normal  
[1] 0.51719 

 

> length(c[c>=1.96])/100000  power if log normal 
[1] 0.32833 

 

So power is reduced from about 50% to 33%. 

 

Suppose the null distribution was log normal too. The 2.5% significance level, for a log-

normal population with a mean of zero and a variance of one can be found from our 

simulated data as: 

 
> quantile(c-2,0.975) 

   97.5%  

2.481569 

 

(Using c-2 to recycle our log-normal random numbers by adjusting the mean to zero.) 



 114 

 

Power is the proportion of times this threshold is exceeded under the alternative 

hypothesis: 

 
> length(c[c>=2.544928])/100000 

[1] 0.14846 

 

The answer is quite different! 

 

 

Conventions for calculation 

 

By convention, 5% significance levels are often chosen to declare statistical significance. 

Equally, 80% power is often selected as a suitable threshold for calculating sample sizes 

in experiments. The choice is entirely yours, however, and depends on a compromise 

between the costs to you of selecting a false positive and of rejecting a genuine result. 

 

 

Multiple testing 

 

Significance levels are thresholds whose choice is entirely in the hands of the 

experimenter and reflect the risk that he or she is prepared to make in rejecting the null 

hypothesis. A 5% significance level means that the null hypothesis, if true, will be falsely 

rejected 1 in 20 times.  Thus, if one is looking for genetic association between a candidate 

marker and 20 independent phenotypes, none of which are genuinely associated with the 

marker, then the null hypothesis will be rejected, and a false association declared, on 

average, for one of these traits. In fact the number of falsely accepted associations will 

follow a binomial distribution, such that the probability of getting no significant results 

over all 20 tests is 0.95
20

 or 0.358. Thus, over the whole experiment, the probability of 

falsely rejecting the null hypothesis at least once is 1-0.358 or 0.642. To establish a 5% 

significance level over the whole experiment, we divide our single test significance level 

by the number of independent tests we are to carry out. In this example 0.05 / 20 = 

0.0025. This is called the Bonferroni correction, after its discoverer. Thus, treating 

0.0025 as the significance level for any single phenotype-marker association, then over 

all 20 phenotypes, there is only a 1-(1-0.0025)
20

 = 5% chance of finding one or more 

significant results. In other words, were we to repeat the experiment 20 times, we would 

expect to observe an experiment with at least one significant result only once. In fact, this 

is a slight approximation. A more exact adjustment is: 

 

ptest = 1-(1-pexpt)
N
 

 

ptest   is the desired significance level over the whole experiment. 

pexpt  is the significance level to be calculated for a single test. 

N is the number of independent tests. 

 

In the present example, if Ptest is set at 0.05, then Pexpt turns out to be 0.002561.  
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This is the Šidák test, often falsely referred to as the Bonferroni, though as can be seen 

they give very similar results. 

 

Although use of the Bonferroni correction will certainly guard against the generation of 

false positives, it has the unfortunate effect of making it extremely difficult for any single 

test to achieve significance, even if genuine.  

 

The increased stringency required to declare any individual result significant greatly 

reduces the power of any single test. Moreover, in many cases in genetics, phenotypes 

and/or genotypes are not independent. In such cases, the Bonferroni correction can 

become too conservative to be of any use. For fear of declaring a false positive we find 

nothing. (“It‟s only those who do nothing that make no mistakes.” Conrad.) This is 

particularly true in gene expression experiments where there can be thousands of tests, 

but there are correlations in expression among many pairs of genes. Equally, linkage 

disequilibrium among candidate polymorphisms, even if the phenotypes themselves are 

independent, has the same effect. There are two solutions to this. Firstly, with regard to 

correlations between traits and/or genotypes, we rely once more on simulation or 

permutation tests: in this case to establish the correct significance levels. The exact 

details will vary from case to case. For example, with a set of candidate genes and 

multiple phenotypes, the genetic data would be randomised over records (individuals or 

lines), while keeping the phenotypes fixed. (Equally phenotypes could be randomised and 

genotypes fixed). Note that the multiple genotypes for each record are maintained intact: 

the randomisation is of the complete set of genotypes across records. Thus the 

correlations among phenotypes and among genotypes are maintained, but the correlation 

between genotypes and phenotypes (if present) is broken by the randomisation. After 

each randomisation, tests for association across phenotype-genotype pairs are carried out, 

and the p-values saved. After multiple such randomisations, the empirical probability 

distribution of finding one or more significant result in a randomisation can be estimated, 

and compared to the observed results. To give an extreme example, if we have two 

perfectly correlated SNPs and two perfectly correlated phenotypes, then our Bonferroni 

adjusted p-value for a 5% significance level is 0.05/4. However, in essence we have only 

a single association test, replicated four times. The randomisation test would generate at 

least one significant result (in fact it would always generate four), in 5% of 

randomisations. Therefore, our empirical significance level for the whole experiment 

would be correctly adjusted back to 0.05. This is essentially the approach used in setting 

significance levels for genome-wide linkage analysis using randomisation tests. These 

can take a lot of computer time to run, but are often worth the effort. 

 

Although randomisation tests overcome the problem of correlated data, they can do 

nothing about the loss of power which arises from multiple independent tests. Recent 

approaches have concentrated on learning to live with these through the concept of the 

false discovery rate (FDR). The FDR is the expected proportion of falsely rejected null 

hypothesis (type I errors) among all rejected hypothesis. If the null hypothesis is true for 

all the tests you have carried out in an experiment, then the false discovery rate will be 

1.0 – all results accepted as significant are false. If the null hypothesis is truly false for a 

proportion of tests, then some proportion of the results accepted as significant will be 
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false positives. The FDR attempts to control this proportion, after the experiment is 

complete, by adjusting the p-value threshold for the proportion of results accepted. 

 

The development of methods to measure FDR has been driven in part by the massive 

multiple testing problem generated in gene expression analysis using microarrays, and in 

part by the ease with which very large numbers of SNPs can be tested for association 

with phenotypes in human genetics. Essentially, these methods study the empirical 

distribution of p-values over all tests. If the null hypothesis is true for all tests, p-values 

should follow a uniform distribution: so a histogram of p-values should show bars of 

roughly the same height.  An excess of low p-values would indicate the null hypothesis to 

be significant for at least some of the tests. The histogram below shows the p-values from 

1000 1 df chi-squared tests, for 900 of which the null hypothesis is true. For the 

remaining 100 values, the null-hypothesis was false, with a power of 50% for rejection of 

the null-hypothesis at the 5% significance level. (These data were simulated in R.)  

 

 

 

 

 
 

It is clear that there are excess results at low p-values. In this case, because we are using 

simulated data, we expect 45 of the 900 tests for which the null-hypothesis is true to be 

significant at the 5% level together with 50 of the 100 tests for which it is false. We 

observe 94 in total. If we were to increase our significance threshold to 0.01, then we 

would expect 9 false positive results and 27 genuine positives: a FDR of 25%.  

 

In the absence of knowledge about how the data were generated, we can still see, from 

the plot above, that at high p-values, when the null hypothesis is most likely to be true in 

all cases, that the average number of observations in each 0.05 probability interval is 

about 45. We can therefore predict, at low p-values, that the number of false positives 

should also be about 45 in each interval and that any observed excess is due to genuine 

discovery. In this way, we could generate our own empirical FDR (also called the q-
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value). Fortunately, there is an R package “qvalue” available to do this in a more 

quantifiable and exact manner. The manual describes the method in more detail and 

contains useful references: http://cran.r-project.org/web/packages/qvalue/qvalue.pdf  

 

The use of FDR has allowed experimenters to select significance thresholds after an 

experiment is completed and therefore to control the proportion of false positive results 

that they select. This can remove the arbitrary nature of specifying significance 

thresholds. However, FDR requires that sufficient statistical tests are carried out in an 

experiment to estimate FDR accurately. Moreover, it does not avoid the desirability of 

assessing power prior to undertaking an experiment. (To assess FDR prior to an 

experiment, one would require knowledge of the distribution of the null, the alternative, 

and the mixing proportions of the two.) 

 

An example in a QTL trait mapping context is given by Benjamini and Yekutieli (2005).  

This includes a simple description of one method of calculating the FDR: as originally 

described by Benjamini and Hocheberg in 1995.  

 

Benjamini Y, Yekutieli D. 2005. Quantitative Trait Loci Analysis Using the False 

Discovery Rate. Genetics 171:783-790 

 

Another simple account is in: Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. and Golani, 

I. (2001) Controlling the false discovery rate in behavior genetics research. Behavioural 

Brain Research 125: 279–284 

 

Benjamini, Y, Hochberg T. 1995. Controlling the false discovery 

rate: a practical and powerful approach to multiple testing. 

J. R. Stat. Soc. Ser. B 57:289–300. 

 

 

 

Type III errors 

 

The original work and discussion of significance power and type I and type II errors was 

later extended to include many other error-type definitions. None of these have caught 

on, but one which seems to me to be particularly relevant to genetics, medical research, 

and even to the public understanding of science is the Type III error or error of the third 

kind. A type III error is the correct rejection of the null hypothesis but the acceptance of 

the wrong alternative hypothesis. This seems such a useful term to me, and to occur so 

often, that I don‟t understand why it hasn‟t been taken up more. Some examples: 

 

An association between a marker and phenotype is attributed to close linkage of the 

marker to a QTL when the true reason is to do with population substructure. 

 

The unlikely occurrence of two cot deaths in a family is attributed to infanticide. 

 

And many more. 

http://cran.r-project.org/web/packages/qvalue/qvalue.pdf
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These sorts of error are still often referred to as false positives, but to my mind they are 

true positives, it is just the interpretation that can go wrong.  

 

 

Final comments 

 

A statistician shouts up to three men in a balloon to tell them they are lost. After hearing 

them grumble about his advice he works out they must be management: 

1) They work out what information they need to get themselves sorted out. 

2) They ask someone else to get it for them. 

3) Now that they have the information, they are still lost but it‟s someone else‟s fault. 

 

 

“Thinking that this single value 

For the level in his serum 

Might not be sufficient data 

To establish without question 

What the normal value should be, 

Hiawatha with his cunning 

Took a logarithmic table, 

Photographed a page at random 

For a lantern slide of figures, 

Showed it very confidently 

With his back towards the audience 

Talking fast and very softly 

At the figures thus projected 

Which were very small and many 

Like the sands upon the seashore; 

And the audience, not hearing 

What he spoke towards the blackboard 

Very softly, very swiftly 

Like the gentle brook in springtime, 

Thought him wise and very clever 

To have got so many figures 

And their standard deviations, 

Arithmetical progressions, 

Geometrical regressions, 

And regression coefficients; 

Praised his industry, his brilliance, 

And applauded his statistics, 

For they had not understood him 

Nor could read his logarithms.” 

 

From “Hiawatha‟s Lipid” Hugh Sinclair, 1958. 
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THE DESIGN AND ANALYSIS OF VARIETY TRIALS REVISITED 
 

Estimation of variety performance under field conditions is the most important 

component of any plant breeding programme. Organisations that efficiently allocate their 

resources to identify varieties which are better than those of their competitors will 

generally last, organisations which don‟t will deservedly fail. 

 

It is possible to carry out this process without any recourse to statistical methods. In 

practical terms, a breeder who identifies one or more experimental fields in which variety 

performance is indicative of performance in the target market or environment, and who 

grows a large enough area of each candidate variety together with the best currently 

available varieties, will make progress. The care and precision which are put into 

growing good trials are more important as the bells and whistles that are added by 

improved statistical design and analysis. Nevertheless, there are things that statistics can 

add: 

 

An estimate of precision. 

 

Control and adjustment for unforeseen (and foreseen) problems in the field. 

 

An efficient way of allocating resources between area (or plot number) per variety 

and number of candidate varieties. 

 

 

Experimental design: the three Rs 

 

In an ideal world, one could grow a single plot of each variety and, on harvesting, be 

confident that the performance of each variety had been assessed accurately. This may 

sometimes occur, but we never know. Scientists who think they can assess experimental 

material with a single measurement can generally be found in physics, chemistry and 

engineering. They study dead things. The study of living things is not so easy but is a lot 

more interesting. 

 

To overcome the problems inherent in measuring biological material, a series of sensible 

and intuitive, though sometimes subtle principles was put forward in the 1920s primarily 

by R A Fisher, then working at Rothamsted.  These principles still stand. Fisher and 

others, in addition to developing standards for experimental design, also elucidated 

principles for the analysis of experiments. At the time, in the absence of readily available 

computers and calculators, a lot of effort was placed in creating protocols for designing 

experiments which could subsequently be analysed by hand. So successful were they that 

these designs are still frequently used. However, cheap and powerful computers have 

permitted the development of more flexible experimental designs and alternative methods 

of analysis. In this section we shall review the principles of experimental design and 

introduce some of these new methods. 
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The basic three principles of experimental design are replication, randomisation and 

restraint: the three Rs. 

 

1) Replication. 

 

Suppose we want to compare the yield of two wheat varieties. Starting by ignoring 

variability in the trial ground; we grow variety A and B side by side, harvest them and 

weigh the grain. If the yield of A is greater than the yield of B we have an answer. But 

the answer means little since we don‟t know how much of the difference in our 

measurements is due to field effects and how much is due to the varieties themselves. We 

need replication. 

 

Suppose we harvest half of plot A and take its weight and then the second half of plot A 

and take a weight and then do the same for plot B. Now that we have two results for each 

variety, we have the basis of a crude assessment of how variable the measurements are 

between replicate plots for each variety. We can now assess (crudely) if the difference in 

average yield between the two varieties is greater than that between replicate plots of the 

same variety.. 

 

So the reason for replication is that we need an estimate of plot to plot variation which we 

can compare to the difference between the two variety means. In practice we would do 

this through statistical methods such as the t-tests or the analysis of variance. This is 

impossible with just two large plots: formally all degrees of freedom are taken up in the 

variety comparison and none are left to assess variability between replicate plots. Even 

with two plots of each variety we would have only two degrees of freedom with which to 

estimate error. Generally we need a minimum of around ten, and more are better.  

 

2) Randomisation 

 

“This is a glass house, it‟s uniform, there is no need to randomise.” (A UK Ministry of 

Agriculture scientist, predictably but sadly subsequently promoted to a position of power 

and influence.) 

 

Suppose we have split the field into 12 equal area strips running the length of the field. 

If we plant them as AAAAAABBBBBB, we may detect a genuine difference between the 

left hand side and right hand side of the field, over and above the error seen between 

replicate plots within each variety. But any difference in yield could equally be 

attributable to a difference in fertility across the field or to differences in variety. Planting 

the two varieties in this pattern is little better than having no replication at all. 

 

Alternatives are to plant the varieties as ABABABABABAB, or to plant them in some 

random pattern – drawing letters from a virtual hat I got BBAAAABBABAB. We all 

know that the thing to do is randomise, but it isn‟t that clear why arranging the plots 

systematically  as ABABAB… is wrong.  
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There is a subtle and a not so subtle explanation. The not so subtle explanation is that we 

don‟t know in advance what the pattern of environmental variation across the field is and 

we are kidding ourselves if we think we can guess it. There may be land drains, 

differences in soil compaction attributable to the direction of ploughing up and down the 

field, etc. It is unlikely that we could find a systematic arrangement of plots which could 

account for everything. 

The more subtle argument is that although replication will provide us with an estimate of 

error, we need randomisation to ensure that the estimate of both variety effect and of 

error is unbiased. For example, suppose there were differences in fertility that followed 

the same pattern ABABABABABAB. If there was no true difference between the two 

varieties, we would still appear to find one, and the estimate of error would be too low 

(because the fertility effects have been sucked up into the estimate of variety effect). So 

not only would we falsely conclude that there was a difference between the two varieties, 

but we would be really confident that the difference was genuine because the error was so 

low. Equally, if we adopted AAAAAABBBBBB as a layout for the varieties, but the 

fertility pattern was ABAB… and we estimated error from the plot to plot variation 

within each variety, then we would overestimate the error, which is unfortunate because 

in this instance the estimate of the difference between the two varieties could be very 

accurate. To see this, consider an analysis of variance to test the difference between the 

two means – with 10 df for the error term. The expected value of F if there is no 

difference between varieties is 1.24 (Calculated by simulation in R. With sufficient df, 

the expected value would be 1.) But we have designed our experiment so the expected 

value of F is zero. The total sum of squares (SS) in the experiment is constant whatever 

the arrangement of plots and varieties. So this partitioning has been accomplished by 

pushing the SS for “between varieties” back into the error term, which is therefore 

inflated. 

The only solution is to randomise – which provides an unbiased estimate of error.  

 

3) Restraint  

 

Also known as blocking or as local restraint or as restricted randomisation or as local 

control. In variety trials, and most agricultural trials, it is generally called blocking. 

 

Staying with the example above, if we had some reasonable expectation that the two 

halves of the field might differ in fertility, we could treat the plots which lie in one half as 

one block, and the others as a second block. We could allocate the two varieties to plots 

so that they are equally represented in the two blocks. Within the blocks, however, the 

varieties must still be allocated to plots at random. We could analyse this experiment 

exactly as before, ignoring the blocks, and estimate variety effects and error. However, 

we can also calculate the difference between the blocks. Since each variety is equally 

represented in each block, this is an unbiased estimate of fertility effect between the two 

halves of the field. It will have a SS associated with it: the larger the block effect, the 

larger the SS. Comparing the two methods of analysis, for the same experiment the total 

SS must remain constant. Also, the variety means are identical in the two forms of 

analysis so the SS for varieties also must be the same. To balance the total, therefore, the 
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SS associated with plot to plot error must be reduced. As plot to plot error is the method 

by which we assess the precision of our variety effects, the introduction of blocking has 

increased precision by controlling error. The experimental design has partitioned sources  

of error into those between blocks, which have no influence on the precision of the 

estimates of variety effects, and the remainder or residual variation, which does. 

Blocking, therefore, is an experimental method for increasing the precision with which 

our effects of interest (here varieties) are estimated by partitioning field effects into a 

component between blocks, which has no effect on variety precision, and a residual 

which does. It doesn‟t necessarily work: we could have been wrong in our belief that the 

two halves of the field differed in fertility. In this case, there will be little or no reduction 

in the residual SS and consequently the precision with which variety effect are estimated 

will  not change much either. (Precision can actually fall, since it is determined by the 

error variance and not the error SS. Blocking reduced the degrees of freedom available 

for error so the estimated error variance can rise even though the error SS falls.) 

 

Formally, when we analyse our data, we now include a term to account for blocks, a term 

to account for varieties, and estimate the error variance by the deviations from predicted 

values, where the predicted value includes an effect for the block: we are fitting the 

model: 

 

yij = μ + vi + bj + eij 

 

y is the yield of a given plot; μ is the mean for the whole experiment; vi is the difference 

between the mean for the ith variety and the grand mean; bj is the difference between the 

mean for the jth block and the grand mean and eij is the residual error specific to plot yij. 

 

 The expected error variance is  E(ei)
2
) 

 

In analysis without blocking, the model fitted is 

 

yij = μ + vi + zij 

 

and the expected error variance is E(zi)
2
) 

 

 

Equating the two,  

 

 bj + eij = zij 

 

 

so it is clear, if block effects are genuine, that successfully incorporating them into the 

experimental design and analysis will reduce the error variance.  

 

Although in this hypothetical experiment, the two blocks are of equal size, there is no 

requirement for this: we could have one block containing only four plots (two A varieties 

and two B) and one containing five. In fact, in these examples, because we have several 



 123 

plots of each variety within each block, not only can we fit and test for effects of blocks 

and of varieties, we can also fit an interaction term – to assess whether the difference 

between the two varieties is consistent over the two blocks. We won‟t go into that. 

 

Generally, we are uncertain when we look at a field where “natural” blocks should occur 

– where are the high and low fertility sections of the field. Also, there are rarely sharp 

discontinuities to indicate precisely where blocks should start and finish. An extremely 

common experimental design is to set up blocks such that each block contains each 

treatment (or variety) once only. This is a randomised complete block design. A small 

example of the design and analysis for six varieties in four replace blocks is given below. 

 

 

Randomised Complete Block Design – example analyses 

 

I‟ve analysed this in four different ways. Firstly in a spreadsheet. Secondly, by matrix 

methods, and then using two different computer packages – R and GenStat – just to show 

you everything gives the same answer, although the formats tend to differ: 

 

 

field layout  and data 
 
rep 1 rep 2 rep 3 rep 4 

C F E D 

E D C A 

B E A F 

D B F E 

F C D B 

A A B C 

 

 

 

Unrandomised design with yield data: 
 

Treatment/Rep 1 2 3 4 

A 9.4 8.9 7 7.3 

B 9.3 9.1 8.5 8.9 

C 7.6 7.8 6.3 4.5 

D 7.6 6.5 5.5 4.2 

E 6.9 8.9 7.3 6.3 

F 7.6 8 8.5 6.9 
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Excel: 

 

Treatment/Rep 1 2 3 4 
var. 
means 

A 9.4 8.9 7 7.3 8.15 

B 9.3 9.1 8.5 8.9 8.95 

C 7.6 7.8 6.3 4.5 6.55 

D 7.6 6.5 5.5 4.2 5.95 

E 6.9 8.9 7.3 6.3 7.35 

F 7.6 8 8.5 6.9 7.75 

rep means 8.07 8.20 7.18 6.35 7.45 

      

      

      

Item df SS MS F P 

Replicates 3 13.343 4.448 7.040 0.004 

Variety 5 23.600 4.720 7.471 0.001 

Error 15 9.477 0.632   

      

total 23 46.420 2.018   

 

 

 

Matrix analysis 

 

Design matrix X and data matrix y. 

 

Note the reduced design matrix, X, with 

variety F = -(A+B+C+D+E) and rep 4 = -(rep 1 + rep 2 + rep 3) 

 

X is columns 2..9    y is column 10. 

 

plot mean A B C D E 
rep 
1 

rep 
2 

rep 
3 yield 

1 1 1 0 0 0 0 1 0 0 9.4 

2 1 0 1 0 0 0 1 0 0 9.3 

3 1 0 0 1 0 0 1 0 0 7.6 

4 1 0 0 0 1 0 1 0 0 7.6 

5 1 0 0 0 0 1 1 0 0 6.9 

6 1 -1 -1 -1 -1 -1 1 0 0 7.6 

7 1 1 0 0 0 0 0 1 0 8.9 

8 1 0 1 0 0 0 0 1 0 9.1 

9 1 0 0 1 0 0 0 1 0 7.8 

10 1 0 0 0 1 0 0 1 0 6.5 

11 1 0 0 0 0 1 0 1 0 8.9 

12 1 -1 -1 -1 -1 -1 0 1 0 8 

13 1 1 0 0 0 0 0 0 1 7 

14 1 0 1 0 0 0 0 0 1 8.5 
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15 1 0 0 1 0 0 0 0 1 6.3 

16 1 0 0 0 1 0 0 0 1 5.5 

17 1 0 0 0 0 1 0 0 1 7.3 

18 1 -1 -1 -1 -1 -1 0 0 1 8.5 

19 1 1 0 0 0 0 -1 -1 -1 7.3 

20 1 0 1 0 0 0 -1 -1 -1 8.9 

21 1 0 0 1 0 0 -1 -1 -1 4.5 

22 1 0 0 0 1 0 -1 -1 -1 4.2 

23 1 0 0 0 0 1 -1 -1 -1 6.3 

24 1 -1 -1 -1 -1 -1 -1 -1 -1 6.9 

 

 

X’ (omitted) 

 

X’X 

 

24 0 0 0 0 0 0 0 0 

0 8 4 4 4 4 0 0 0 

0 4 8 4 4 4 0 0 0 

0 4 4 8 4 4 0 0 0 

0 4 4 4 8 4 0 0 0 

0 4 4 4 4 8 0 0 0 

0 0 0 0 0 0 12 6 6 

0 0 0 0 0 0 6 12 6 

0 0 0 0 0 0 6 6 12 

 

(X’X)
-1

 

 

0.04 0 0 0 0 0 0 0 0 

0 0.21 -0 -0 -0 -0 0 0 0 

0 -0 0.21 -0 -0 -0 0 0 0 

0 -0 -0 0.21 -0 -0 0 0 0 

0 -0 -0 -0 0.21 -0 0 0 0 

0 -0 -0 -0 -0 0.21 0 0 0 

0 0 0 0 0 0 0.13 -0 -0 

0 0 0 0 0 0 -0 0.13 -0 

0 0 0 0 0 0 -0 -0 0.13 
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X’y 

 

179 

1.6 

4.8 

-4.8 

-7.2 

-1.6 

10.3 

11.1 

5 

 

 

(X’X)
-1

X'y 

mean 7.45 

A 0.7 

B 1.5 

C -0.9 

D -1.5 

E -0.1 

R1 0.62 

R2 0.75 

R2 -0.3 

 

Aside from the mean, the other effects are given as deviations from the mean. Adding the 

mean back: 

 

A 8.15 

B 8.95 

C 6.55 

D 5.95 

E 7.35 

F 7.75 

R1 8.07 

R2 8.2 

R3 7.18 

R4 6.35 

 

The error SS is given as (y-Xb)
2
 I won‟t print this out, but it gives the same answer as 

before. 

 

The sums of squares for varieties are found as follows.  

 

1) Take X’X and delete all rows and columns except those relating to the five 

independent variety effects, then invert it. (In this case, because the experiment is 

balanced, this gives exactly the same answer as striking out the same rows  and columns 

of (X’X)
-1 

 directly. With missing data this is not the case.) 
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X vars’X vars 
-1

 

 

0.21 -0 -0 -0 -0 

-0 0.21 -0 -0 -0 

-0 -0 0.21 -0 -0 

-0 -0 -0 0.21 -0 

-0 -0 -0 -0 0.21 

 

Then calculate  b vars’(X vars’X vars
 -1

)b vars 

 

1.6 4.8 
-

4.8 
-

7.2 
-

1.6  0.21 -0 -0 -0 -0  1.6 

      -0 0.21 -0 -0 -0  4.8 
      -0 -0 0.21 -0 -0  -4.8 

      -0 -0 -0 0.21 -0  -7.2 

      -0 -0 -0 -0 0.21  -1.6 

 

 

=  23.6 as before. 

 

A corresponding procedure will give the blocks SS and the ANOVA table can be 

constructed. 

 

 

Genstat: 

 

Data were pasted from excel into the GenStat spreadsheet, then all commands were 

selected from the pull-down menus. 

 

GenStat Release 9.1 ( PC/Windows XP) 30 January 2008 22:14:22 
Copyright 2006, Lawes Agricultural Trust (Rothamsted Experimental Station) 

Registered to: Nat. Institute of Agricultural Botany 
  
  ________________________________________ 
  
  GenStat Ninth Edition 
  GenStat Procedure Library Release PL17 
  ________________________________________ 
  
   1  %CD 'C:/Documents and Settings/x991006/My Documents' 

   2  "Data taken from unsaved spreadsheet: New Data;1" 

   3  DELETE [REDEFINE=yes] _stitle_: TEXT _stitle_ 

   4  READ [PRINT=*; SETNVALUES=yes] _stitle_ 

   7  PRINT [IPRINT=*] _stitle_; JUST=left 

  
Data imported from Clipboard 
 on: 30-Jan-2008 22:18:19 
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   8  DELETE [REDEFINE=yes] treatment,rep,yield 

   9  UNITS [NVALUES=*] 

  10  FACTOR [MODIFY=yes; NVALUES=24; LEVELS=6; 

LABELS=!t('A','B','C','D','E','F')\ 

  11  ; REFERENCE=1] treatment 

  12  READ treatment; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
 treatment  24  0  6 
  
  14  FACTOR [MODIFY=yes; NVALUES=24; LEVELS=4; 

LABELS=!t('r1','r2','r3','r4')\ 

  15  ; REFERENCE=1] rep 

  16  READ rep; FREPRESENTATION=ordinal 

  
  Identifier  Values  Missing  Levels 
 rep  24  0  4 
  
  18  VARIATE [NVALUES=24] yield 

  19  READ yield 

  
  Identifier  Minimum  Mean  Maximum  Values  Missing   
 yield  4.200  7.450  9.400  24  0   
  
  22 

  23  "One-way design in randomized blocks" 

  24  DELETE [REDEFINE=yes] _ibalance 

  25  A2WAY [PRINT=aovtable,information,means,%cv; 

TREATMENTS=treatment; BLOCKS=rep; FPROB=yes;\ 

  26   PSE=diff,lsd; LSDLEVEL=5; PLOT=*; EXIT=_ibalance] yield; 

SAVE=_a2save 

 

Analysis of variance 

  
Variate: yield 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
rep stratum 3  13.3433  4.4478  7.04   
  
rep.*Units* stratum 
treatment 5  23.6000  4.7200  7.47  0.001 
Residual 15  9.4767  0.6318     
  
Total 23  46.4200       
  
  

Information summary 

  
All terms orthogonal, none aliased. 
  
  

Tables of means 
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Variate: yield 
  
Grand mean  7.45  
  
 treatment  A  B  C  D  E  F 
   8.15  8.95  6.55  5.95  7.35  7.75 
  
  

Standard errors of differences of means 

  
Table treatment   
rep.  4   
d.f.  15   
s.e.d.  0.562   
  
  

Least significant differences of means (5% level) 

  
Table treatment   
rep.  4   
d.f.  15   
l.s.d.  1.198   
  
  

Stratum standard errors and coefficients of variation 

  
Variate: yield 
  
Stratum d.f. s.e. cv% 
rep  3  0.861  11.6 
rep.*Units*  15  0.795  10.7 
  

 

 

 

 

R: 
 

For small amounts of data such as this, it is possible to use the “PopTools/Rscripts/Range 

to Dataframe” option of the Excel add-in PopTools (introduced in the Excel tutorial) to 

format and copy the data from Excel to the clipboard and then paste the data directly into 

the R Console. Otherwise, the data can be saved as a text file and read into an R table. 
 
> treatment <- 

c("A","B","C","D","E","F","A","B","C","D","E","F","A","B","C","D","E","F","A","B","C","D"

,"E","F") 

> rep <- 

c("r1","r1","r1","r1","r1","r1","r2","r2","r2","r2","r2","r2","r3","r3","r3","r3","r3","r

3","r4","r4","r4","r4","r4","r4") 

> yield <- 

c(9.4,9.3,7.6,7.6,6.9,7.6,8.9,9.1,7.8,6.5,8.9,8,7,8.5,6.3,5.5,7.3,8.5,7.3,8.9,4.5,4.2,6.3

,6.9) 

> trial <- data.frame(list("treatment"=treatment,"rep"=rep,"yield"=yield)) 

> str(trial) 

'data.frame':   24 obs. of  3 variables: 

 $ treatment: Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ... 



 130 

 $ rep      : Factor w/ 4 levels "r1","r2","r3",..: 1 1 1 1 1 1 2 2 2 2 ... 

 $ yield    : num  9.4 9.3 7.6 7.6 6.9 7.6 8.9 9.1 7.8 6.5 ... 

 

 

> rcb<-lm(yield~factor(rep)+factor(treatment)) 

 

 

Response: yield 

          Df  Sum Sq Mean Sq F value   Pr(>F)    

rep        3 13.3433  4.4478  7.0401 0.003540 ** 

treatment  5 23.6000  4.7200  7.4710 0.001066 ** 

Residuals 15  9.4767  0.6318                     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

> summary(rcb) 

 

Call: 

lm(formula = yield ~ rep + treatment) 

 

Residuals: 

      Min        1Q    Median        3Q       Max  

-1.066667 -0.525000  0.008333  0.450000  1.050000  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   8.7667     0.4867  18.011 1.43e-11 *** 

repr2         0.1333     0.4589   0.291  0.77538     

repr3        -0.8833     0.4589  -1.925  0.07342 .   

repr4        -1.7167     0.4589  -3.741  0.00197 **  

treatmentB    0.8000     0.5620   1.423  0.17509     

treatmentC   -1.6000     0.5620  -2.847  0.01225 *   

treatmentD   -2.2000     0.5620  -3.914  0.00138 **  

treatmentE   -0.8000     0.5620  -1.423  0.17509     

treatmentF   -0.4000     0.5620  -0.712  0.48758     

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

Residual standard error: 0.7948 on 15 degrees of freedom 

Multiple R-Squared: 0.7958,     Adjusted R-squared: 0.687  

F-statistic: 7.309 on 8 and 15 DF,  p-value: 0.0005211  

 

 

 

Compared with the other methods, it is no wonder non-statisticians like Excel. However, 

its problem is that although simple and clear, the method of analysis is only correct if 

there are no missing data. There are tricks and approximations one can use to get around 

the problem of missing data, but the other more computationally intensive methods 

generally take missing data in their stride. And of course, once experimental designs 

increase in complexity, use of Excel becomes harder and harder. 
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Balanced Incomplete Block designs 

  

Randomised complete blocks designs work well, and nothing much can go wrong with 

them, provided you stick to the randomisation. However, although the validity of the 

blocking is guaranteed by the randomisation within each replicate, for large variety trials 

especially, one pair of varieties can end up adjacent or very close to each other but be in 

different blocks, whereas another pair will lie in the same block but could be 100m apart. 

According to our model, the difference between two plots lying in different blocks will 

be: 

 

v1+b1-v2-b2   (1) 

 

whereas the difference between two plots in a single block is: 

 

v1+b1-v2-b1 

 

= v1-v2   (2) 

 

 

(1) could still be taken as an estimate of the difference between v1 and v2 if we are 

prepared to accept that, on the whole, for a random pair of blocks, b1-b2 is expected to be 

zero. More on this later. However, because of the inclusion of terms for blocks, the 

standard error of (1) will be calculated as larger that (2) even though the biological reality 

is that plots which are close together tend to be more similar. This doesn‟t introduce bias 

- our randomisation procedure eliminates that, but it implies that for large variety trials, 

there is room for improvement. 

 

To account for this, “incomplete block” designs were introduced by Yates in 1936 - again 

at Rothamsted - early on in the evolution of field trial design. In these, the block size is 

smaller than the number of varieties or treatment combinations. As a result not all 

varieties can occur in every block – hence the name – but those varieties that do occur in 

the same block are physically always close to one another. As described above, the 

comparison between plots in different blocks is less precise than the comparison between 

plots in the same block. However, varieties are now allocated to blocks such that every 

pair of varieties occur together in blocks an equal number of times. As a result all 

comparisons between pairs of varieties are estimated with equal precision but with a 

reduction in error variance as a result of having smaller block sizes.    

 

Here is an example of an incomplete block design for 16 varieties grown in 5 replicates 

each containing 4 blocks. 
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rep block     

1 1 1 2 3 4 

1 2 5 6 7 8 

1 3 9 10 11 12 

1 4 13 14 15 16 

      

2 5 1 5 9 13 

2 6 6 2 14 10 

2 7 11 15 3 7 

2 8 16 12 8 4 

      

3 9 1 6 11 16 

3 10 12 15 2 5 

3 11 14 9 8 3 

3 12 7 4 13 10 

      

4 13 1 7 12 14 

4 14 8 2 13 11 

4 15 10 16 3 5 

4 16 15 9 6 4 

      

5 17 1 8 10 15 

5 18 2 7 9 16 

5 19 3 6 12 13 

5 20 4 5 11 14 

 

 

Each variety concurs with three others in one block in each replicate – 15 concurrences in 

total. Among 16 varieties there are only 15 possible concurrences for any selected 

variety. If you search you will find that each pair of varieties only appear within a block 

once.  

 

For incomplete block designs, the number of plots per block should be chosen so that the 

area of a block is approximately square. With the plot sizes used for the National List and 

Recommended List cereal variety trials, this results in a block size of between 4 and 8 

plots. All plots within a block must be contiguous. 

 

The first incomplete block designs could still be analysed by hand. To achieve this, there 

were severe restrictions on the number and combination of replicates, varieties, and 

blocks. For example, for the design above, it is impossible to add or delete replicates 

while maintaining the balance between variety concurrences (unless you increase the 

number five at a time). Square numbers of varieties: 16, 25, 36 etc. tend to feature heavily 

in the designs. The bible for these designs is “Experimental Designs” (Cochran and Cox, 

1957) which provided recipes for the most common, references to many others, details of 

how to analyse them, and how to cope with the inevitable problems of missing data. They 

also include designs for blocking in two dimensions. In fact, the example above has 16 
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varieties arranged in a 4x4 square for each replicate. You will find that the variety 

concurrences are balanced within column blocks as well as within row blocks. Note this 

design is not randomised. Randomisation (to get an unbiased estimate of error) is carried 

out by first shuffling rows within a rep then by shuffling columns within a rep. Replicates 

within the field should be allocated at random too. 

 

The model for analysis is: 

 

yij = μ + vi + bj + rjk +cjl +  eij 

 

This extends the model we used for complete blocks before to include a term for row 

blocks within replicates, r, and for column blocks within replicates, c. 

 

Note that although the incomplete blocks in this design, and in many others, are still 

clustered into complete replicates (they are said to be “resolvable” - there are some 

statistical properties that go with this property which needn‟t concern us here), this isn‟t a 

strict requirement of incomplete block designs. Resolvable incomplete block designs are 

also called lattice designs. Balanced designs exist which are not resolvable. However, the 

clustering of plots into complete replicates has practical advantages– you may not have 

resources to measure all phenotypes on all replicates for example. There is also a 

statistical advantage. It turns out that if the design is resolvable, then one is still justified 

in analysing it as if it were a randomised complete block experiment – the estimates of 

error and of variety effects are still valid. This may seem like common sense, but requires 

statistical theory beyond my comprehension to demonstrate. 

 

These designs have been extremely successful and are still in use. Their TARDIS like 

property of testing more varieties that you can fit in any single block has resulted in better 

control of experimental error – because variety comparisons are made by within block  

comparisons so no plots being compared are ever that far from each other (but see 

below). However, they are now overused – the availability of computers for both design 

and analysis, while not rendering them obsolete, means that there are frequently more 

suitable alternatives available. This is particularly true in plant breeding where we are 

typically dealing with large numbers of varieties and cookbook designs for testing these 

numbers may not be available.  

 

An example of this misuse is found in the obsession with testing varieties in lots of 

twenty five prevalent in some plant breeding organisations and lamentably with some 

official testing authorities too. (The latter often have access to card-carrying statisticians 

and should know better.) Their standard protocol is to test varieties in sets of 25 in 6 

replicates in a “balanced lattice design”. Balanced lattice designs are excellent, and if I 

had 25 varieties I wished to test, and felt that six was the appropriate replication number, 

then I would be very happy to use one. I cannot recall this ever having occurred. There 

are typically more than 25 varieties; some new candidates and some which have been in 

trial for longer. To accommodate this, several trial series are created. For every series, 

four common control varieties are typically selected. Comparisons within series are made 

by the standard trial analysis, but comparisons between series can only be made by 
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comparison through the four common standards. This approach to trial design has been 

called “Procrustean” by Roger Mead (“The Design of Experiments”) meaning that the 

experimental material is made to fit into a design for which it was never intended. The 

statistical tail is wagging the biological dog. This system of testing is wrong because: 

 

1) It is wasteful - 16% of resources are devoted to controls. Moreover if you wanted 

that degree of resource allocated to control varieties, surely you would be better 

off with more control varieties rather than more plots of the same controls. 

2) It is imprecise - comparisons between varieties in different series can only be 

made through the control varieties and these are not themselves estimated 

perfectly.  

 

In fact it can get worse. I‟ve seen the same randomisation plan used at every site, and the 

first replicate is often not randomised at all - varieties arranged alphabetically for 

example, to make it easy for visitors to walk the trial. (This replicate often has better 

weed control too.) 

 

 

Partially balanced incomplete block designs 

 

Following the development of balanced incomplete block designs, partially balanced 

designs were developed. These come in many forms. These were introduced early too 

(1939) and relaxed some of the restrictions on the way in which varieties were allocated 

to blocks. However, at least among plant breeders, these did not catch on until a form of 

resolvable partially balanced incomplete block design termed an alpha design was 

developed by Patterson and Williams in 1976 and Patterson, Williams and Hunter in 

1978.  For these designs, there is little limitation on block size or replicate number, but 

software is required both to produce the designs and for their analysis. Their flexibility 

comes at a slight cost. The lack of balance means that all pairs of varieties are no longer 

compared with equal precision, though the difference in precision is usually slight. 

Designs can be created for large numbers of varieties - variety numbers of 500 say, but 

with block sizes of 5 or 10 (or anything else). The designs are resolvable: the blocks are 

arranged into complete replicates. In the more commonly used designs, varieties either 

concur once in any block, or never. These are described as (0,1) designs. Sometimes it is 

not possible to create (0,1) designs and some variety pairs concur twice (0,1,2) designs.  

Generally a (0,1) design is available provided the block size is  < √(no. vars). 

 

They are called alpha designs because there was planned to be a second series of designs 

– beta designs, but these never emerged, essentially because alpha designs alone do a 

good enough job. 

  

Alpha designs are most easily produced by computer. There is a procedure AGALPHA 

for this in GenStat, not available from the menu system, which will produce plans for up 

to 100 varieties, with some minor restrictions on block size and replicate number. We 

shall examine an example alpha design in the tutorial.  
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Another source of good flexible incomplete block designs is from  

http://biometrics.hri.ac.uk/DesignOfExperiments/ . which will be discussed more in the 

section on row and column designs. 

 

 

Recovery of inter block information in incomplete block designs. 

 

Most incomplete block designs for plant breeding contain around 5-10 entries per block. 

In the discussion so far, these have been treated as if they were experimental factors with 

the same status as variety effects: we fit a simple model to the data to account for both 

factors. There is a degree of dishonesty in this approach – generally we don‟t care about 

the block effects themselves. Nor have the blocks been positioned to sit on top of some 

particular patch of the field knowingly to control for environmental variables specific to 

that patch. In statistical jargon, we say our blocks are “random effects” rather than “fixed 

effects.”  Fixed effects are the easiest to define. A fixed effect is an experimental 

treatment we are interested in: it could be nitrogen levels, it could be the performance of 

a new variety. Random effects are generally samples from some real or hypothetical 

population, which will have its own p.d.f. In some cases we may be more interested in 

assessing properties of the population rather than in performance of the samples 

themselves, or we may not care about them at all. This distinction can be fuzzy. Varieties, 

for example, can sometimes be regarded as samples from a population – a sample of lines 

from an F2 for example. Equally, on occasions, what started life as a random effect may 

end up as a fixed effect: if particularly high variation among blocks in our yield trial 

turned out to be attributable to nematode infection, we might get quite exercised about 

estimating the effect of nematodes on yield. In general, if you can conceive of your 

experimental treatments as being sampled from some population, you are justified to treat 

them as random, otherwise they are fixed. There are ambiguities. Plant breeders treat year 

effects as random. Animal breeders treat them as fixed. (In fact in plant breeding it 

doesn‟t matter  - really large random effects, like years, tend to behave like fixed effects 

in their influence on variety performance. More on this later.) Even more confusing, 

animal breeders treat their sires and dams as random effects but plant breeders treat their 

varieties as fixed. Bayesian statistical approaches tend not to have this problem –

everything is treated as a random effect as all parameters to be estimated are viewed as 

samples from prior distributions. 

 

An extreme view of the difference between random effects and fixed effect is that fixed 

effects are something we care about and something that we have specifically set the 

experiment to measure. A random effect is something we don‟t care about: we just want 

to eliminate the problems they cause from our attempts to study the fixed effects.  

 

To return to our incomplete blocks. Generally, we are justified in treating these as 

random - not only do we not care about them, but we can view them as samples from a 

hypothetically infinite population of similar blocks which we could have used in our 

field.  

http://biometrics.hri.ac.uk/DesignOfExperiments/


 136 

Now return to our comparison of two varieties in different blocks 

 

v1+b1-v2-b2   

 

but now we shall treat the blocks as random effects, drawn from a population with a 

mean of zero and an unknown variance. (The mean is zero because the block effects are 

expressed as deviations from the experiment mean.)  If we have lots of differences such 

as given in (1) we can fit variety effects by minimising the variance attributable to blocks. 

For example, suppose we have a block size of two, and two blocks, one containing 

varieties v1 and v2, the other v2 and v4. Then the difference between the two block 

means has expectation v1 – v4. 

 

Generally, unless block sizes are very small, the estimation of variety effects is more 

precise when using within block information (minimising e’e) than using between block 

information (minimising b’b). However the estimate of variety effects with the smallest 

variance is then a weighted mean of estimates from the two sources (weighted by 1/[error 

variance of the variety estimates]). The analysis minimising the within blocks analysis is 

called the intra-block analysis. The analysis using only the between blocks analysis is 

called the interblock analysis. The combined analysis is called just that, or the analysis 

with recovery of interblock information, or more generally the mixed model –  mixed in 

the sense that the model contains both fixed and random effects (in addition to the error 

term). In practice you use a computer to do the analyses. We shall restrict ourselves to 

some observations about the process and ignore details of how the estimates of the fixed 

and ranomd effects are made. 

 

1) If differences between blocks are very large, then the blocks variance is very large 

compared to the within blocks error and the difference between the combined 

analysis and the intra block analysis is small – all the kafuffle about recovering 

interblock information achieves little. In this sense treating blocks as random or 

fixed makes no difference if the blocks variance is much larger than the error 

variance.  

 

2) If differences between blocks are negligible - we happen to have a very uniform 

experiment - then analysing the experiment as an incomplete block design is 

pointless and we might as well analyse the thing as a RCB - which is a valid 

analysis because the design is resolvable.  

 

3) It follows from 1 and 2 that the greatest gain in recovering interblock information 

is when differences between blocks are modest. In fact, for most trials, at least in 

the UK, that is generally the case. 

 

4) A very general method to analyse incomplete block designs was developed by 

Patterson and Thompson. Patterson is retired but still active. Thompson, his PhD 

student, went on to become head of statistics at Rothamsted – a position originally 

held by Fisher, then by Yates, and also by Nelder (who was very instrumental in 

the development of the statistical package GenStat) and by Gower (who made 



 137 

important contributions to multivariate distance analyses). The method, caller 

Residual (or Restricted) Estimation by Maximum Likelihood (REML) has 

become the standard for estimation from data in which there are multiple random 

effects – each with their own associated variance structure. We shall come across 

it many times. It is useful in genetic experiments for estimating components of 

genetic variation and heritability. 

 

 

The calculation of efficiency 

 

It may seem a lot of effort to go to design and analyse trials in this way. Was it worth it? 

For resolvable designs, we have seen that we are justified in analysing the data both as an 

incomplete block design and as a randomised complete block. We can define the 

efficiency of our incomplete block design as the ratio of the variance of a variety 

difference in the RCB analysis to the variance of a difference in the incomplete block 

design. ie as: 

 

Vdiffrcb/Vdiffincomplete blocks 

 

There is no particular requirement to define efficiency in this way, we could work on  

standard errors or standard errors of differences. Historically, this is the one that has been 

used. An interesting alternative for plant breeding trials would be to define efficiency in 

terms of the expected response to selection when selecting on means produced by the two 

systems. This is the ratio of the heritabilities from the two systems. It therefore takes into 

account not only error variance but also the magnitude of the genetic variance, which has 

nothing to do with the experiment. If genetic variation is very low compared to 

environmental variation, then the measure of efficiency is the same. If genetic variation is 

very large, then it doesn‟t matter how you test your varieties. If heritability in the 

incomplete block design is 0.5, then the efficiency measured by expected response to 

selection turns out to be (normal measure of efficiency/2 + ½). So for an efficiency 

(normal measure) of 1.5, which isn‟t unusual in a large trial, the ratio of heritabilities is 

only 1.25.  

 

In fact it is worse than this – we need to consider response to selection under an RCB 

when the selection itself is on the trait measured in incomplete blocks. This is an example 

of indirect selection - selection on one trait for response in another -  to which we shall 

return. Taking this into account, the efficiency of the incomplete block design is reduced 

further to 1.12. So although alpha designs (or other equivalent incomplete block designs) 

represent an improvement over RCB  designs, the improvement to the breeding 

programme is less than we might think. Nevertheless, you have nothing to lose: if you are 

planning a large RCB experiment, you should use a resolvable incomplete block design 

instead. It provides insurance in case things go badly wrong. You can still analyse it as an 

RCB if you insist.  
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Efficiency factor. 

 

The “efficiency factor” is different to “efficiency” with which it is can easily be 

confused. The “efficiency factor” is important in the production of the design. It is a 

criterion by which alternative designs can be judged. “Efficiency” is more important 

when we review the experiment results. Suppose we have a homogeneous field in which 

the variance between two plots is unrelated to the distance apart of our plots. In this case, 

the error variance within incomplete blocks will be identical to the error variance for the 

RCB– there is no variation between blocks over and above that resulting from error 

within blocks. In this case, the RCB will out perform the intra block analysis – because 

with the latter not all comparisons between varieties are made within the same block. In 

these idealised circumstances of complete homogeneity, the efficiency of the incomplete 

block design, calculated as before, will always be <1.  The expected efficiency of a 

design when the field is completely homogeneous is its efficiency factor. Different 

designs will have different efficiency factors and the best design for a given block size is 

the one with  the highest efficiency factor. We can calculate the efficiency factor 

algebraically (difficult). However, there is a way we can calculate it numerically which is 

useful if you ever produce your own trial design or have a design with an unknown 

efficiency factor. Some statistical packages, GenStat included, will allow you to fix the 

error variance, and then estimate effects with this variance fixed. If you make up some 

data up, fix the error to some value, 1 is the obvious choice, then analyse the data as an 

RCB and as an incomplete block (with no recovery of interblock information), you will 

be provided with variances of differences between varieties from each of the designs.  

The ratio of these is the efficiency factor. When an incomplete block design is analysed 

with real data, the design must first recover from its innate inefficiency (efficiency factor 

<1) before gaining from the biological reality that the trial field isn‟t homogenous. 

 

 

Deciding on Block size. 

 

An examination of the experimental field may indicate some natural pattern of blocking 

and suggest allocating blocks or replicates to cover some specific observed feature - eg 

changes in soil type. However, in practice, at least in Europe, if faced with something like 

this, most breeders and trials managers would choose a different field. The ideal block 

size - that is the number of entries in a block -  depends on the efficiency factor of the 

design and the pattern of fertility and other effects in the field. Generally, for most crops, 

there is some history which will indicate the sort of block size which has worked in the 

past. If historic data are available, then “post blocking” can be used to assess the effect of 

changing the number of entries per block. Here, one imposes on the existing trial data a 

new experimental design with a different block size, analyses the results, and tabulates 

block and error variances. By doing this for multiple trials and multiple block sizes, one 

can arrive at a reasonably objective decision for a block size that should work in practice. 

Note that in addition to observing the partition of error variation, we must remember that 

the post-blocking design is unlikely to be the optimal one for that block size because we 

are stuck with the historical arrangement of varieties in the field. Other designs with 

better allocation of varieties to blocks will exist with higher efficiency factors. All these 
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things can be quantified, however. In the absence of any information at all, a good place 

to start is to go for square blocks. The rationale for this is that the blocks are intended to 

control patchy fertility effects in the field, so for a given area, the more compact they are, 

the better. We end up back with Fisher‟s original approach – with several plots adjacent 

to each other within the block, and long(ish) plots running the length of the block. It is 

also probably not worth having blocks with more entries than √(total no. of entries) – in 

which case a (0,1) alpha design is available for the modest replicate numbers used in 

practice. For plant breeding experiments with large numbers of entries, this objective 

isn‟t difficult. 

 

 

Deciding on Plot shape size 

 

Statistics has had very little to say about the shape and size of plots. Fisher stated that 

plots should be long and thin so that the length of the plot would adequately sample   

environmental heterogeneity in one direction of the field, while blocking would control 

for error in the other direction. This is more or less how things have remained, although 

the availability of trial designs which control for heterogeneity in both directions (row 

and column designs) has reduced the need for this requirement. 

 

The principal constraint on plot shape and size is practical: plot drills and harvesters 

generally work on a fixed width. The cost of buying new or altering existing equipment, 

even if possible, means that the cost of changing plot dimensions is generally prohibitive. 

Plot length can be changed more easily than plot width, but there are restrictions here too. 

Firstly there is a minimum length - the equipment can‟t function accurately if plots size is 

too small. Secondly, length may be restricted by the width of equipment which works 

across the plot. For example, best practice is to spray pesticide across plots so that any 

overlap or gaps between passes is spread equally over all plots. If spraying down the 

plots, certain plots may receive substantially more (or less) spray than others. So plot 

length is restricted to integer multiples of the sprayer width. All cultivations should be 

carried out across plots if possible. Nonetheless, there remain some opportunities to vary 

plot dimensions. In row crops, such as sugar beet, one can always vary how many rows to 

include in a plot. 

 

In deciding on plot dimensions, there are two conflicting requirements: 

 

Firstly, because of inter plant competition, traits such as yield are not so much properties 

of a single plants, but of a collection of plants. How large this collection must be before 

we achieve sensible assessments depends on the biology of the particular crop. Problems 

arise from both intra and inter genotype competition. Differential height between 

cultivars can mean that the plants in one plot can out-compete plants in neighbouring 

plots, but intra genotype (intra plot) competition between plants will also affect yield. 

There are various statistical / ecological / genetic treatments of competition which include 

corrections for its effect, but we aren‟t going to go into those in this course. In general, 

plant breeders try to avoid the problem by adjusting plot width until it is sufficiently wide 

that the effects of competition can be ignored. Sometimes, border strips around plots are 
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discarded  - these contain the plants that are typically most affected by competitive 

effects. Fisher advocated that for sugar beet, plots should be four rows wide and the outer 

two rows should be discarded. However, this sort of operation is costly in terms of space 

and effort, so generally breeders and official testing bodies prefer to increase plot 

dimensions until the effects of competition are judged unimportant. In cereals, because of 

the gap between adjacent plots, border plants tend to grow taller and more lushly: a result 

of reduced inter plant competition. However, a simple increase or decrease in plant size at 

the edges of plots may look bad, but the effect is unlikely to be as serious as it looks. If 

the effect of absence of competition is simply to add a constant to the yield of each plot, 

estimates of differences in variety performance will be unaffected. Only if there is any 

interaction in performance between the edges and insides of plots is there a problem. This 

is a problem of genotype x environment interaction and can be treated as such. In sugar 

beet for example, across Europe three row plots have become the norm. A series of 

experiments in which yield from the inner and outer rows of plots was measured 

separately and variety performance compared, confirmed that this compromise worked 

well. Nevertheless, questions about plot width and the effect of interplot competition are 

still raised from time to time; usually by a breeder who thinks his/her variety is being 

unfairly treated. 

 

Secondly, from the statistical point of view, if it wasn‟t for the problems of plant 

interference, then for a given area, the best plot would contain just one plant. Consider a 

plot of two plants. The plot performance is the total yield of both plants. Call the yield of 

the two plants x and y. Then (x+y) has variance Vx +Vy +2cov(xy) where the variance 

and covariance terms represent environmental error. If there is no inter plant competition, 

the covariance term will be positive: because fertility effects tend to occur as patches or 

gradients. Now, if we had two single plants located some distance apart, then the variance 

of (x+y) would be Vx+Vy + 2cov‟(xy) – with a new and likely much smaller covariance 

terms. For the sake of simplicity, we‟ll assume a large trial so that x and y are quite a 

distance apart. As a first approximation,  cov‟(xy) = 0. So because of the fertility patterns 

we find in practice, small plots will give smaller standard errors of variety means than 

large plots containing the same number of plants. 

 

There is therefore, a compromise between the increased precision afforded by small plots 

and the bias in estimation that one gets due to plant to plant interactions. Layered on top 

of this are the costs of running trials, in which a few large plots will generally be cheaper 

to manage than many small plots. 

 

There is an upper limit on plot size too. Assuming a constant experimental area, larger 

plots means fewer replications. If each variety is represented by only a single replication, 

then there is no estimate of experimental error. As a rule of thumb, you require 10 df for a 

decent estimate of error. So in an (improbable) experiment to compare only two varieties, 

you would need 6 replicates of each. 

 

A discussion of the factors to consider in determining plot shape and size can be found in: 

“Working rules for determining the plot size and numbers of plots per block in field 

experiments.” Lin & Binns J Ag Sci 1984 103:11, 11-15.. 
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Row and column designs 
 

We briefly alluded to designs which block in two directions. There are alpha design 

versions of row and column designs, called alpha-alpha designs which we shall briefly 

describe. Software to produce them used to be available, for a fee, but I can no longer 

locate it. However, especially for large numbers of varieties, one can create reasonable 

designs by starting with an alpha design, but then rearranging entries within blocks to get 

a more uniform distribution of variety concurrences within columns. This sounds more 

onerous than it actually is. The efficiency factor of the design can be calculated as 

described earlier. Randomisation of the design is by first randomising the order of rows 

within replicates, then randomising the order of columns within replicates. 

 

Fortunately, a reputable alternative source of one and two dimensional block designs is 

found here: http://biometrics.hri.ac.uk/. Currently, information on how the designs are 

produced is sparse, though help pages are promised. The site will generate arbitrary block 

designs for any arbitrary number of treatments with arbitrary replication and arbitrary 

block sizes. These are not alpha or alpha-alpha designs. They are constructed using a 

computer swapping algorithm and are D-optimal or near D-optimal. (Don‟t ask. They are 

good designs.) 

 

As outlined earlier, the analysis of a two dimensional incomplete block design with no 

recovery of inter block information is straight forward (on a computer): we just have 

additional factors in the model. The analysis with recovery of inter block information has 

three error strata; between row blocks within replicates, between column blocks within 

replicates and a base error which can‟t really be regarded as within blocks any more, 

because there is only a single entry at the intersection of each row and column. In 

practice, the additional dimension of blocking generally doesn‟t usually give much of an 

increase in precision: the long thin plots and selection of the initial direction for blocking 

usually control most fertility effects. However, the additional dimension of blocking acts 

as additional insurance. Nothing is lost if there is no increase in precision and things can 

sometimes go badly wrong. This is particularly true in row crops, where sometimes there 

is no alternative but to carry out husbandry operations down rows. Tractor hoeing is the 

worst, with a serious risk of inducing “cultivator blight” in the USA or “steel worm” in 

the UK. There is no known genetic resistance.  

 

 

http://biometrics.hri.ac.uk/
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Spatial analysis 

 

An alternative method of analysis has become popular in the last decade or so, 

particularly in Australia (driven by Australian statisticians) and with some uptake now in 

Europe, though more by researchers than by official testing authorities and plant breeders 

(some of whom are still stuck in the 1930s remember). This is spatial analysis. It is worth 

stating that it is a method of analysis and not of experimental design.  

 

Although the method, in its current form, is recent, it has a long history. A good review 

of the history of trial design is given by Edmondson (“Past developments and future 

opportunities in the design and analysis of crop experiments.” J Ag Sci 2005, 143:27–33). 

We have made much of the observation that plots which are close together tend be more 

correlated that plots which are further apart. A first effort to quantify this relationship was 

made by Fairfield Smith in 1938. The “law of Fairfield Smith” is an empirical statement 

that the correlation between plots decreases with the log of their distance apart. In other 

words it decays exponentially.  Independently Papadapikis (1937) proposed a method of 

analysing trial data in which the central plot of each group of three was regressed on the 

mean of the outer two. The deviation of each plot yield from this regression was then 

used as the input data in a standard trial analysis. The rationale for this approach is the 

attempt to model environmental trends within the field in a continuous manner rather 

than in the discrete units of incomplete blocks. There are questions over the statistical 

validity of the approach which we won‟t go into and it never caught on in a big way, 

though was discussed from time to time over the next fifty years. An interesting but 

unpublished example is the work of Sydney Ellerton. Sydney was a plant breeder at the 

Plant Breeding Institute in Cambridge in the initial stages of WWII but was moved to 

manage a Polish sugar beet breeding station in Essex to ensure security of supply of seed 

for the crop during the war. He remained in the post until he retired and developed a 

method of trial analysis in which an initial adjustment for fertility trends was made by 

subtracting from plot number (n + 12) the mean of plots (n + 1..10, n +  14..23). That is, 

each plot was adjusted by the mean of the ten neighbouring plots on each side, but 

ignoring the two nearest neighbours. This adjustment by subtraction is equivalent to 

assuming a regression coefficient of 1. Then an additional adjustment was made in a 

Papadapikis manner by regressing the (adjusted) performance of the central plot on the 

(adjusted) mean of two nearest neighbours. A final estimation of variety effects was made 

on deviations from the regression analysis. The point of the two stage adjustment is that 

sugar beet, especially in the single row trials operated by Ellerton, is greatly affected by 

interplot competition. The second adjustment generally yielded negative correlation 

coefficients: interpreted as resulting from competition, but they could, in part, result from 

an over adjustment for fertility effects resulting from the assumed regression coefficient 

of 1 from the first adjustment on the 20 nearly-nearest neighbouring plots. There are 

other statistical question marks over this design, but I would like Sydney to have a 

mention. I once asked him how he had validated the method. He said he had asked Yates 

at Rothamsted and Mather, the Birmingham based biometrical geneticist, and they though 

it reasonable. Who am I to argue? Today, a little computer based modelling and re-

analysis of historical data could easily validate and improve or reject the method, but life 

and Sydney have moved on. After the war, he came to be joint owner of the company, 
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which was highly successful until he sold it to Shell for about £4m in about 1977 to enjoy 

a long and affluent retirement. Lucky bastard. 

 

At the heart of current methods of modelling fertility effects is the idea of autocorrelation 

- the correlation within a single variable between one observation and its neighbours. It is 

“autocorrelation” because it is not correlation between x and y but of x with other values 

of x some constant distance away. These methods originally took off with the analysis of 

time series, where an observation at one time is correlated with an observation at another. 

Outside the agricultural field (literally) a good example is in meteorology - a good 

predictor of tomorrow‟s weather is that it will be much the same as today‟s. 

Autocorrelation is calculated by taking a copy of the data and pasting it out of phase 

alongside the original data, then treating the two data copies as if they were independent 

variables and calculating the correlation in the normal manner. Note that you could paste 

1,2… steps out of phase, so you can calculate  autocorrelation for data 1,2,… steps out of 

phase.  These correlations will be related – one would expect the autocorrelation for 

adjacent plots to be higher than that for plots two positions apart and so on (ignoring the 

sugar beet problem of interplot competition.). A simple function relating the various 

correlations could be: 

 

ri = k
i
  i is distance (measured here in plots numbers)  

 

In this model, the correlation of a plot with itself is 1, the correlation of neighbouring 

plots is k, the correlation of next-but-one plots is k
2
 and so on. (nb what we really want is 

the correlation of error terms but we can‟t calculate these directly on plot data, because 

there is a variety component to plot yields which will act to reduce the observed 

correlation.) This simple model is described as an autoregressive model of order 1 (AR1). 

There are more complicated structures which include independent correlations for 

observations located more than one plot apart. However, we‟ll stick to order 1 since most 

analyses do too. 

 

To date, all our analyses have treated the error terms (within blocks) as being 

independent.  In matrix form, the error term for each plot is 

 

σ
2
I 

 

That is, each plot has the same error variance, σ
2
 and the errors for each plot are 

independent: the correlation or covariance is zero. With autocorrelation our error 

structure becomes: 

 

σ
2
 R 

 

R is made up of the elements defining the correlation between pairs of plots as described 

above (or in some other way). Note, so far we have just thought of autocorrelation as 

running in a single direction, just as for one dimensional blocking: the fertility effects we 

most want to adjust for are those running across plots. However, we can also consider 

autocorrelation in two dimensions. In this case, assuming we were fitting an AR1 model 
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in both directions, we would have to estimate two different „k‟ values – one for row 

autocorrelation and one for columns, The elements of the matrix R are then just the 

product of the elements for rows and columns considered separately, which makes life 

easy.  

 

In addition to the autocorrelated error, we can also choose to include an additional error 

term unique to each plot. (This can be viewed as a failure of the AR1 or other model to 

adequately describe the error structure.)  

 

Finally, to analyse the data, we have a model with variety effects, correlated plot error 

terms. Other terms, fixed or random (eg blocks) could be fitted too. Everything must be 

estimated. Fortunately, our software will do all this for us, but the onus is on us to ensure 

that we have set up the model correctly and are interpreting and testing the results 

correctly too. We shall have a go in the tutorial. 

 

The uptake of spatial analysis in Europe has been limited so far. Possibly the major 

reason for this is the conservatism of everyone involved – if it ain‟t broke don‟t fix it. 

Studies have been undertaken of the merits of spatial analysis compared to classic 

analysis methods. Generally, the improvement over analysis as a RCB is large, but the 

improvement over incomplete block designs – with blocking in either one or two 

dimensions - is slight. It seems that the approximation of continuous changes in fertility 

by stepwise changes as we move from block to block is pretty good in practice. There is 

also the risk, as highlighted by the heuristic Ellerton method, that spatial analysis may be 

distorted by inter-plot competition. Nevertheless, it is gaining ground. Note, however, 

this is only a method of analysis. I am not aware of work on what trial design is best if 

spatial analysis is planned in advance. It remains important that replicates of the same 

variety are well separated from each other and that pairs of varieties are distributed 

evenly in some sense. Much of this is achieved by use of incomplete block designs 

already. So for the moment, best practice is to lay out trials as two-dimensional 

incomplete block designs, consider analysing them using spatial analysis, but tread 

cautiously if you think there are variety differences in inter-plot competitiveness.  

DiGGer, Australian trial design software may be more suitable, but as I write this I have 

no knowledge of this software, other than that it is available from here: 

http://www.austatgen.org/files/software/downloads/ 

 

 

http://www.austatgen.org/files/software/downloads/


 145 

Unreplicated and partially replicated trials 

 

Breeders often do not have the luxury of sufficient seed for a replicated trial, particularly 

in the early stages of a breeding programme. In addition, if genetic variation is 

sufficiently large, then the best strategy may be to select more intensely from a large 

number of unreplicated varieties rather than from half the number in two replicates each. 

However, there are still things we can do, and consideration must be given to the methods 

and statistical properties of unreplicated trials. Possibilities include: 

 

1.) The addition of one or more check varieties at regular intervals. Data can then be 

expressed relative to the check, or the mean of the nearest check, or the weighted mean of 

checks by distance etc. etc. Typically >1 check varieties are included. Analysis in this 

manner assumes something about the error structure over the field. It is quite similar to 

running an incomplete block design with most entries unreplicated but with at least one 

common variety in each block. It would be better - in the sense of providing an unbiased 

estimate of error, if the location of the checks within each block was randomised, but I 

doubt if breeders engaged in their summer-time recreational activity of “scoring” every 

phenotype they can think of would like this. There is also a risk that in a uniform field, 

the adjustment by the nearest checks will introduce error rather than eliminate it (as the 

check varieties are also estimated with error).  Potentially, spatial analysis may prove to 

be more efficient. 

 

2.) Following on from (1), produce an incomplete block design in which some entries are 

replicated once, and some not at all. Designs like this with variable replication are called 

“augmented.” The design is easily constructed from an alpha design for, say n entries in 

two replicates: x of the entries are allocated to 2x unreplicated varieties and the remaining 

(n-x) slots are filled with the controls. Note that block size must be adjusted such that 

there is a replicated entry in every block. Because of the way alpha designs are 

constructed, this is fairly easy to achieve. The design can be analysed as an incomplete 

block design or by spatial analysis. In this instance spatial analysis is probably best. 

 

3.) Rely on pedigree relationships between candidates. Varieties from the same cross 

perform similarly. If they don‟t then either Mendelian genetics or the variety trial have 

gone very badly wrong and we should all go home. If our candidates are from several 

crosses, then it is easy to see that with an appropriate design and randomisation pattern, 

we can get unbiased estimates of the cross means, so at a minimum we could select 

between crosses. The within cross deviations from the cross means are a result of within 

cross genetic variation and of plot error. If we have an estimate of error from somewhere 

– from some replicated check varieties maybe, then we can decide how much weight we 

should place on the cross mean and how much on the deviation and select on an index of 

the two. There are more sophisticated methods too. If the between and within cross 

genetic variances have known expectations, then within cross error can also be estimated 

by subtraction. Without expanding here, there is clearly information in the pedigree of the 

varieties we are testing which can be incorporated into the analysis.  
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4) “Gridding” or blocking. Yields are expressed as deviations from a local average. 

Selection is then on the deviations rather than the raw data. Efficiency of this process will 

depend on heritabilities and the coarseness of field heterogeneity. Again, in a uniform 

field it is possible to do more harm than good. 

 

Any others anyone? The consensus at the moment seems to be to combine (1) and (2). 

That is, to have both systematically placed check varieties and some varieties (they could 

be the same) replicated and randomised with the experimental material. I would always 

advocate at least some randomized control varieties: it is good to have available an 

unbiased estimate of error. That said, spatial analysis seems a reasonable way of 

analysing the data. With experience, one could chose to reduce or increase the number of 

replicated and of check varieties. (You can test the effect by analysing the trial including 

checks or with checks removed.) My prejudice  is that one will be better off with fewer 

checks and more replicated controls. An example of the design and its analysis is given in 

the ASREML manual. (ASREML is an implementation of REML closely related to that 

in GenStat. The manual is free, the software is expensive.) 

http://www.animalgenome.org/bioinfo/resources/manuals/ASReml/UserGuide.pdf  

 

A final consideration is whether varieties from the same cross should be grouped together 

or randomised. If they are kept together, one will have better precision when comparing 

lines within-crosses but worse precision between crosses. Again, personally I would 

randomise. It may make life more inconvenient when taking field observations, but will 

guard against bias towards particular crosses when selecting on yield. If it is an 

unreplicated yield trial, it should be designed to give you the most efficient assessment of 

yield from unreplicated data. Inconvenience in making additional observations is of 

secondary importance. 

 

 

Inspecting residuals – fertility plots 

 

One outcome of the data analysis, however carried out, is that we have a predicted or 

fitted performance for each plot. We can inspect the difference between the observed data 

and the fitted values: the residuals. It is often informative to plot these. They should be 

normally distributed. This can be checked in a histogram or a “Q:Q” plot. In this, the 

ranked residuals, possibly after standardizing,  are plotted against their expected value. 

The plot should lie close to a straight line passing through the origin with a gradient of 

zero. Exceptionally large or small values, or more general failure of the model will show 

up a deviations from this expected pattern. An example is shown below. 

 

http://www.animalgenome.org/bioinfo/resources/manuals/ASReml/UserGuide.pdf
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In this plot of 100 data points you can see that there are some clear outliers and that the 

observed gradient is substantially less than expected. In fact, in this made-up example, 

there are 90 random observations from a N(0,1) distribution and 10 from a t distribution 

with one degree of freedom. Q:Q plots are becoming increasing commonplace in 

genetics, especially in gene expression experiments and in association testing. 

  

Residuals should also be independent of the fitted effect for that trial plot – so a graph of 

residual against the fitted value should show no pattern. Most statistical software will 

generate this graph, the Q:Q plot and others for you: see the tutorials. In the event of 

gross failure - extreme non-normality or residuals increasing with fitted value - the data 

ought to be reanalysed. Reanalysis could use a different error distribution  (opening the 

field of generalised linear models into which we shall not venture here) or more simply 

first transform the data in some way to make the error distribution better behaved. The 

most common transformation for plant breeders is to take logs of the data before analysis. 

In fact much biological data conforms better to normality on the log scale than on a linear 

scale. This is presumably because much biology is based on growth and factors 

interacting multiplicatively (ie additively on the log scale). However, in practice it is rare 

to get results which are substantially different from the initial analysis.  

 

Individual residuals which are very large in absolute value are also worth inspection. As a 

rule of thumb, large means >3 error standard deviations. These are better revealed in Q:Q 

plots. Once identified, the first thing to do is to check the data for typing errors, 

misplaced decimal points and so on, and the field records for comments about bird / 

rabbit damage etc. Obviously transcription errors can be corrected. A high residual plus a 

comment about rabbits means that plot should be eliminated from the analysis. (There 

remains the risk that rabbits preferentially graze some varieties.) If there is no good cause 

to eliminate a plot other than its extreme value, then you are stuck. There are statistical 

methods for deciding whether to eliminate or keep these plots in the analysis, but in 
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practice they achieve little more than simple elimination of plots with residuals greater 

than some threshold. The non-statistician has a tendency to eliminate too many values. It 

is in the nature of extreme values from normal distributions that they look extreme. A 

simple procedure is to analyse the data with the values in and out and if it makes little 

difference then leave them in. 

 

Residuals can also be calculated by subtracting from the observed yield the estimated 

variety effect only (ie leave the block effects in). Such residuals are estimates of the 

environmental effects on that plot. It is often informative to map these on their position in 

the field. These resulting fertility patterns can be very revealing. They can show effects of 

cultivations, irregular irrigation, fertiliser spillage and so on. On occasions, they reveal 

the presence of old field boundaries, hedge courses, buildings, drainage patterns, Saxon 

villages and so on. These are not merely of archaeological interest. They show up 

previously unknown sources of error in the field. If you are lucky, the block structure will 

have adequately accounted for their effect.  In clear cut cases, one may consider 

reanalysing the data with the inclusion of an additional factor to account for the revealed 

effect. You need to exercise some caution over this, however, since it is always possible 

to find patterns in the clouds or dirty pictures in ink blots, or so I‟m told. By 

overcorrecting, you will underestimate error and have a mistaken belief in the accuracy of 

your variety assessment. 

 

 

Analysis across multiple sites and genotype x environment interaction 

 

This will be discussed in the notes on Quantitative Genetics. 

.  
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INTRODUCTION TO POPULATION GENETICS 
 

 

Recommended text book: Theoretical Evolutionary Genetics by Joe Felsenstein is 

available free from http://evolution.genetics.washington.edu/  It doesn‟t do badly as a text 

book for quantitative genetics either, though is not as easy a read as Falconer & Mackay 

or Kearsey & Pooni. 

 

Also Genetic Data Analysis 2
nd

 ed.  by Bruce Weir. The software Powermarker is based 

around this book. As the title implies this book is focused on data analysis. 

 

Population genetics is the study of gene or allele flow with time and space through 

populations. Although generally regarded as of more interest to natural populations than 

domesticated crops, it has grown in importance in plant breeding with the increasing 

availability of molecular marker data and their use in diversity studies and linkage 

disequilibrium (LD) mapping. The basic principals also underpin much of quantitative 

genetics too. We shall therefore cover, at a superficial level, some introductory  

populations genetics.  

 

 

Single loci: The Hardy-Weinberg Law 

 

Before we describe it mathematically, we shall state why it is important. It states that 

genotype frequencies don‟t change in a population without the intervention of some 

external force. It is kind of the genetical equivalent of Newton‟s (first?) Law of motion – 

a body‟s motion is constant until some force acts to change it. For HW, these forces can 

be:  

 

mutation 

selection 

sampling variation (drift) 

migration 

non-random mating 

 

It can also be regarded, less fundamentally, but with more utility, as a means of 

predicting genotype frequencies from allele frequencies. 

 

We shall derive the law for a locus with two alleles in a diploid organism in which 

mating is at random.  

 

genotype  AA Aa aa  

frequency  X 2Y Z 

 

X, 2Y and Z can have any frequency, provided X + 2Y + Z = 1. 

Using 2Y as the frequency of the heterozygotes is just a trick to make the derivation 

easier. If it offends, you can substitute 2Y = H, say, and we‟ll still get the same result. 

http://evolution.genetics.washington.edu/
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If mating is at random between genotypes, and union of gametes is random within each 

mating, then genotype frequencies in the next generation can be predicted from the 

product of the allele frequencies in the current generation. 

 

genotype  AA  Aa  aa  

frequency  X  2Y  Z 

alleles   all A  ½ A, ½ a all a 

 

Frequency of A gamete X + ½ 2Y =   p say 

Frequency of a gamete Y + ½ 2Y =  1-p  =  q say 

 

with p + q  = 1 

 

 

   female gamete (freq) 

   A (p)  a (q) 

male gamete (freq) 

A    (p)   AA (p
2
) Aa pq 

a     (q)   Aa pq  aa (q
2
) 

 

giving genotype frequencies in the next generation 

 

   AA  Aa  aa 

   p
2  

2pq  q
2
 

 

with allele frequencies: 

 

A: p
2
 + ½ 2pq = p(p+pq) = p

 

 

 

so allele frequencies are unchanged and therefore the genotype frequencies in the next 

generation will also be   AA p
2 

     Aa 2pq      aa  q
2
. 

 

Provided mating is at random these allele frequencies are reached after a single round of 

random mating. These genotype frequencies are therefore a stable equilibrium and the 

HW law is often referred to as the HW equilibrium, and the frequencies as the HW 

equilibrium frequencies. 

 

Another way of representing the genotypes and their frequencies is as 

 

(pA  + qa)
2
 

 

provided we understand that after multiplying out, A
2
 and a

2
 represent the homozygous 

classes AA and aa. This representation offers an easy way to remember some extensions 

to HW. For more than two alleles at a locus, the HW frequencies are: 
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(p1A1  + p2A2 + …pnAn)
2 

=
 

 

p1
2
A1A1   +   p2

2
A2A2   +   p3

2
A3A3   +   2A1A2   +   2A1A3   +   2A2A3 

 

 

 

Extending further, for autopolyploids, the HW equilibrium genotype frequencies are 

given as 

 

(p1A1  + p2A2 + …pxAx)
n 

 

 

where n is the ploidy level. 

 

For example, for an autotetraploid (eg Medicago sativa) with two alleles at a locus: 

 

(pA  + qa)
4 

= 
 

p
4
AAAA + 4p

3
qAAAa + 6p

2
q

2
AAaa + 4pq

3
Aaaa + q

4
aaaa 

 

Note that  

 

(pA  + qa)
4 

= (pA
2
  + 2pq Aa  +  qa

2
]

 2
 

 

illustrating that HW equilibrium in autotetraploids is equivalent to the random union of 

diploid gametes, within which alleles are themselves in HW equilibrium proportions for a 

diploid. 

 

Note  that the coefficients of each genotype are given by the binomial expansion, of more 

easily through Pascal‟s triangle.. 

 

For diploids, HW proportions are generated after a single round of random mating. 

However, for autopolyploids this is not the case – the proportions are reached more 

slowly. For markers carried on X chromosomes too, HW proportions (in the 

heterogametic sex) are not attained immediately on random mating. 
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Non-random mating. 

 

We shall define non-random mating as a system of breeding which does not alter allele 

frequencies in the population and does not involve any differential fertility between 

genotypes (that is, we exclude selection). This means we are considering inbreeding 

selfing, and forced outcrossing. We shall restrict our treatment to a pair of alleles in a 

diploid. Extension to multiple alleles is easy, to higher ploidy levels harder. 

 

Departures from HW expectation. With X, 2Y and Z standing for frequencies: 

 

      AA  Aa  aa 

frequency with non-random mating  X  2Y  Z 

frequency with random  mating  p
2  

2pq  q
2
 

 

We are stating there is no selection, so a reduction (increase) in frequency of 

heterozygotes must be balanced by an increase (reduction) in the frequency of 

homzygotes. Each heterozygote requires 1 A allele and 1 a allele, so a change in number 

of heterozygotes by 2 requires a change in numbers of AA genotypes by 1 and in 

numbers of aa genotypes by 1. So a reduction (increase) of n heterozygous genotypes 

must be matched by an increase (reduction) of n/2 in both homozygous classes.  With a 

total of N individuals, if we set  

 

n/N = 2pqf 

 

we get  

 

      AA  Aa  aa 

frequency with non-random mating  p
2 

+pqf  2pq(1-f) q
2
+pqf 

 

f is a measure of the departure of the population from HW equilibrium frequencies. Its 

maximum value is 1 in which case there are no heterozygotes, and its minimum is          

max(-p/q, -q/p) in which case one of the homozygous classes is missing. f is often 

described as the inbreeding coefficient of the population, though this isn‟t strictly true. f = 

1 represents complete inbreeding, f = 0 gives HW proportions. 

 

Suppose an initial population was selfed in all subsequent generations. Heterozygotes in 

one generation give rise to AA, Aa and aa genotypes in proportions ¼ : ½ : ¼.  So: 

 

generation  AA  Aa  aa 

0    p
2
  2pq  q

2
 

1    p
2 

+pq/2 pq  q
2
+pq2 

2    p
2 

+pq3/4 pq/2  q
2
+pq3/4 

3   p
2 

+pq5/8 pq/4  q
2
+pq5/8 

∞   p
2 

+pq = p 0  q
2
+pq = q 
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The frequency of heterozygotes is halved each generation. In generation 1, f has the value 

of ½ and when inbreeding is complete, f has the value 1. A special case is an F2 

population, in which case p = q = ½ and the frequency of heterozygotes declines as ½
n
  

over n generations. Note however, that in this case, we are defining the F2 population, 

which is certainly in HW equilibrium, as being outbred (f=0). But the F2 is inbred 

compared to the F1, and any particular F1 may be a cross between two parental lines 

which are themselves related. So the F1 may have fewer heterozygotes than expected 

when compared to crosses among unrelated inbred lines from the same population. The 

important point is that the inbreeding coefficient is defined relative to a reference 

population. Changing the reference population will change the value of f. 

 

An important case is for species (almost always of plants) in which some seed is set by 

random mating and some by selfing (eg oilseed rape). Suppose t is the proportion of seed 

set by outcrossing so (1-t) is the proportion set by selfing. Because there is always some 

outcrossing, the frequency of heterozygotes will never decline to zero. Equally, because 

there is always some outcrossing, even if we start with no heterozygotes in the initial 

generation, they will be generated. So heterozygosity rises if it is too low and falls if it is 

too high and there is a stable equilibrium. (This isn‟t really a proof, it could oscillate 

between limits which are >0 and <1, but it will do for us.) At equilibrium, the frequency 

in successive generations will be the same. Therefore: 

 

freq in generation   AA   Aa  aa 

n    P   2Q  R   

n+1 from outcrossing  tp
2
   2pqt  tq

2
 

n+1 from selfing  (1-t)(P+Q/2)  (1-t)Q  (1-t)(R+Q/2) 

 

At equilibrium, the frequencies in the two generations are equal so the difference between 

them is zero 

 

AA: 0 = Pt - tp
2
  - Q/2+Qt/2 

 aa: 0 = Rt - tq
2 

 - Q/2 +Qt/2 

 Aa: 0 = Q – 2pqt + Qt 

 

Solving for the heterozygotes: 

 

 2pqt  = Q(1+t) 

 Q  = 2pqt / (1+t) 

 

The frequency of heterozygotes at equilibrium is therefore: 

 

 4pqt / (1+t)  

 

This can be equated to a population with coefficient f: 

 

 2pq(1-f) = 4pqt / (1+t)  
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from whence: 

 

 f = (1-t) / (1+t) 

 

This is also sometimes expressed in terms of the proportion of seed set by selfing 

 

s  =  (1-t) 

 

so 

 

 f = s / (2-s). 

 

Note again that f need not be positive, although it is hard to regard it as a coefficient of 

inbreeding when it is negative. Although f has a maximum value of 1, its minimum value 

is <0 and depends on allele frequency (it cannot take a value such that the expected 

frequency of one of the homozygous classes would be less than zero). When allele 

frequencies are equal and all members of the population are heterozygous, the f = -1. This 

happens: crossing two inbred lines together then inbreeding, the inbreeding coefficient 

goes from +1, -1, 0, ½, ¾…as we pass from the inbred parents to the F1 to the F2, F3 and 

so on, where f is defined with reference to the F2.   

 

Less extreme cases happen too. If our population is subdivided into two equal 

subpopulations with divergent allele frequencies but which are randomly mating within 

themselves, then there is an average reduction in heterozygosity compared to that 

expected from allele over the whole population. 

 

Let  frequency in population 1 = p1  = p+x 

frequency in population 2 = p2  = p-x 

 

 

Average heterozygosity  = (2p1q1 +2p2q2) / 2 

    = (p+x)(1-p-x) + (p-x)(1-p+x) 

    = 2pq – 2x
2
 

 

So there is always a deficiency of heterozygotes.  

 

In addition, if the populations are crossed, then the frequency of heterozygotes in the 

hybrid population is:  

 

    = (p+x)(1-p+x) + (1-p-x)(p-x) 

    = 2pq + 2x
2
 

 

So there is an excess of heterozygotes in the hybrid population. This excess of 

heterozygotes is termed the Wahlund effect. If a trait is studied which shows some hybrid 

vigour, then a population intercross can show an increased performance. This is the basis 

of composite varieties. It may also explain at least in part the reason why, in crops where 
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population subdivision is particularly high, that the best hybrid varieties come from 

crosses between inbreds derived from different populations (eg maize).  

 

Divergence between populations can also be characterised in terms of Wright‟s F 

statistics, which can be viewed as equivalents of the inbreeding coefficient. See later. 

 

 

Regular systems of inbreeding 

 

In breeding programmes, we are often more concerned with the inbreeding coefficient of 

a single individual or line rather than of the whole population. When dealing with inbred 

lines, F=1, we are often concerned to know how related pairs of lines are, The coefficient 

of kinship measures this and is closely related to F. 

 

First however, a comment on drawing pedigrees. There are two ways of representing 

pedigrees: the animal breeding way, and the human genetics way. Plant breeders seem to 

prefer the human way. Writing software to draw pedigrees automatically is not easy. 

There is not much problem if there are no inbreeding loops, but if there are, then there is 

trouble. Some software which produces human genetics type pedigrees copes well, 

provided the pedigrees and loops are not too tortuous, which they usually are in crops of 

course, but much software takes the easy route out and breaks the inbreeding loops and 

duplicates the individual at the break point. This unfolding of pedigree means you can 

end up with the same cultivar appearing many times, which I find misleading. The animal 

style pedigrees are easier to draw by hand but don‟t look that pretty. Take your pick. I 

prefer the animal style because inbreeding is clearer. We can have a look at software for 

this in the tutorial. 

 

Here is a small portion of the pedigree of the wheat Maris Huntsman, displayed in human 

genetics style, with inbreeding loops broken. You can see one of the ancestor lines, 

Squarehead, features several times. (With an inbreeding species like wheat, these are not 

strictly inbreeding loops. The loops result from crosses between related parents but no 

additional inbreeding is introduced to the progeny lines as these all fully inbred by 

successive rounds of selfing or doubled-haploid production.) 
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Here is an example of an animal breeding style pedigree for a three generation 

commercial coconut population. The very high contribution of a few trees in generation 

two to generation three is very clear. 

 

 
 

 

F for a single individual or line is still defined with reference to a base population in 

which F = 0: all individuals are regarded as outbred. Often, in extended pedigrees, we 

view the founders (those for whom we do not know the parents) as being outbred: there is 

little else we can do, so we are looking at inbreeding which within the pedigree only.  

 

F for a diploid individual is defined as the probability that the two alleles it carries are 

identical by descent (ibd). The coefficient of kinship, aka coefficient of consanguity, aka 

the coancestry is the expected inbreeding coefficient of the progeny of the cross between 

two individuals. It is therefore the probability that an allele picked from one individual 

and an allele picked from another individual are identical by descent. The multiple terms 

come from different translations of  the French “consanguinité” into English. The French 

geneticist Malécot did much work in this area. 

 

We shall follow Falconer &Mackay in referring to the inbreeding coefficient of an 

individual x as Fx and the coefficient of kinship of its parents as fab. 
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There are two methods of calculating F and f. One is best suited to hand calculation on 

animal style pedigrees, the other to calculation by computer on human style pedigrees. 

The computer method first. 

 

Consider this pedigree 

 

 A  x B  C x D 

 

  P  x  Q 

 

    Y 

 

We rely on the relationship 

 

 FY = fPQ = ¼ (fAC + fAD + fBC +fCD) 

 

This can be seen to be true by considering the probabilities of drawing alleles ibd from P 

and Q. 

 

This rule can be extended and modified as required. So  

 

fPQ = ½ (fPC + fPD)  

 

(either consider the probabilities directly or redraw the pedigree as (PxP) x (CxD) ) 

 

The relationship between parent and offspring is  

 

fPA = ½ (fAB + fAA)   = 1/2 

 

(estimate p(ibd) or  redraw as  (AxA)x(AxB) ) 

 

Selfing 

 

 fAA =  ½(1+FA)  = ½ if A is not inbred 

 

 

These rules can be used to work from ancestors through to descendents in a pedigree, 

computing the inbreeding coefficients and kinships as you go. They can also be used to 

compute the inbreeding coefficient and the rate of approach to homozygosity in regular 

systems of inbreeding. Of these, the most common in crops is selfing, in which the 

inbreeding coefficient increases as 1- ½ 
n 

 each generation. 

 

The coefficient of kinship is often confused with the coefficient of relationship. The 

coefficient of relationship is the correlation in additive genetic values between pairs of a 

specified type or relative. The coefficient of relationship is 2x the coefficient of kinship if 

the relatives are themselves not inbred. In general, the coefficient of relationship is: 
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 r = 2fab / √[(1+Fa)(1+Fb)] 

 

Confused? Try F&M for a better explanation. 

 

The second way of establishing the inbreeding coefficient of an individual or the 

coefficient of kinship of the parents works best on pedigrees written down in the animal 

breeding manner 

 

This is well explained in F&M. It is also better understood from a diagram. Firstly note 

that if there are no loops in a pedigree, then provided the founders are non inbred or are 

assumed to be non inbred (the usual case) then no individual in the pedigree is inbred. 

 
 

In this simple case, there are several loops. For example, ID6 is a descendent of ID1 

through both lines of descent. ID8 a descendent of ID2 through both parents and ID8 is a 

descent of ID1 through three different paths. 

 

If there are multiple lines of descent connecting any ancestor to any other individual, then 

that individual must be inbred – there is a probability that the same gene copy has passed 

down each side of the loop. The probability that a selected gene copy in a parent is shared 

by one of the offspring gene copies is ½. The probability that this gene copy is passed on 

another generation is ½ x ½  and so on.  So the probability of a particular gene copy 

passing down a line of descent from ancestor to a particular gene copy in the inbred 

individual is ½ 
r
, where r is the number of links in the paths connecting the individual to 

its ancestor. 
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Now consider a second line of descent linking the same ancestor and descendant. This 

may also have originated from the same copy of the gene from the same ancestor by 

passing down the other line of descent, this time with probability ½
s
 where s is the 

number of links in this line of descent. So the probability that the two copies in the 

descendant originate from the same ancestral copy is ½ 
(r+s)

. This is the probability for a 

single selected ancestral allele. As their are two ancestral alleles, the probability that the 

descendant alleles are identical for either of these is 2(½ 
(r+s)

) or ½ 
(r+s-1)

. In addition, there 

is a probability that the descendant alleles came from the same ancestor, but each from 

one of the two different ancestral allele copies. This probability is also ½ 
(r+s-1)

. If the 

ancestor was inbred, there is a probability that the two ancestral copies of the gene are 

already identical by descent, with is just FA. So there is an additional probability that the 

descendant has inherited different alleles from the ancestor, but they happen to be ibd 

anyway. This is just FA ½ 
(r+s-1)

 . Setting r + s - 1  = n and putting all this together we get: 

 

Fx = ½ 
n 

(FA + 1) 

 

where n is also the number of individuals in the loop, ignoring the descendant whose 

inbreeding coefficient we are calculating, or equivalently it is the number of steps in the 

path minus 1. 

 

If there is more than one loop, involving one or more common ancestors, we simply sum 

over all possible paths 

 

 Fx = Σ ½ 
n 

(FA + 1) 

 

An example of this is in Falconer & Mackay. Make sure you count all paths, and don‟t 

include some that you shouldn‟t. This can be error prone. It is best to use a computer to 

calculate F if you can find some software.  In the example above, ID8 is involved in the 

following loops: 

 

5-2-4-6 

5-1-6 

5-1-4-6 

 

Assuming the ancestors are all outbred, F8 is ½
4
 + ½

3
 + ½

4
 = ¼. 

Fortunately, we can get our software to check: 
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Neither of these methods is ideal for inbred crops, where every individual in the pedigree 

is inbred and the real interest is in coefficients of relationship. We do not want to include 

in the pedigree each generation of inbreeding before the next set of crosses are made. We 

only wish to include the parents and recombinant inbred lines (or doubled haploids) in 

every pedigree. If we assume inbreeding is complete, then F is always 1. However, the 

probability of a single copy of a parental inbred passing to the recombinant inbred 

remains a half even though many generations of selfing occur. We account for the fact 

that both parental copies are identical through the inbreeding coefficient of the parent. As 

a result, we can write down our pedigree using the inbred parents and progeny only, set F 

to 1 for all individuals then calculate coefficients of kinship as normal (ie as the 

inbreeding coefficient of the cross  between any pair of parents).  For pedigrees with no 

consanguineous loops this amounts to calculating the kinships as if all founders were 

outbred, then doubling the answer. 
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Sampling variation: genetic drift 

 

Genetic drift is the process by which allele frequencies change over time, solely through 

chance sampling effects without any effects of selection, mutation, migration and so on. 

It is a consequence of finite population sizes. Felsenstein, in his free book, gives an 

interesting example. You have 2 parents, 4 grandparents, 8 great grandparents. You don‟t 

have to go too far back before you require more ancestors than there are people available. 

If you go back 40 generations, ~ 1000 years, you need more than a trillion (10
12

 ). The 

only way to reconcile this problem is if some of the available ancestors were used more 

than once in your pedigree: your ancestors and therefore your parents are related and you 

are inbred. The result of inbreeding is increased homozygosity, so you are more 

homozygous than you might expect, or would like. This form of inbreeding through 

restricted population size affects genotype and allele frequencies too. It affects all 

populations of finite size and we‟ll also see that the smaller the population, the more 

important the effect. We‟ll try to quantify it. 

 

Firstly, note that moving a population along one generation with random mating is like 

drawing a random sample from the existing population to create the next one. Although 

this sampling is at random, it is with replacement - a parent (or more exactly a parental 

allele) can be used more than once. A consequence of sampling with replacement is that 

the sampling variance is binomial. Imagine that we draw a sample from the current 

generation.  This sample could be larger than the actual population size, which is why the 

sampling must be with replacement. This sample constitutes the next generation. Given 

allele frequencies in the current generation, we can use the binomial distribution to work 

out the full probability distribution of alleles in our sample (aka the next generation) and 

calculate the probability that it contains 0, 1 ,2 … 2N alleles of type A. (N is the diploid 

population size, so there are 2N alleles). Whatever the population‟s size, there is a finite 

probability that the population will be fixed for either the A or a allele. The probability 

that the number of A alleles in the next generation exactly equals the number of A alleles 

in the current generation can also be calculated and will be small, even for small 

population (sample) sizes. We know therefore, that our new allele frequency, p1, will 

most probably differ from that in the current generation, p0, and that the variance of this 

difference is just the variance of the allele frequency in the sample. For a binomial 

distribution with reasonably large sample size this is : 

 

p0q0/2N 

 

This is therefore the variance of the change in allele frequency from p0 to p1 between 

generations 0 and 1. 

 

 (Note, if sampling were without replacement, the sampling follows a hypergeometric 

distribution – something that we don‟t come across much in genetics). 
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Expected allele frequency changes over a single generation under drift are easily dealt 

with using the binomial distribution. The problem is predicting the consequences over 

many generations. After the initial generation, we don‟t have a definitive value of allele 

frequency from which we can estimate the variance of the change in the subsequent 

generation. Computing the variance of change in allele frequency over generations and 

estimation of statistics such as the time for allele frequency to change by a specified 

amount becomes very complex, especially once we include the effects of selection in 

addition to those of drift. We shall not attempt to derive these, but will give some results 

shortly.  

 

Another way of considering the consequences of drift is through its effect on 

heterozygosity. Treating the starting population as completely heterozygous, we pull out 

a random sample, with replacement, of 2N gametes. These are paired at random to 

constitute the next generation. Under this sampling scheme, there is a chance 1/2N that an 

individual carries the same parental allele - is identical by descent - so the probability that 

an individual is heterozygous is now  (1-1/2N). In the next generation (generation 2) the 

probability that we pull out a pair which are copies originating from the same parental 

allele is again 1/2N. Of the (1-1/2N) pairs which originate from different parental copies, 

a proportion 1/2N will be from the same grandparental copies, and so will still be ibd but 

1-1/2N  will be from different grandparental copies. So 

 

 H2 = (1-1/2N)
2
 

 

 or 

 

 H2 = (1-1/2N)H1 

 

so that  

  

 Hn = (1-1/2N)Hn-1 

 

 

and 

 Hn = (1-1/2N)
n
 

 

 

See Falconer & Mackay and Felsenstein for more details and a better explanation. 

 

 

Although we have argued this from a starting point of a population in which all alleles are 

different, this isn‟t a requirement. 
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The probability that a pair of alleles is identical by descent is also the inbreeding 

coefficient for a suitably defined population. This business of requiring a suitable 

reference population is a nuisance. In one sense, one copy of allele A must be ibd with 

another if we define our reference population far enough back in time - assuming there 

was only a single mutation from aA, which is usually the case at the single nucleotide 

level. In this case, all homozygous genotypes are ibd. However, in another sense, we 

have large outbred populations which we do not regard or treat as inbred, but in which 

homozygous genotypes do occur. To avoid confusion, not that successfully in my case, 

we also talk about identify by state (ibs) and identity by descent (ibd). Ibd implies ibs but 

ibs does not require ibd. Not very satisfactory really.  

 

This leads us to the relationship between H and the inbreeding coefficient. F = 1-H. The 

inbreeding coefficient is generation n is 

 

 Fn = 1-(1-1/2N)
n
 

 

Dropping the requirement for the initial population to be all heterozygous and returning 

to our biallelic standard case, this also gives expected genotype frequency of 

heterozygotes as  

 

2pq(1-F)  =  2pq(1-1/2N)
n
 

 

As n increases, heterozyogtes are reduced in frequency. Ultimately there are none. On 

average, over multiple possible outcomes of random sampling over a very large number 

of generations, only AA and aa genotypes will be found, with frequencies p and q over all 

outcomes but in any particular instance only AA or aa genotypes will be present  As a 

result: 

 

The probability of fixation of an allele through drift is just the frequency in the initial 

population: rare alleles are most likely to be lost through drift. 

 

 

Variation between population isolates. 

 

If populations are split into subpopulations which are isolated, allele frequencies will 

diverge over time as a result of drift. The expected average allele frequency over all 

populations will remain the same as in the initial founder population. We have already 

seen that this divergence will result in increased heterozgosity when these subpopulations 

are intermated and that this can be exploited in hybrid breeding programmes. The 

divergence of populations isolated over time, the consequences of migration between 

subpopulations and the relationship between genetic divergence and the physical distance 

apart of the populations are much studied in population and evolutionary genetics (where 

models of speciation often require populations to be isolated). In plant breeding, it is 

important in terms of classifying and quantifying sources of novel genetic variation. This 

is largely assessed using molecular markers, which beggars the question about the 

relationship between these markers, largely assumed to be neutral, and the genes of 
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interest to the breeder which have usually had a history of selection. Here we shall restrict 

ourselves to a consideration of divergence using genetic markers only. 

 

To measure genetic variation at a single locus within a population we use diversity: 

 

 diversity  = 1-Σpi
2
 

 

Note that this is just the expected heterozygosity under HW, but by defining it this way 

we have a statistic that can equally be applied to inbreeding species. Over multiple loci, 

we can just take the average diversity. Comparing populations, you need to take care that 

you include a common set of loci across all populations, including those which are 

monomorphic in some populations. There is a slight bias in this estimate which is 

sometimes corrected for. The Expected variance of allele frequency is just half the 

heterozygosity of that allele. The maximum likelihood estimate of this is: 

 

   V(p)  =  n/N - n
2
/N

2
  = p - p

2
 = p(1-p) 

 

where n is the count the allele p and N is the number of chromosomes.  As a maximum 

likelihood estimate of variance, this is biased and should be adjusted by N/(N-1). If the 

variance is biased, then so is diversity which should be corrected in the same manner. 

 

 unbiased diversity = (1-Σpi
2
 )N/(N-1)  

 

A rival measure of diversity is polymorphic information content, PIC. This is defined as: 

 

  PIC  = 1 - Σpi
2  

- Σ2pi
2 

pj
2
 

 

where the second sum is across the n(n-1)/2 pairs of n different alleles. PIC was 

originally used to assess the utility of markers for human genetic linkage analysis. In 

practice diversity and PIC are very closely correlated and to my mind it is only the 

ignorant who use PIC - presumably driven by the cool acronym. Even worse, individuals 

sometimes will refer to PIC when they mean, and calculate, expected heterozygosity. I 

expect that the majority of people who use PIC could not define it. 

 

A full treatment of the estimation of diversity and the variance of the estimates is given in 

Weir. 
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Genetic distance and Fst 

 

In addition to quantifying variation within populations, we often need to quantify 

variation between populations. The most commonly used statistic to quantify this is Fst. 

Unfortunately, since its introduction is has shattered into many slightly different versions 

of the same thing, and it is frequently difficult to understand which version is being used, 

how it has been calculated and to what it refers. Once this has been decided, there is an 

additional problem of computing the variance of the statistic, which can be difficult, to 

say the least. The account below is the best I can do. 

 

Following usual practice, we consider two alleles in a diploid. Assume we have a parental 

population which has split into subpopulations among which allele frequencies have 

diverged. For the purpose of defining Fst the divergence can be due to anything, for 

purposes of subsequent interpretation, the divergence is often assumed to be by drift 

alone. We compare observed and expected genotype frequencies in any subpopulation as: 

 

   AA  Aa  aa 

observed   obs(AA) obs(Aa) obs(aa) 

with inbreeding p
2 

+pqF 2pq(1-F) q
2
+pqF 

 

 

This parameter set will give a perfect fit to any dataset if estimated from the data. 

However, the parameters can also be taken from the subpopulation or from the ancestral 

population (or equivalently from the average over all the subpopulations). Let 

 

p  = estimate over all subpopulations 

 p‟ = estimate within a subpopulation 

FIT = estimate of inbreeding coefficient over everything 

FIS = estimate within the subpopulation 

 

then 

 

 1 -  FIT   = obs(Aa)/[2 p (1- p )]  

and 

 1  -  FIS  = obs(Aa)/[2p‟(1-p‟)] 

 

from which we can estimate FIT  and FIS. 

 

Generally, because of the Wahlund effect we discussed earlier, FIS  <  FIT. 

 

 

The ratio  (1 -  FIT   ) / (1  -  FIS)  =   [2p‟(1-p‟)]  / [2 p (1- p )] 

 

can be used as a measure which decreases as  the populations diverge. We would prefer 

to have a measure which increases as populations diverge, so we take: 
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 FST  = 1  -  [2p‟(1-p‟)]  / [2 p (1- p )] 

 

This then gives the classic relationships between these F values, first introduced in the 

1920s by Sewall Wright. 

 

  (1 -  FIT   ) = (1 -  FIS ) (1  -  FST)  

 

With multiple populations and alleles, we take averages over alleles within loci, then over 

populations. In estimating parameters, if the samples are of unequal size, we can take 

weighted averages as Weir suggests, or we may prefer not to if concerned that this will 

give undue weight to a small number of large samples. If the subpopulations themselves 

are of unequal size, then that can also gives us problems of interpretation. The 

computation of variances and confidence intervals is also problematic, and generally we 

are better off permuting or bootstrapping estimates, but must decide whether to bootstrap 

over markers, individuals, populations or what. Expert opinion (not mine) is that all of 

this is a problem. In many publications using Fst to measure divergence, it is not clear 

what has been done, or why, so caution is required. To quote David Balding, many 

researchers are at risk of “confusing familiarity with understanding.”  A recent review is 

Holsinger and Weir (2009) Nat Rev Genet 10:639-650. 

 

FST can also be estimated, or defined even, as the variance in allele frequencies over 

populations divided by the value expected from the average allele frequency: 

 

 FST = var(p‟i)/ p (1- p ) 

 

Here is an example: 

 

 
population p q pq Fst 

1 0.031 0.969 0.030 0.847 

2 0.222 0.778 0.173 0.119 

3 0.040 0.960 0.038 0.804 

4 0.787 0.213 0.168 0.145 

5 0.259 0.741 0.192 0.021 

     

average 0.268 0.732  0.387 

 

Fst for each population is calculated as   

 

 FST  = 1  -  [2p‟(1-p‟)]  / [2 p (1- p )] 

 

For example, for the first population: 

 

 Fst = 1 - 0.030 / (0.268 x 0.732) 

   

= 0.847 
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The average Fst over all five populations is 0.387. 

 

Estimated from the variance of allele frequencies across populations: 

 

The (maximum likelihood) estimate of var(p‟i) is 0.076 

 

 FST =  var(p‟i)/ p (1- p ) 

 

  = 0.076 / (0.268 x 0.732) 

 

  = 0.387 

 

 

This account of FST has been developed for diploids in terms of their inbreeding 

coefficients. When defined as a ratio of variances, it applies equally well to all ploidy 

levels and to fully inbred collections of crop varieties which for most practical purposes 

can be treated as haploids. FST is sometimes written (eg by Weir) as θ when discussing 

the haploid case. 

 

FST also has an explicit population genetics expectation for subpopulations which are 

diverging through drift alone: 

 

 FST = 1 - (1-1/2N)
t 

 

where t is the time since the populations split and N is the diploid population size. 

 

There are many other related methods of quantifying diversity and distance. Several are 

discussed in Weir. We discuss briefly only one. 

 

Alleles may be coded as 1 and 0, for presence and absence, and a hierarchical analysis of 

variance carried out to partition variation into components for between populations, 

within populations, and within individuals within populations. Because of the nature of 

the data, and the accumulation of results across markers and alleles, significance of the 

resulting F ratios is usually carried out empirically. This method has been labelled the 

Analysis of Molecular Variance or AMOVA and is available in much software, notably 

Arlequin, whose authors were at the forefront of developing and promoting this method. 

It would presumably be easy to adopt REML to molecular data which might allow better 

treatment of missing and unbalanced data, but I am not aware that this has been done. 

 

We finish this section with a quote from Weir. “Care is needed to match the distance to 

the intended scope of inference.” In other words, don‟t use a distance measure for a 

purpose for which it is not intended. For example, another commonly used measure, 

derived by Nei, is appropriate for studying long term evolution with populations 

diverging through both drift and mutation. This probably isn‟t appropriate for most plant 

breeding applications. FST is a safer measure since, as defined here, it assumes no 

mutation but that populations are changing through drift. One can apply geometric 
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distances too, which assume nothing about genetics. Whether this is a good thing or a bad 

thing probably depends on the data set and the application. 

 

 

Effective population size. 

 

Often, in discussion of population genetics, diversity and so on, the term effective 

population size (written as Ne) is encountered.  Population genetics theory has generally 

been worked out using something called the Fisher-Wright model. This refers to a 

particularly well behaved sort of population in which mating is at random (so selfing can 

occur), generations are discrete, population sizes are constant from year to year, each 

progeny gamete is equally likely to originate from any parental gamete (so that in 

diploids each individual contributes two gametes to the next generation on average, but 

the probability of contributing is binomial or Poisson. All this simplifies the maths, but 

can be very far from biological reality. Sewall Wright introduced the concept of effective 

population size to bring the Fisher-Wright model back in line with reality. He showed 

that correct results could be produced for many more complex situations by replacing the 

true population size or sizes with an effective population size which gave the correct 

answer if used in the standard Fisher-Wright model. What is more, it turns out that for 

many commonly found departures from the Fisher-Wright model; population sizes 

varying over generations, very variable family sizes, separate sexes etc, that the 

appropriate value for Ne could be quite easily calculated. 

 

The study of Ne and how to estimate it has subsequently taken on a life of its own. We 

shall only report one result of importance to breeders, namely that if parents are forced to 

contribute equal numbers of gametes to the next generation, Ne is 2N. This is quite an 

improvement if one is concerned about loss of variation through drift. Moreover, it is 

often the norm in breeding programmes: selected parents may be inter-crossed but equal 

numbers of progeny are taken from each cross. This is routine in recurrent selection 

programmes for example. It needs to be taken into account when deciding on intensities 

of selection. To my mind, the breeders I have known have a tendency not to select 

sufficiently hard in the interests of conserving genetic variation. Implicitly they want to 

avoid fixing disadvantageous alleles by drift though they would not usually describe their 

concerns in those terms. 

The equal contribution of gametes to the next generation is also important in the 

conservation of genetic variation in gene banks. Here, on seed multiplication, the greatest 

care should be made to ensure that parents contribute equally. The gold standard for this 

is through making pair-crosses and then taking equal numbers of progeny from each 

cross. Taking equal numbers of seed from each parent after open pollination is better than 

nothing, but the contribution of male gametes is uncontrolled and can vary greatly from 

plant to plant. One proviso to this argument is that it may be more costly to generate 25 

full sib families say (Ne = 100) than it is to sow out 1000 plants, let them open pollinate, 

then harvest the bulk. However, even here the open pollinated bulk does not necessarily 

have the higher Ne. The unequal contributions to the next generation, the correlation 

between male and female gamete contributions (arising from selfing, if it occurs, and also 
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from the tendency for large plants to produce more seed and more pollen) can all 

combine to drive Ne down. In an extreme case, in a natural population of a poppy 

species, Ne was estimated as 1% of N. (JS Gale, Theoretical Population Genetics 1990). 

This is as far as we‟re going to go in our consideration of pure drift: after this the 

mathematics gets heavy. We shall just give some results of interest. 

 

 

Mutation 

 

All variation ultimately originates from mutation, which can range from single base pair 

changes through gene duplication/deletion, chromosome inversions and translocations up 

to whole genome duplications. Here, we consider the effect of mutations which have no 

effect on viability or fertility.  

 

In a diploid population of size N, suppose mutations occur from allele A to allele a at a 

frequency u per generation per copy of A. If the frequency of A in the population is p in 

generation n, then in generation n + 1 the frequency of A will be p(1-u) and the frequency 

of a will rise to q + pu.  If mutation from a to A also occurs at a frequency v, then the net 

change in a over a generation is pu - qv. At equilibrium:  

 

pu = qv  giving   

 

q = u/(u+v) 

 

This seems reasonable - the equilibrium frequency of the mutant allele is the relative rate 

of forward mutation over the forward + background rate. It isn‟t very interesting 

however. At a single nucleotide, the forward and reverse rates of mutation may be fairly 

similar, but over a whole gene, the rate from the functional form to the non-functional 

form is generally much greater that the non functional to functional so it is hardly worth 

worrying about reverse mutation. Also, within a gene, it is more likely that a second 

mutation will affect a different base or amino acid rather than reverse the initial mutation. 

Recent population genetics models of molecular evolution have therefore tended to rely 

on two models of mutation called the “infinite alleles” model and the “infinite sites” 

model. The names are reasonably self explanatory.  

 

 

Mutation and drift. 

 

The fate of mutations tends to be determined by selection and drift and of these, at least 

initially, drift is much more important. 

 

When a new mutation occurs, it will have an initial frequency of 1/2N. If N is large, the 

probability that a mutation is lost will be high. Conversely, if N is small, the probability 

that the mutation is lost in a single generation is small, but the probability that the 

mutation occurs in the first place is much lower. Over a single generation, these two 
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effects are exchangeable. With a mutation rate u in a diploid population of size N, the 

frequency of the new mutation is 2Nu so the probability of loss in the generation 

immediately following mutation is, from the Poisson distribution,  e
-2Nu

.  

 

Mutation is creating variation, but drift is disposing of it. For the infinite alleles model, 

there is an equilibrium: 

 

F ~ 1/(1+4Neu) 

 

F is the probability that a pair of alleles are ibd which, for the infinite alleles model, is the 

probability that an individual is homozygous.  At this point there is no change in allele 

frequency from generation to generation. The equivalence between Ne and u is 

maintained, see Felsentstein for details. The quantity (1+4Neu) is, for reasons given in 

Felsenstein, the effective number of alleles. This is the number of alleles at a locus, of 

equal frequency, that might be expected in a population for a particular value of 4Neu. 

For reasonable values of Ne and u, we expect a fair number. In practice, this means that 

we ought not be too surprised to find numbers of DNA variants within genes or other 

stretches of sequence of modest length.  

 

Substitution rates 

 

Although most new mutation get lost by drift, some get lucky and increase in frequency 

to fixation. This is the whole idea behind the neutral theory of molecular evolution: most 

of the observed change in DNA sequence is a result of random fixation of neutral 

mutations. The probability of fixation of a new mutation is 1/2N. 2Nu neutral mutations 

occur per generation (we need to be careful to define u as the neutral mutation rate). So 

the expected number of neutral mutations arising in a generation which will ultimately be 

fixed is 2Nu  x 1/2N = u. So the rate of substitution – the frequency of neutral mutations 

which are fixed per generation is u and is independent of N. 

 

 

Selection  

 

Ignoring drift, selection can be accounted for as follows. We define the contribution (in 

gametes) of each genotype to the next generation as its fitness and quantify this through a 

coefficient of selection s, which will vary depending on the model or form of selection. 

Given genotype frequencies before selection, we can then compute genotype and allele 

frequencies after selection and therefore the allele and genotype frequencies in the next 

generation. Assuming random mating, then immediately after mating, but before any 

selection: 

 

    AA  Aa   aa 

initial frequency  p
2  

2pq   q
2 

 

relative viability  1  1-hs   (1-s)q
2
 

after selection   p
2
  (1-hs)2pq  (1-s)q

2
 

freq. after selection  p
2
 /

_

   (1-hs)2pq /
_

   (1-s)q
2  

/
_

  
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_

 = (1+s)p
2
+(1+hs)2pq+q

2  
is the mean population fitness, which takes on a life of its 

own in some parts of population genetics in the same way as Ne. 

 

After much algebra, the frequency of a after selection is: 

 

(q-hspq-sq
2
 )/ (1-2hspq – sq

2
)  

 

and the change in allele frequency  over a single generation is: 

  

spq[q+h(p-q)] / (1-2hspq – sq
2
 ) 

 

h is a factor to account for any different effect of selection on heterozygotes compared to 

the homozygote. 

 

These formulae are messy but different fitness models can be accounted for by specifying 

the value of h: 

 

h      =  1     allele a dominant in fitness 

h      =  0     allele a recessive in fitness 

h      >  1     genotype aa is overdominant in fitness (heterozygous advantage) 

h      =  ½     allele a is additive in fitness 

(1-hs)
2
   =  1-s    allele a is multiplicative in fitness. 

 

Substituting for h gives some simplification to the equations but they remain 

complicated. F&M gives a table (2.2), though the fitness model is not always defined 

exactly as here. 

 

Other simplifications can be made if allele a is rare (q small) and/or the coefficient of 

selection is small (which it usually is, especially for each locus of a polygenic trait). A 

favourite is the case of multiplicative fitness. This is because, if we assign fitnesses to 

alleles rather than genotypes as : 

 

   A  a 

frequency  p  q 

fitness   1  (1-s) 
_

  = (1-sq) 

 

then just as (pA + qa)
2
 will give the genotype frequencies for a diploid, then  

 

[pA + (1-s)a]
 2

  

 

gives the fitnesses of the diploid with 
_

  = (1-sq)
2
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Putting this together, the frequencies of the diploid, after selection are given as 

 

[pA + q(1-s)a]
 2

  / (1-sq)
2
 

 

or : 

    AA  Aa  aa 

initial frequency  p
2  

2pq  q
2 

 

relative viability  1  1-s  (1-s)
2
 

 

(Note the modification of the definition of fitness: s here was hs in the original diploid 

model). 

 

This makes life particularly easy. Allele frequency changes and much else can be 

calculated for the simpler haploid model and applied directly to the diploid case. The 

allele frequency after selection is: 

 

 q(1-s) / (1-sq) 

 

and the change in frequency is: 

 

qs(q-1) / ((1-sq) 

 

 

Some care is required in reading accounts of these changes in different text books, since 

the terms are sometimes defined in changes in frequency of allele a (F&M) and 

sometimes in terms of changes in A (Fe). Sometimes the default value of s is negative 

(F&M) and sometimes positive (Fe). 

 

The multiplicative model can also frequently stand in for the additive model: 

 

   AA  Aa  aa 

multiplicative  1  1-s  (1-s)
2
 

additive  1  1-s  1-2s 

 

If s is small, (1-s)
 2

 ~ 1-2s. 

 

Multiplicative fitnesses also have the property of leaving the population in HW 

equilibrium after selection (but before random mating). Other forms of selection leave the 

population out of HW equilibrium until random mating restores is (but with a new allele 

frequency). This means that selection cannot be detected by comparing observed and 

expected genotype frequencies if fitnesses are multiplicative, and they are going to be 

hard to detect if they are small but additive too. 
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Stable polymorphisms. 

 

Some forms of selection maintain variation. The most well known of these is 

heterozygous advantage or overdominance. There is no haploid equivalent for this model. 

Following Felsenstein‟s definition of terms 

 

   AA  Aa  aa 

fitness   1-s  1  (1-t) 

 
_

  = 1-sp
2
 –st

2
  

 

Frequency of A after selection 

 

   p(1-sp) / 
_

  

  

Frequency of a after selection 

 

   q(1-tq) / 
_

  

 

and at equilibrium 

 

p/q = p(1-sp) / q(1-sq) 

 

 

so   p = t / (s + t) 

. 

This equilibrium is stable. If p deviates from t/(s+t) selection will act to return the allele 

frequency to its equilibrium value. This is true provided 1-s and 1-t are both <1 - the 

heterozygote is the most fit genotype. If the heterozygote is the least fit genotype, then 

the equilibrium is not stable, and selection will hasten the fixation of the most common 

allele. 

 

Overdominance as a means of maintaining variation (and as an explanation for heterosis) 

has a continuing band of enthusiasts, at least partly because of the simplicity of its 

mathematics. There are some counter arguments. Firstly, at the molecular level, there is 

no need to routinely invoke selection to explain the presence of large amounts of 

polymorphism: drift alone does a good job in many (some would say virtually all) cases. 

Secondly, you can‟t have heterozygous advantage in haploids, yet they seem to be as 

polymorphic as diploids. Equally, in the presence of inbreeding, rather than random 

mating, the conditions under which the equilibrium is stable are more stringent. The same 

problems of stability apply to multiple alleles: there are constraints on the fitness values 

of the genotype classes under which a stable polymorphism will result. Finally, there 

remain very few cases in which the heterozygous advantage of a polymorphism has been 

demonstrated experimentally. The most well known and best case is still that of sickle 

cell anaemia in man. 
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Occasionally, one comes across cases where an excess of heterozyogtes in a population 

believed to be randomly mating is taken as providing evidence of heterozygous 

advantage. However, this is not the case. The fallacy arises because many selection 

schemes leave the population out of HW equilibrium (the exception being when fitnesses 

are multiplicative). A trite example is selection against a recessive homozygote. If one 

homozygous class is completely eliminated, then under HW expectations, with new, post 

selection allele frequencies, we expect at least some homozygotes even though we 

observe none. In fact, if we compute the expected frequencies, we find that there is an 

equal deficiency in both homozygous classes. (The deficiency will always be equal. In 

terms of the inbreeding coefficient, as discussed earlier, it is pqF). This fallacious 

interpretation was very popular in the 1970s.  

 

 

Frequency dependent selection 

 

There are many other possible mechanisms which might maintain polymorphisms; 

fitnesses which fluctuate over time and space for example. Discussion of these can be 

found in Fe. Here we are going to discuss one other: frequency dependent selection.  In 

this, the fitness of a genotype or an allele is inversely proportional to its frequency. We 

shall consider only selection acting on alleles, but the conclusions are essentially the 

same for selection acting on genotypes. A rare allele will be selected for and rise in 

frequency, but if it rises too far, its fitness will drop below that of other, rarer alleles and 

will decline. Since we expect this form of selection to maintain multiple alleles, we‟ll 

assume n alleles from the start. In haploids: 

 

 

  A1  A2        … An 

frequency  p1  p2         … pn  

fitness  1-p1s  1-p2s  … 1-pns  

 
_

  = 1- sΣ pi
2
 

 

Frequencies after selection can be calculated in the usual way. At equilibrium, there will 

be no change in allele frequency so 

 

0 = p1(1- p1s) / 
_

  - p1   

  

 0 = p1 (1-p1s) - p1(1- sΣ pi
2
) 

 

 0 = p1
2
s - p1sΣ pi

2
) 

 

 p1
2
s = p1sΣ pi

2
) 

 

 p1 = Σ pi
2
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If there are k alleles of equal frequency, then 

 

p1 = 1/k   

 

and 

 

Σ pi
2
 =  k (1/k)

2
 = 1/k 

 

These equilibrium frequencies can be shown to be stable. Under this simple model, 

frequency dependent selection maintains alleles at equal frequency. What is more, new 

mutations will be at an immediate selective advantage. As a result, frequency dependent 

selection is more effective at maintaining variation than drift alone, although because the 

equilibrium frequency with multiple alleles is low, the effects of drift in distorting allele 

frequencies from their equilibrium frequencies can be quite large. 

 

A model for diploids can be generated by assuming multiplicative fitnesses, so the fitness 

of heterozygotes is (1-spi)(1-spj) and of homozygotes is (1-spi)
2
 . This will also produce a 

stable equilibrium of equal allele frequencies. Other models also exist (see Fe) with 

differing equilibrium frequencies. 

Frequency dependent selection tends to be implicated when we are dealing with sex, 

disease or both. (And there is a theory that the evolution of sex has been driven by 

pressure of disease.) An observation of higher allele numbers than expected under drift, 

especially if they are functional, is viewed as circumstantial evidence of frequency 

dependent selection. Definitive evidence requires the cause of the selection to be 

identified too. The MHC complex in vertebrates (HLA in human) is a good example - a 

large set of highly polymorphic genes involved in the immune response, but also 

implicated in sexual selection in species as diverse as stickleback and human. The best 

example of all comes from plants, however, where the large number of alleles found at 

loci determining self incompatibility systems are maintained by frequency dependent 

selection. Disease resistance genes in plants also tend to have high frequencies of 

functional polymorphism which have been interpreted as evidence of frequency 

dependent selection. 

 

 

Selection and drift 

 

We return again to directional selection. Clearly allele frequencies change as a result of 

selection, but the deterministic equations given earlier cannot accurately predict this 

change except for intermediate allele frequencies in large populations. In general we must 

also consider the effect of drift. That this must be so is easily seen by considering the fate 

of an advantageous but recessive mutation. No selective change in allele frequency can 

occur until mutant homozygotes appear in the population. This requires the allele 

frequency to first move from 1/2N to around √(1/2N), a process which can only take 

place by drift. Qualitatively, we might expect drift to hinder the spread of an 

advantageous allele if it is rare, since it is more likely to be lost by chance. At high allele 
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frequencies, drift might assist in fixing an advantageous allele. In small populations, an 

advantageous allele may behave as if it were neutral – the noise of sampling overcoming 

the signal of selection. In large populations, if fitness differences are large enough, we 

may get away with the deterministic treatment. This area of population genetics is 

mathematically demanding, to say the least, and we are not going to go into it in any 

detail.  

 

We‟ll stick to the multiplicative model for the reasons we gave earlier. A complete 

solution, (slightly approximate) was given by Kimura in 1957. The probability of fixation 

of an allele with frequency p is 

 

U(p) ~ (1-e
-4Nsp

 )/ (1-e
-4Ns

 ) 

 

Just to cause confusion here, the genic model used is with fitnesses (1+s) and 1 (as in Fe) 

and not 1 and (1-s). 

 

Remember, the diploid population size is N so we are dealing with 2N chromosomes. 

Sometimes, in discussion of the haploid case, the population size, and therefore the 

number of chromosomes is given as N and the formula requires altering accordingly. 

 

There are some special cases we can evaluate with this formula. Firstly, 

 

s very small  U(p)   ~  [1-(1-4Nsp) ] / [1-(1-4Ns)] 

    ~ 4Nsp / 4Ns 

    ~ p 

 

just as for drift. For s to be small enough for this approximation to be valid,  

 

   s < 1/16N 

 

Small selective advantages make a difference to fixation probabilities, even though 

evaluation of the Kimura formula shows that most rare advantageous mutations will still 

be lost through drift, particularly in small populations.  Felsenstein comes up with a rule 

of thumb that natural selection is effective in the face of drift provided at least one 

individual every other generation dies (or is sterile). This is an impressively low amount 

of death, suggesting there may be something in the basic premise of the Darwin awards 

http://en.wikipedia.org/wiki/Darwin_Awards. 

 

 

new mutation = p = 1/2N 

 

U(p)  =  (1-e
-4Nsp

 )/ (1-e
-4Ns

 ) 

  = (1-e
-2s

 )/ (1-e
-4Ns

 ) 

  ~ (1-e
-2s

 )    for 4Ns >>1 

  ~ 2s    for small s.  

 

http://en.wikipedia.org/wiki/Darwin_Awards
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For example, with s = 0.01 and  N = 1,000, the probability of fixation calculated by the 

Kimura formula is 0.0198 – very close to 2s. Although small, this is still forty times the 

probability of fixation under drift alone of 0.0005. 

 

 

Selection on a quantitative trait 

 

Clearly, is should be possible to relate selection on a quantitative trait to selection on 

single loci.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a normally distributed quantitative trait with additive gene action, the difference in 

means between the homozygote and heterozygote at each biallelic locus is a, or 2a 

between both homozygotes. Under truncation selection, the proportion of selected 

individuals carrying the selected genotype is the fitness of the genotype. Provided we 

known the value of a and the phenotypic variance of the population (more strictly the 

residual variation within each class, but if a is small we can ignore that subtlety) then 

these proportions can be calculated. The relative proportions then give the relative 

fitnesses of each class and can be used to estimate the selective advantage at each locus. 

F&M show that, provided a is small: 

 

  s ~ i2a/Vp  

 

where i is the intensity of selection. 

 

This formula is correct for dominant, recessive, or additive traits (where the difference in 

fitness between the homozygote and heterozygote is defined as ½ s. If s is small, then 

additive and multiplicative models are equivalent, provided we take care in the 

                         aa              AA 

 
 

 
 

             reject        select 
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parametisation of the fitnesses. In our case, we treat the difference in fitness between 

homozygote and heterozygote as s rather than s/2 so 

 

  s ~ ia / √Vp 

 

Given this we can then insert values of s into the formula for the probability of fixation of 

an allele:  

 

U(p) ~ (1-e
-4Nsp

 )/ (1-e
-4Ns

 ) 

 

We can then study the probability of fixing advantageous alleles with varying effect on 

our phenotype. 

 

So for example, we can calculate that with 50 loci of equal effect, initial allele frequency 

of 0.5 (so you would expect about 25 to be segregating in the average cross between 

inbred lines), heritability of 0.1, selecting 10 out of 100 diploid lines (or 20 out of 200 

doubled haploids), s is 0.097 and the probability of fixation of a locus is 0.875. In other 

words, roughly 6 of the loci will be fixed for the wrong allele. If we increase heritability 

to 100%, then the probability of fixation increases to near 1. This isn‟t strictly correct, 

since as selection progresses, Vp will change as allele frequencies change and loci get 

fixed. For such small numbers, one may as well simulate the whole thing. 

 

 

 

More than one locus. 

 

The practical importance of considering more than one locus has been driven by the 

advent of association mapping in populations. It is important to have some understanding 

of the forces which influence frequencies of multiple-locus genotypes. Fortunately, in 

practice, we rarely need to consider more than two loci at a time. 

 

 

Linkage equilibrium 

 

The Hardy Weinberg equilibrium allows us to predict genotype frequencies from allele 

frequencies. The multilocus equivalent is that we can predict gamete frequencies, or 

haplotype frequencies, from the allele frequencies at the individual loci making up the 

gamete or haplotype. From these haplotype frequencies, we can go on to predict multi-

locus genotype frequencies by treating each haplotype as if it were an allele at a multi-

allelic locus. 

 

Most of our discussion will centre on two loci with two alleles: A a  and B b. These are 

separated by  recombination frequency θ. Allele frequencies are: 

 

A p 

a q  =  (1-p)  



 180 

B r 

b s = (1-r) 

 

There are four possible haplotypes (more strictly gamete types if the loci are on different 

chromosomes, but we‟ll ignore this distinction): 

 

AB 

Ab 

aB 

ab 

 

The equilibrium frequencies of these gamete types are: 

 

fAB  = pr 
fAb  = ps  
faB = qr 
fab = qs    

 
 

In tabular form: 

 

    r B   sb 

  

p A  pr AB   ps Ab 

q a  qr aB   qs ab 

 

 

Just as we introduced F to account for departure of single locus genotype frequencies 

from these expected values, here we introduce D, the coefficient of disequilibrium 

 

 

+D = fAB   -   pr 
-D = fAb    -  ps  
-D = faB    -  qr 
+D = fab    -   qs    

 

or 

 

    r B  sb 

 

p A  pr +D  ps - D 

q a  qr - D  qs +D 

 

 

It is easy to verify that these frequencies total to 1. In passing we note that only a single 

parameter is required to be added to the 2 x 2 contingency chi-squared table to give a 
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perfect fit, which is why a 2x2 contingency chi squared test has only 1df. This 

arrangement of haplotype frequencies in a contingency table gives us a clear steer about 

how to test for the presence of linkage disequilibrium.   

 

Note that the sign of D is arbitrary. If we had defined  fAB-pr as -D, then the absolute 

value of D would be unchanged but the sign would switch. 

 

 

The interpretation of D 

 

The coefficient of linkage disequilibrium, D, is not easy to interpret. Its range depends on 

allele frequency and is not symmetrical about zero. It has an absolute maximum value of 

|0.25| when allele frequencies at both loci are equal. To aid interpretation, two 

transformations are commonly used:  D‟ and Δ² or r
2
.  

 

D‟  If D < 0,  D‟ = D/ minimum {pApB, (1-pA)(1-pB)} 
 

If D > 0, D‟ = D/ minimum {pA(1-pB), (1-pA)pB} 

 

This looks complicated, but all it is doing is acknowledging that if D increases without 

constraint, then eventually the frequency of AB or ab will become zero. A haplotype 

can‟t have a frequency less than zero, so this sets an upper limit on D, determined by 

which of AB or ab happens to have the lowest observed frequency. Similarly the lowest 

(negative) value of D is determined by the value at which Ab or aB is zero. D‟ is just D 

scaled by its maximum value if it is positive and by its minimum negative value if it is 

negative.  
 

D‟ ranges from -1 to +1. Generally therefore, it is the absolute value of D‟ that is quoted. 

|D‟| will take a value of one when, of the four possible haplotypes, only three are 

observed. When a new mutation occurs, it creates a new haplotype: a single copy 

carrying the mutant and one of the alleles at the other locus. So where there were initially 

only two haplotypes there are now three, but there could be four. To create the fourth 

haplotype we require an identical mutation on a chromosome carrying a different allele at 

the other locus (very unlikely) or we require recombination. Chronologically, the stages 

are: 

 

1) AB Ab   initial population 

 

2) AB Ab aB  third haplotype created by mutation, D‟ = 1. 

 

3) aB x Ab   Ab  recombination 

 

4) AB Ab aB Ab four haplotypes present, D‟ <1 

 

Following recombination, D‟ is <1. The value of D‟ can therefore serve as a test for the 

occurrence of historical recombination between two loci: if |D‟| is less than one, then 
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recombination must have taken place in the time since the second polymorphism arose 

through mutation. This is referred to as the four gamete test. 

 

Δ² or r
2   

Δ² = D
2
/(pqsr) 

 

Δ² also ranges from 0 to 1. For a randomly mating population, it is the correlation 

coefficient squared between the two loci if the alleles are given numeric codes. It 

therefore has the advantage that it is very easy to calculate. Δ² will take a value of one 

when, of the four possible haplotypes, only two are observed. This is easy to see, since 

the correlation coefficient is +/- 1 only when one variable perfectly predicts the other. 

This is only possible if the first locus is a perfect predictor of the second, in which case 

allele states at the two loci must match. Since Δ²  is a measure of predictability, it is 

useful for deciding appropriate marker densities and in studying the power of association 

to detect QTL where power is proportion to Δ²  . 

 

At extreme allele frequencies, D‟ and Δ² can take quite different values. At intermediate 

allele frequencies, their values tend to correlate. |D‟| is never smaller than Δ².  The graph 

below shows a plot of D‟ against Δ² for some simulated arbitrary values of pA, pB and D. 

Note that for any value of |D‟|, Δ² ranges from zero up to that value. Δ² is never greater 

than |D‟|. |D‟| is more likely to take high values at extreme allele frequencies. This effect 

can be seen more clearly in figure 1b, which plots the data from figure 1a after removing 

loci with allele frequencies less than 0.25. It can be seen that at intermediate allele 

frequencies, |D‟| and Δ² measure much the same thing. 

 

Figure 1

Comparison of measures of LD measures
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Measures of disequilibrium for multi-allelic loci 
 

Generally, with markers such as SSRs, D, D‟, and Δ²  are estimated allele by allele: 

comparing a single allele at one locus with a single allele at the other with all the 

remaining alleles lumped together into a single class for each marker. With n1 and n2 

alleles at the two loci we have n1.n2 measures of LD. A single multi-allelic measure of 

LD is the average, weighted by allele frequencies, of these n1.n2  measures. This isn‟t 

entirely satisfactory: estimates of LD with rare alleles tend to be inflated as it is very easy 

to get a population sample which is missing many of the multiple possible haplotypes and 

this drives the estimate up, often dramatically. Sometimes rare alleles are lumped 

together before LD estimation and this can improve things. Sometimes resampling 

methods are used to estimate the magnitude of the bias empirically and this bias can be 

subtracted from the observed estimate.  

 

 

The decay of linkage disequilibrium with time 

 

LD decays through recombination. Recombination can only occur between the doubly 

heterozygous individuals: 

 

AB/ab and aB/Ab 

 

Such individuals will occur at a frequency of: 

 

2(pr + D)(qs +D) for AB/ab 

 

and 

 

2(ps-D)(qr-D)  for Ab/aB 

 

in a randomly mating population. 

 

We can assess the change in D by following the change in frequency of any gamete. 

We‟ll choose AB.  

 

From AB/ab individuals, the frequency of AB gametes is (1-θ)/2   (the non-recombinants) 

 

From Ab/aB individuals, the frequency of AB gametes is θ /2         (the recombinants 

 

The frequency of AB gametes produced by these two main types is therefore: 

 

2(pr + D)(qs +D) (1-θ) /2  +  2(ps-D)(qr-D) θ /2 

 

This involves terms in θ and terms which do not involve θ. If θ is zero, there is no change 

in gamete frequencies. The change in gamete frequencies is therefore given by the terms 

in this formula which involve θ. These are 
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     [ - (pr + D)(qs +D)  +  (ps-D)(qr-D) ]θ 

 

= - θ [   (pr + D)(qs +D)   -  (ps-D)(qr-D) ] 

 

 

 = - θD 

 

So the change in D over a generation is –θD. The value of D in the next generation is 

therefore 

 

  D – θD 

 

 = D(1- θ) 

 

and over t generations 

 

  D0 = D0(1- θ)
t
 

 

which to a good approximation (Taylor‟s series) is  

 

  D0 = D0e
-θt

 

 

for small θ and large t. This latter form shows that in the longer term, time and 

recombination are roughly equivalent – a halving of recombination fraction is 

compensated for by doubling the number of generations. Figure 1 shows the decay in 

linkage disequilibrium over time at a series of recombination fractions. 

Figure 2

Decay of linkage disequilibrium with time
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Linkage disequilibrium decays very rapidly in the absence of linkage but persists for a 

very long time with very tight linkage.  

 

 

The effect of inbreeding 

 

For inbreeding species, the decay in linkage disequilibrium over time is reduced. In the 

most extreme case, if the population consists of a set of inbred lines with no 

intercrossing, there is no opportunity for recombination and linkage disequilibrium is 

fixed. If some outcrossing occurs however, linkage disequilibrium will decay although at 

a slower rate. The effect of inbreeding in pedigree breeding programmes is an interesting 

example. Assuming that all varieties are fully inbred, the formula for the rate of decay of 

LD 

 

  Dt   =   D0 (1-)
t
 

 

will still apply provided the definitions of  and t are modified. t is no longer the 

generation time, but the cycle time: the time taken to produce a set of progeny lines from 

a set of parents.  is no longer the recombination fraction per generation, but the 

cumulative proportion of recombinants occurring from one cycle to another. For fully 

inbred lines this is 2r/(1+2r) where r is the true, generation-wise recombination rate 

(Haldane & Waddington; 1931). For closely linked markers (<2 cM say), 2r/(1+2r) ~ 2r. 

With a cycle time of eight years (this should be poor in a well run modern breeding 

programme but is probably reasonably accurate historically), the rate of decay of LD per 

generation is then roughly: 

 

  Dt   ~   D0 e
-t/4

 

 

LD decays at about a quarter of the rate found in a truly randomly mating population with 

the same generation time. Of course this figure will be perturbed by the overlapping 

generation structure that breeders impose but it acts as a guide: in spite of the inbreeding 

nature of many crop plants, LD will be decaying among cultivated varieties as a result of 

recombination, though it may be generated by other forces within the breeding 

programme as we shall see. 

 

 

 

Causes of linkage disequilibrium 
 

Mutation 

 

Consider a single polymorphism with two alleles, A and a, segregating in any reasonably 

large population. Suppose a new mutation, B  b say, occurs somewhere on a 

chromosome carrying the A allele. In the population as a whole there will be three 

haplotypes: 
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AB with a frequency very close to pA 

aB with a frequency very close to 1-pA 

Ab the new mutant, carried on a single chromosome 

 

There are four possible haplotypes in total, but only these three are observed, so |D‟| = 1. 

In successive generations, assuming that the new b mutation is not lost from the 

population by drift but ultimately rises in frequency, the missing haplotype, ab, will be 

created by recombination. As we saw in the preceding graph, this can take a very long 

time for closely linked markers. For the majority of markers available for genotyping, 

mutation must have occurred a long time ago as many generations are required for allele 

frequencies to rise from a single copy to a frequency which makes genotyping 

worthwhile. The levels of linkage disequilibrium attributable to mutation will therefore 

only be high among very closely linked markers (or markers and QTL).  Provided a 

sufficiently high marker density can be achieved, this situation is very favourable for 

association mapping. 

 

In humans, it is common to find values of |D‟| equal to 1 among very closely linked 

markers, often accompanied by high values of Δ². This indicates that little or no 

recombination has occurred among these markers. The pattern of LD in crop plants is less 

clear. Data are beginning to accumulate however. Among wild populations of 

Arabidopsis, an extensive survey has revealed that LD decays quickly – within 50 kb  - 

even though this is an inbreeding species. (Nordborg et al. 2005). 

 

 

Population bottlenecks, founder effects and drift. 
 

A population bottleneck is an extreme reduction in population size. This might occur as a 

result of disease nearly wiping the population out, an environmental disaster or some 

other catastrophic event. A particular form of population bottleneck, a founder effect, 

occurs when a species colonizes a new niche or environment. Initially the population size 

can be extremely small. For a wild species only a few seeds might be carried to an island. 

For a crop species, only a few seeds or transplants may have been introduced to establish 

the crop in a new country. Any restriction in population size will generate LD. An F2 can 

be regarded as an extreme case: the population is established from two gametes in the 

preceding generation. As a result, levels of LD are at a maximum. However because 

linkage analysis occurs within a generation of the founding event, there has been little 

opportunity for LD to decay and it is hard to locate QTL accurately. Generally, the 

magnitude of LD generated by a bottleneck or founder effect is less extreme, but is still 

sufficient for association mapping. In crop plants, the activities of plant breeders 

themselves can result in population bottlenecks  - the advent of a new disease or desired 

agronomic trait such as reduced height may result in a period of breeding in which only a 

small number of parental lines are used, or one or two lines are used very extensively for 

introgression.  

 

In fact, any finite population size generates some degree of LD, in the same way that 

genetic drift always causes some change in allele frequency, whatever the population 
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size. For a population of constant size, a steady state is set up in which the expected value 

of Δ² is: 

 

(Δ²) = 1/(1+4Ne) 

 

Note the similarity between this equation and that for expected homozygosity under drift 

and mutation in the infinite alleles model. 

 

 

Selection 

 

Selection on a trait will change allele frequencies at QTL determining the trait. In 

addition, allele frequencies will change at markers closely linked to the QTL. This is 

called hitchhiking. Its effect is to generate LD among markers around the region of 

selection. A region of increased LD, often accompanied by a reduced amount of 

polymorphism compared to other genomic regions, can be a signature of selection – a 

sign that a particular region has been subjected to selection pressure. Such regions have 

been identified in many species; in plant most notably in maize and Arabidopsis.  

 

 

Migration and population admixture 

 

If two populations, formerly isolated, are brought together, LD can be created. This is a 

result of allele frequency differences between the two source populations, which may 

have arisen through drift or through selection. For example: 

 

haplotype  pop 1  pop 2  combined expected difference 

AB   0.04   0.64     0.34        0.25       0.09 

Ab   0.16   0.16     0.16       0.25   -0.09 

aB   0.16   0.16     0.16       0.25    -0.09 

ab   0.64   0.04     0.34     0.25       0.09 

 

In population 1, pA = 0.2 and pB = 0.8. In population 2, the frequencies are reversed. 

Within each population there is no linkage disequilibrium (for example paB = pa.pB = 

0.2x0.8 = 0.16 in population 1). 

 

If the two populations are intermixed, without any crossing, the haplotype frequencies are 

just the average of the separate population frequencies. However, the allele frequencies 

are averaged too, such that pA=pB=0.5 and linkage disequilibrium is generated. In fact, D 

= 0.09, |D‟| = 0.36 and Δ² = 0.13. 

 

With more modest rates of migration or gene flow from one population to another, the 

generation of disequilibrium is less severe. Provided migrants intermate with the host 

population, the disequilibrium will decay in successive generations. 
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Migration can be both an asset or a problem in association mapping. If population 

admixture is known to have occurred and if markers are available which discriminate, 

even imperfectly, between the two parental populations, then these markers can be used 

to map traits for which the populations differ. This is “admixture mapping”. It is the 

population based equivalent of mapping in an F2: instead of two parental inbred lines, 

there are two parental populations. In human genetics there is considerable interest in this 

method, particularly in the USA:  Afro-Americans are known to have about 10% 

European ancestry and are therefore a suitable group in which to map traits for which 

Africans and Europeans differ. Suitable populations for admixture mapping in plants may 

exist, for example in crosses between Flint and Dent maize or in hybrid zones of Populus. 

 

Generally, migration is a problem. If we are trying to exploit linkage disequilibrium 

arising from mutation or an ancient bottleneck, recent migration introduces long range 

LD which can mask the marker-trait associations arising from close linkage which we 

wish to fine map. 

 

 

Summary of causes of LD 

 

Linkage disequilibrium can arise from many causes. Current evidence shows that LD is 

generally higher between closely linked loci and that it declines with distance. However, 

instances of longer range LD do occur. There is therefore a major risk that associations 

between a QTL and a marker are not the result of close proximity but may arise from 

other causes which have not been taken into account. In practice, in any population, 

forces generating new LD and the decay of existing LD will both be occurring. Patterns 

of LD can therefore be complex. The requirement for successful association mapping is 

to detect and correct for long range associations arising from recent events while locating 

close range LD arising from mutation and historical population bottlenecks. 

 

 

Plotting and modelling LD. 
 

Plots of pair-wise measures of LD against genetic distance generally show a pattern 

something like the one in the figure below 
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LD generally decays with the distance separating the markers, but there is a lot of noise 

around the decay: LD is sometimes observed between markers which are a long distance 

apart, and there are often many pairs of markers showing little or no LD in spite of their 

proximity. So although the patterns almost always show that that LD decays with genetic 

distance – and this is why LD patterns can be used to map QTL – there is often a lot of 

noise. We shall make a few observations to keep in mind when reading accounts of LD 

decay and when modelling ones own data. 

 

1) Rare alleles. When a new mutation has recently occurred or been introduced into 

a population, it is generally at very low allele frequency and there will have been 

little opportunity for recombination. In general, most rare alleles are young. In 

addition, rare alleles tend to give biased estimates of LD. The pattern of LD decay 

will therefore often appear much cleaner if LD is expressed as Δ² rather than D‟, 

or if markers with rare alleles are first excluded. In both cases, greater weight is 

being placed on older alleles, so LD will appear to decay more quickly – there has 

been more time for recombination.  

 

2) Genetic and physical distance. LD patterns can be plotted against chromosome 

location, measured as a genetic distance (eg in cM) and/or physical distance. In 

humans, where data exist on a very fine scale, LD has been found to occur in 

blocks. There are small runs, of the order of 10s or 100s of kilobases, within 

which little or no recombination has occurred, followed by small gaps within 

which there is much recombination. Such blocks of LD are formed by selection, 

statistical artefact (the sampling distribution of markers along the chromosomes), 

and by recombination hot spots – confirmed by extremely fine linkage mapping 

using sperm. The functional basis of these recombination hotspots is not clear, 

and they are not conserved between humans and chimps, suggesting that they are 

not inherited as DNA. It is not hard to find papers in crop genetics however, 

which refer to linkage blocks, recombination hotspots and the like and interpret 

their data in this way. This may be correct; there is certainly limited 

recombination around the centromere, but generally I think it reflects an 

unjustified over-enthusiasm to transfer findings from humans to crops. Firstly, in 

crops, the marker density is almost always much lower than in the typical human 

study, so the sorts of blocks resulting from recombination hotspots in man cannot 

be the same as those identified in crops, even if they are genuine. There are 

several aspects by which patterns of chiasmata in plants differ from those in 

human, so we should be wary of translating results from one to the other too 

readily. This is not to say that reported LD blocks in crops are not genuine, or that 

they may not relate to recombination patterns. It is worth plotting pairwise LD 

against chromosome location, but there is a need for caution in interpretation, I 

feel. 
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3) There are two types of curve with a simple genetic expectation which can be fitted 

to LD data.  

 

(Δ²) = 1/(1+4Ne) 

 

 which is appropriate for the long term equilibrium between drift and 

recombination. More sophisticated forms incorporate mutation. 

 

   E(D‟) = H+(H-L)(1-θ)
t
 

 

This is the “Malecot model,” named after the dead French population geneticist, 

which is more appropriate for decay of LD in the more recent past. H is the value 

of D‟ at zero recombination fraction, and L is the value of D‟ for unlinked 

markers or markers distantly placed on the chromosome. In an idealized 

population H is 1 and L is 0, giving the formula for decay of LD with time that we 

derived earlier. L can be viewed as background LD arising from a population 

admixture and migration. 

 

In human genetic data, the first equation and other more sophisticated modelling 

methods are favoured, although the Malecot model is championed robustly by 

Newton Morton (the inventor of the LOD score in 1955 and still active at the 

University of Southampton). Both these formulae will give a curve which shows 

some form of decay in LD with distance and can give a fair fit to the data. Note 

that one method fits a curve to D or D‟ and the other to Δ². In practice the Malecot 

model can also be fitted to Δ² ,or to D‟ after filtering on allele frequency, though 

the interpretation of the parameters is less clear. Both are really only appropriate 

to idealized populations of the sort we will be very luck to meet when analyzing 

real data. However, the parameters we can estimate do have some sort of 

genetical meaning which will help in our understanding and they allow 

comparison of patterns between chromosomes and populations. When both seem 

to fit the data equally well, the parameter estimates from one may be silly. For 

example, setting L and M to 0 and 1 for simplicity, a value T= 18 with the 

Malecot curve gives a similar shaped curve to Ne = 10. However, whereas T = 18 

seems plausible, Ne  = 10 seems far too low, even for UK winter wheat. For 

decay of LD among modern crop varieties I feel the Malecot model is more 

appropriate. If nothing else, the Malecot curve is more flexible since LD is not 

forced to start at a value of 1. 

 

There are also more complicated methods of modelling LD involving coalescent theory, 

but these are beyond me and are not generally applied to modelling at the whole 

chromosome level. 
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LD in a biparental cross 

 

In most linkage analysis experiments, we start with two inbred parents - two gametes 

essentially. D‟ is therefore 1 among all possible pairs of gametes. Yet in the F2, when we 

start mapping, the expected LD among unlinked pairs is zero. It does not decay to a value 

of ½ as we might expect. This is because we have not mated the two parents at random. 

Half the mating should have been selfing of the parents. If this had occurred, then the 

second generation, instead of being 100% heterozygous, would segregate at 1:2:1 and be 

in HW equilibrium at each marker, but D‟ values would now be ½ among unlinked 

markers. Such a population would generate many more false positive results were it used 

for linkage analysis. So there is a hidden benefit of non-random mating in this case. 

Whether such a benefit exists in more diverse, but non-random mating populations for 

association mapping, I do not know. 

 

 

Haplotypes 

 

A haplotype is a set a set of genetic markers located on the same chromosome that are 

sufficiently closely linked to be inherited as a unit. If recombination occurs between 

markers within a haplotype, two new haplotypes are created. There are sometimes 

advantages in considering variation within a sequence or region of the genome in terms 

of its constituent haplotypes rather than by analyzing the constituent markers 

independently. Often, there will be fewer haplotypes than there are marker-allele 

combinations (2
n
 for n biallelic markers). This reduction in numbers can provide 

increased power. It may be possible to reconstitute evolutionary relationships from the 

haplotypes and this can provide more information in association analysis too. The 

construction of the evolutionary tree is not that difficult if there has been no 

recombination and there have been no duplicate mutations, in which case a “perfect 

phylogeny” can exist, but with recombination, gene conversion and repeat mutations this 

is difficult: again beyond this course and my abilities. 

 

Identifying the two constituent haplotypes carried by an outbreeding diploid individual 

presents its own problems: AaBb individuals can be carrying AB ab haplotype pairs or 

Ab aB. Over short ranges they can be distinguished by sequencing. If family or pedigree 

information is available they can often be uniquely determined too. There are several 

statistical genetics methods available to do this too and we may be able look at these in 

the tutorial sessions.  
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QUANTITATIVE GENETICS  /  BIOMETRICAL GENETICS  
 

Books: Kearsey and Pooni. 

 Falconer and Mackay (no relation) 

 Felsenstein has a chapter on quantitative genetics. 

 

Most of the variation breeders are interested in is continuous. Quantitative genetics is the 

study of characters which are measured rather than classified (red, green, blue for 

example). Historically, there have been two approaches. The first concentrated on 

analysing variation in experimental crosses between two inbred parents and in 

generations derived from this cross, the F2, backcrosses and so on.  This approach has 

generally been used by breeders and researchers of plants, particularly of inbreeding 

crops. The second approach concentrated on describing variation in populations and was 

adopted by breeders and researchers of animals, in which the production of inbred lines 

to generate large experimental F2s and related populations is much harder. There are 

strengths and weaknesses to both approaches. Generally, I feel breeders, particularly of 

inbred crops, would benefit from more knowledge of the quantitative genetics of 

populations. We shall therefore largely follow a population approach.  

 

Means and variances 

 

Consider a single major gene in HW equilibrium with two alleles: 

 

A1A1  A1A2  A2A2 

  p
2
  2pq    q

2
 

 

The average phenotype of each genotype can be written as: 

 

m+a  m+d  m-a 

 

m  is a base effect,  defined as the mean of the two homozygous classes. 

 

A1A1       A1A2                               A2A2 

                                m                                 .                             

+a              d                                       -a 

 

 

+/- a is then the deviation of each homozygous genotype from m. 

d is the deviation of the heterozygous class from m: the dominance deviation. 

 

d =  0 means there is no average heterozygous effect - the locus has additive inheritance.  

d =  a represents complete dominance of the A1 allele over A2 

d = -a represents complete dominance of the A2 allele over A1 or equivalently A1 is 

recessive. 

 

d >|a| represents over or under dominance 
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The population mean for this locus is  

 

m + p
2
a +2pqd - q

2
a 

 

= m + (p-q)a +2pqd  

 

since p
2 

- q
2
 =(p+q)(p-q) = (p-q) 

 

Note that the population mean depends on allele frequency, not surprising really; we 

expect selection to change allele frequency and thus increase the mean for the traits we 

are selecting for. More on this later. 

 

Over several independent (biallelic) loci, the population mean is the sum of the effects at 

each locus: 

 

Σ [m + (p-q)a +2pqd]  where summation is over all loci affecting the trait. 

 

= Σ(p-q)a +2 Σ pqd , ignoring the sum of the constants. 

 

 

The variance is: 

 

p
2
a

2
 +2pqd

2
 +q

2
a

2
 – [(p-q)a +2pqd]

 2
 

 

= p
2
a

2
  + 2pqd

2
  + q

2
a

2
  -  p

2
a

2
  -  q

2
a

2
   + 2pq a

2
  -  4p

2
q

2
d

2
 - 4pq(p-q)ad 

 

= 2pqd
2
  + 2pq a

2
  -  4p

2
q

2
d

2
 + 4pq(q-p)ad 

 

which turns out to be: 

 

2pq[a+d(q-p)]
 2

 + 4p
2
q

2
d

2
 

 

 2pq[a+d(q-p)]
 2 

 is referred to as the additive genetic variance Va. 

 

 4p
2
q

2
d

2
  is referred to as the dominance variance Vd. 

 

The total genetic variation (on summing over loci)  is then Vg = Va +Vd. 

 

Of course, the phenotypic variance, Vp, includes environmental variation among 

individuals: even if there is no genetic variation a trait can vary. Treating the 

environmental and genetic variation as independent (this assumption can be dropped if 

required): 

 

 Vp = Vg +Ve = Va +Vd +Ve 
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While Vd has some intuitive appeal - it is the contribution of dominance to the population 

mean all squared (2pq)
2
 - Va is a mess. However, as we shall see shortly, it is the 

genetical description of the component of total variance which is responsible for response 

to selection, and we can use this to justify its description as the additive variance. 

Moreover, these rather complicated terms reduce to much more simple expressions in the 

case of equal allele frequencies or purely additive gene action. 

 

1) p = q = ½  an F2 

 

mean = m (defined with reference to the F2 only) 

Va = ½ a
2
 

Vd = ¼ d
2 

 

In this case, the mean and variance are more simply derived by writing down the 

expectations for the F2 directly. 

 

2) No dominance: d = 0 

 

Vg = Va = 2pqa
2
 

 

 

Interaction terms can also be described in a similar manner but we shall restrict these 

notes to additive and dominance effects only.  

 

 

Effect of inbreeding on the mean and variance 

 

Assuming the original population is randomly mated, the effect of inbreeding can be 

quantified by the population inbreeding coefficient.  

 

A1A1  A1A2  A2A2 

p
2
+pq(1+f) 2pq(1-f) q

2
+pq(1+f) 

 

The average phenotype of each genotype can be written as before as: 

 

m+a  m+d  m-a 

 

The population mean is: 

 

= m + (p-q)a +2pqd(1-f)  

 

Thus, in comparison to an outbred population, the mean is changed by an amount 2pqdf. 

If d is positive, then we shall observe a reduction in the mean - inbreeding depression - 

but the extent of the reduction is dependent on allele frequencies. 
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The effect of inbreeding on the genetic variance is harder to quantify. Here, we shall 

assume that the contribution of dominance to the genetic variance is negligible to make 

things easier. This assumption is not as bad as it may sound, especially for higher levels 

of inbreeding: there are then fewer heterozygotes in the population, so the contribution to 

the total variance coming from dominance effects will be smaller. Note that although we 

are assuming that dominance variance will diminish in importance with inbreeding, we 

are not assuming that inbreeding depression cannot be severe: when inbreeding is 

complete there is no dominance variation but inbreeding depression is at a maximum. For 

the purposes of describing the genetic variance under inbreeding therefore, we assume no 

dominance variation. For a population in HW equilibrium: 

 

Vg =Va = 2pq
2
  

 

With inbreeding, it is easy to show: 

 

Vg =Va(1+f) 

 

Of note is when inbreeding is complete: f = 1 and  

 

Vg = 2Va. 

 

For equal allele frequencies: the case for homozygous lines derived from an F2: 

 

Vg =2Va  = a
2
 

 

As before, all these expectations are for a single locus. To get the total genetic variance 

we sum over all loci. 

 

In all these cases, terms for genetic variances can be extended to include expectations for 

interactions between loci, but we have no time to go into those here. In practice, the 

inclusion of interaction terms in genetic modelling makes little difference to the 

conclusions of relevance to plant breeding.  

 

These formulae for genetic variance are all fine, but where to they get us? First we need 

to extend them to compare variances between and within different family types and 

across generations. We can then use them to do useful things like predict responses to 

selection from selecting among different family types and with different selection 

schemes. 
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Parent offspring regression 

 

The most important genetic relationship is that between parent and offspring. In terms of 

statistics alone, if we regress offspring performance on the mean of the parents, then we 

shall have a regression coefficient which permits the prediction of offspring from the 

performance of parents. We can then use this relationship to calculate response to 

selection, measured on the offspring, from performance of the parents. However, this 

regression also has a simple genetic relationship which allows the prediction of response 

to selection without the requirement to directly compare progeny with parents. 

 

The offspring-parent regression coefficient is covariance (offspring-parent) / 

variance(parent). We shall follow the derivation of the genetic expectation of these 

variances and covariances given in Falconer and Mackay Chapter 9, p150. We shall 

derive the regression for progeny mean on the mean of both parents (the mid-parent). We 

assume the population is mating at random, so the genotypes of the possible parental 

combinations are the product of the corresponding genotype frequencies under HW: 

    
    parental 

mating type freq  mean   progeny type  progeny mean progeny x parent  

A1A1xA1A1 p
4 

a  A1A1
   

a  a
2
 

A1A1xA1A2 4p
3
q ½(a+d)  ½A1A1 ½A1A2  ½(a+d)  ¼(a+d)

2
 

A1A1xA2A2 2p
2
q

2 
0  A1A2   d  0 

A1A2 xA1A2 4p
2
q

2 
d  ¼A1A1 ½A1A2 ¼A2A2 ½ d  ½d

2
 

A1A2 xA2A2 4pq
3 

½(-a+d)  ½A2A2 ½A1A2  ½(-a+d)  ¼(a+d)
2
 

A2A2 xA2A2 q
4 

-a  A2A2   -a  a
2
 

 

mean   (p-q)a+2pqd    (p-q)a+2pqd  [(p-q)a+2pqd]
2
 

 

 

cov(o/p) = p4
a

2
 + 4p

3
q¼(a+d)

2
 + 2p

2
q

2
0 + 4p

2
q

2
½d

2
 + 4pq

3
¼(a+d)

2
 + q

4
a

2
 - [(p-q)a+2pqd]

2 

 

After some basic, but potentially error prone, algebra, this simplifies to: 

 

pq[[a+d([q-p]
2
 = ½ Va 

 

The phenotypic variance among the parents is Vp. We are regressing onto the mid-parent, 

so the phenotypic variance among the (mean-of-two-parents-chosen-at-random) is just  

 

Vp/2  = (Va +Vd +Ve)/2 

 

The covariance we have derived is entirely genetic - we are assuming there is no 

environmental or error covariance between progeny and parents. This is often, but not 

always, true in plants since parents and offspring are often raised in different 

environments or years or, if raised in the same environment, are laid out in a suitably 

randomised trial design which guarantees the covariance is zero. The worst thing one 

could do is lay out parents and progeny in adjacent plots (it has been done). In animals 

and humans, the error covariance between parents and offspring (and also between 

members of the same family) is often not zero - families tend to be raised in the same 
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environment. Such common environment effects are also referred to as household effects 

(in humans), in utero effects and litter effects, depending on the case in hand. Seed 

quality effects can be important in crops, especially row-crops where plant emergence 

and early vigour can have a huge effect on final yield. In sugar beet, seed quality effects 

can dwarf the genetical contribution to the determination of variety performance, making 

variety assessment difficult, to say the least. 

 

The regression of offspring on mid-parent is therefore: 

 

  ½ Va  /  ½ (Va +Vd +Ve)  =  Va /(Vp) = h
2

n 

 

The ratio Va/Vp is called the heritability, or more correctly the narrow sense heritability 

and represents the proportion of the phenotypic variance which is attributable to additive 

genetic variation. There is another heritability, the broad sense heritability 

 

  h
2

b =  Vg/Vp  = (Va +Vd)/Vp 

 

which represent the proportion of the phenotypic variation which is genetic, whatever the 

cause. 

 

We have derived the covariance of offspring on mid-parent. The covariance of offspring 

on single parent also turns out to be ½ Va. (This equality is a result of the random mating 

of parents, it does not apply if mating is not at random, see Falconer & Mackay on 

assortative mating). However, the variance among single parents is Vp and not ½ Vp. 

The regression of offspring on single parents is therefore ½ h
2

n  - half that for regression 

on mid-parent. 

 

 

Heritabilty and the prediction of response to selection 

 

Now that we know the regression coefficients of progeny on their parents, we can use 

these to predict the performance of the progeny. Take the mean performance of the 

parents of a single plant to be x. Then the predicted performance of the progeny y is: 

 

y = bx + c 

 

Since this relation is linear, the equation is also valid for any subgroup of parents and 

progeny. Let s and p refer to the mean of a selected group.  

 

 y  = b x   + c where  x  and y  are the means without selection 

 ys = b xs  + c 

 

Define response to selection as the increase in mean performance of the selected progeny 

compared to the mean if there were no selection. Then the response to selection is: 

 

(ys - y ) = b(x- xs)  
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x- x  is termed the selection differential S: it measures how hard we select among the 

parents.  

 

y- x  is the response to selection R. If the selected parents have been pollinated by the 

population as a whole, then  

 

R = ½ h
2
S. 

 

 

For selection based on both parents, we have: 

 

R = h
2
S. 

 

This follows from the results of the previous section.   

 

 

 
 

 

R = h
2
S is “the breeders equation.” It is the most fundamental equation in all breeding, 

whether of plants or animals. If some proposed new technique or breeding scheme cannot 

be shown to increase R, or some conditional measure of R (eg R adjusted for cost and 

generation time), then it should be rejected. If it has no effect on R, it is not part of 

breeding. 

 

There are some provisos on the use of this equation. Fortunately, most don‟t matter (see 

Falconer and Mackay).  

 

 

 

 

 

 

 

 

 

 

                                                                   R 

 

 

 

                                                                           S 
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Response to selection clearly depends on the selection differential. This in turn depends 

both on how hard you select and on the variability within the parental generation. 

Selecting the top few percent of individuals is termed truncation selection: it is equivalent 

to selecting all individuals above some threshold value of phenotype, say z. For a 

standardised normal distribution, N(0,1),  S is termed the intensity of selection and is 

tabulated for corresponding proportions selected in, for example Falconer & Mackay and 

Kearsey & Pooni. Or it can be calculated as: 

 

 i = Φ(z)/p 

 

where i is the intensity of selection, p is the proportion selected, and Φ(z) is the 

probability density function for a standard normal distribution at the truncation point z. 

 

 Φ(z) = (2π)
-1/2

 e
-½ z^2

 

 

That is, take the truncation point z, corresponding to the proportion selected (eg 1.96 for 

2.5% selection), calculate the point probability density, Φ(z), then divide this by the 

proportion selected. 

 

For distributions with different variances, S is calculated by taking the value for the 

standardised normal distribution and multiplying by √Vp  ie σp. So we have 

 

 R = ih
2
σp 

 

where σp is the phenotypic variation. 

 

This in turn is often reparametised as  

 

 R = ihσg 

 

This makes explicit that response depends on how hard you select, the precision with 

which your trait is assessed, h, and the available genetic variation. Different breeding 

schemes sometimes have different generation times, so response may need to be defined 

as response per year rather than response per generation: 

 

 R = ihσg / y 

 

There remains a slight problem with i - its value has a slight dependency on the size of 

the population in which you select. For populations of size 400 or more, it doesn‟t matter, 

but for populations less than this, i declines even though the proportion selected remains 

constant. A good approximation is given by redefining the proportion selected, p, as  

 

p = (k+ ½ ) / (n+ k/2n) 

 

where  k = the number selected 

 n = the total population size. 
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The value can also be calculated by taking the average of the top k expected normal 

deviates from a population of size n. Methods have been provided to calculate i in 

“genetics odd and sods.xls”. 

 

The principle of predicting response to selection from the regression of progeny on 

parents can be easily extended to selection among entities other than outcrossed 

individuals, although we end up using the term heritability more loosely: to describe the 

proportion of genetic or additive genetic variation expressed between those entities. For 

example they could be averages over replicate plots of inbred lines. This is fine, provided 

it is made explicit to what h
2
 refers. Unfortunately, in plant breeding literature, this is 

often not the case. With plants, we may be selecting between diverse family types, inbred 

lines, clones, hybrids and so on, measured on single plants or multiple plots. When 

studying estimates of h
2
 and when comparing estimates between different studies take 

care. 

 

We shall take as a contrasting example to that of selecting individuals, the selection 

among a set of inbred lines for submission to a second stage of testing, recommended list 

trials say. Here, there is no recombination so the “progeny” are merely the selected 

sample of inbred lines selected for testing in the next stage. Suppose the inbred lines are 

first assessed in r replicate plots, and the error variance among the replicate plots is Ve. 

 

Then the phenotypic variance among all inbred lines: 

 

Vp(inbred) =   Vg(inbred)  +  Ve/r 

 

The „heritability‟ of the mean on the inbred lines is  

  

 h
2

inbred = Vg(inbred)  / (Vg(inbred) +Ve/r) 

 

Note that this heritability can be increased or decreased by increasing or decreasing r and 

can approach a value of 1 if r is sufficiently large. In practice, r will be limited by seed 

availability. 

 

The selected lines are assessed the following season in a separate experiment. The 

number of replicate plots here are irrelevant. The only source of covariance between the 

lines in the two experiments is genetic, so  

 

 cov(offspring-parent) = Vg(inbred) 

 

The response to selection is therefore: 

 

 R =  i.h
2

inbred.Vp (inbred) 

 

We can then compare differences in response to selection arising from differences in 

allocation of resources to increased replication or to increasing the number of lines tested. 

Changing these will alter heritability and intensity of selection and there will be an 
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optimum balance between the two. Note that the genetic expectation of Vg(inbred) has not 

entered into the calculations. For samples derived from a randomly mated population this 

can easily be found to be  

 

Vg(inbred) = 4pqa
2
 

 

which is 2x the additive variation in the outbred population (assuming no dominance 

variation). The reason we can get away without knowledge of the genetic expectation 

here is that we are not passing through a sexual cycle and measuring response to selection 

in the following generation. In fact, the response to selection by intermating the selected 

inbreds to create the immediate next generation (a set of F1s) is more complex - the 

covariance cannot be easily expressed in terms of Va unless there is no dominance 

variation.  

 

In summary therefore, we note that in plant breeding we are often interested in prediction 

of two types of response to selection, the first a prediction from one generation to the 

next (and beyond, see later) and the second, more easily estimated, is within a generation. 

 

  

Genetic variances and covariances from other family types. 

 

We shall not derive genetic variance components for other family types: the procedures 

follow those outlined above for the offspring-parent covariance. We may derive one or 

two in the tutorial for practice. I‟ve given the most commonly encountered family types 

below. These allow comparisons of responses from different selection schemes – 

examples will be studied in the practical sessions. There is one additional complication: 

many of the family types have an expectation for genetic variance within families in 

addition to between families. These can be derived by subtraction of the between family 

variance from the total or directly by calculation of the within family variance and taking 

the sum weighted by the frequency of family types. Nb for compactness, we‟re only 

listing the genetic variance, we must remember that both between and within family 

variances will be affected by error. 

 

Note that the error term attached to a between family variance will include a term 

reflecting the genetic variance within families: 

 

 Vgwithin /n 

 

where n is the number of plants contributing to the family mean. This term can be 

important in animal breeding where the family size is often quite small, but in plants the 

family size is usually large (think of the number of plants in the typical breeder‟s plot of 

any crop) and so can fortunately be ignored. These complications are dealt with 

thoroughly by F&M. None the less, it is worth while knowing the magnitude and nature 

of genetic variation within families since some selection schemes can include a 

component of single plant selection within families in addition to selection between 

families (often these two types of selection are for different traits). All expectations are 
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for lines derived from an initial randomly mated population. This is perhaps not that 

realistic for F1 hybrids, where crosses are often made between different populations 

which have diverged to some extend, nevertheless it will do for now. F1s could perhaps 

be treated using the Wahlund effect. 

 

   between  within   mean 

individuals  Va + Vd  N/A   Σ [m+(p-q)a+2pqd] 

clones   Va + Vd  0   Σ [m+(p-q)a+2pqd] 

full sibs  ½ Va + ¼ Vd  ½ Va + ¾ Vd  Σ [m+(p-q)a+2pqd] 

half sibs  ¼ Va   ¾ Va + Vd  Σ [m+(p-q)a+2pqd] 

S1 progenies *  1½ Va    ¼ Va   Σ [m+(p-q)a+pqd]  

S2 progenies *  1¾ Va   1/8 Va    Σ [m+(p-q)a+½pqd] 

fully inbred lines * 2Va   0   Σ [m+(p-q)a] 

DH lines *  2Va   0   Σ [m+(p-q)a] 

F1s   Va + Vd  0   Σ [m+(p-q)a+2pqd] 

4-way crosses.  ½ Va + ¼ Vd  ½ Va + ¾ Vd  Σ[m+(p-q)a+2pqd] 

 

Va =  Σ 2pq[a+d(q-p)]
 2 

  

Vd =  Σ 4p
2
q

2
d

2
 

 
 * Variance components for selfed families are not easily expressed in terms of Va and Vd. Those given 

here are under the assumption of no dominance. As discussed above, this is reasonable since with 

inbreeding dominance variation is of less importance. 

 

Note the equivalence of many of the terms. As is well know, the genetic variance of 

doubled haploids and fully inbred lines is identical. This is true because we are 

considering the genetic variance to be the sum of effects over independent loci. More 

recombination is involved in producing inbred lines than doubled haploids and we shall 

study the effect of this see later. If QTL are unlinked, there is no difference between 

inbred and doubled haploid lines. 

 

Less well recognised is the equivalence of genetic variance components between single 

plants, clones and F1 hybrids. This is worth dwelling on. In the absence of inbreeding, 

the genetic variation among single plants is as great as it can get for non-inbred families. 

For equivalent heritabilities and intensities of selection, therefore, the response to 

selection by selecting single plants (within a generation) is as great as anything. Of 

course, the single plant heritability for traits such as yield in crops is generally extremely 

low - zero is a good first approximation. Clonal propagation provides offers the 

opportunity through replication to increase response to selection by increasing heritability 

but is often not an economic way of selling or distributing a variety and it is not an option 

for seed crops (unless viable systems of apomixis are developed; a sensitive subject for 

many commercial breeding companies). F1 hybrids also offer the opportunity to select 

and fix the equivalent of the best single plants within a generation. Viewed in this way, 

F1 hybrids are not a mechanism for exploiting heterosis but rather a mechanism for 

achieving the equivalent of clonal propagation in a seed crop. Note in addition that the 

response to selection among F1s within a generation will exploit both additive and 

dominance variation, but that the response across generations will only exploit the 
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additive variation, since the covariance between parental F1s and progeny F1s has no 

dominance component. Depending on the relative magnitudes of Va, Vd and Ve 

therefore, it is possible for response to selection within a generation to be greatest among 

F1s or clones, but response over generations to be maximised by selecting among 

inbreds. Of course inbreeding depression, or its mirror image heterosis (they are one and 

the same) complicate the interpretation, but the point remains: a set of F1 hybrids are 

genetically equivalent to a randomly mated population. 

 

These components of variation can be used directly to predict response to selection 

within a generation in exactly the same way. To use them to predict across generations is 

slightly harder, since we need to know the covariance between the family types being 

selected and the progeny. However, if neither parents nor offspring are inbred, this is just 

the additive genetic component of between families variation, ½Va for example for full-

sib families. It is true only if the selected units alone contribute to the next generation. If, 

for example, single plants were tagged for selection after seed is set, then those single 

plants will have been pollinated at random and the response to selection is reduced by 

half: the response to selection is made up of a response due to selecting females and a 

response due to selecting males. In this case, only the females have been selected. 

 

Assuming no dominance variation, the covariance between an inbred line and its F1 

progeny  is Va,  If we pair selected inbred lines to produce these progeny, the genetic 

variance among the parental pairs is 2Va/ 2 = Va. The regression of F1 performance on 

the mean of the two inbred parents can therefore approach 1 provided dominance 

variation is not large and environmental variation (controlled by replication) is low.  

Equally, the covariance between a parental inbred line and recombinant inbred progeny 

produced is also Va. As a result, the response to selection among the recombinant inbreds 

is predicted to be the same as the response to selection within the current generation. 

 

All this stuff on the prediction of response to selection from the heritability may seem 

pointless After all, in pure statistical terms once we have the equation for the regression 

of offspring on parent, we can predict response directly from this equation without any 

knowledge of the genetic expectation. This is true. However, because we know the 

genetic expectation we can estimate Va, Vd, Ve and heritabilities by any method and use 

these components directly to compare response to different selection schemes without the 

need to implement the scheme itself. This is the fundamental principle in the design of 

breeding schemes. A common example would be to compare response to selection among 

half-sib families with response among full-sibs. Full-sib families will generally have a 

higher heritability, but half-sib families are cheaper to produce so more can be grown and 

intensities of selection can be higher. To quantify these sorts of comparisons we require 

methods of estimating genetic and environmental components of variation which can 

then be used to consider alternative breeding and selection schemes. 
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Estimating genetic variances and means – F2  derived populations 

 

The modelling of genetic effects is easiest among lines and generations derived from a 

biparental cross. A thorough account of this approach is in K&P. A glib summary of the 

approach is that means and variances are fitted to combinations of parental, F1, F2, BC1 

and BC2 generations and variances are estimated among F2 plants and/or doubled 

haploid or inbred lines derived from the F2. Statements for that cross can then be made 

about the importance of additive and dominance variation, the magnitude of inbreeding 

depression, transgressive segregation, the expected phenotype of the best and worst lines 

that can be extracted from the cross, and so on. This approach has provided a lot of 

knowledge about the genetic architecture of quantitative traits in both plants and animals 

and has therefore been influential in discussions about breeding strategy and the most 

appropriate type of variety to produce - inbred or hybrid.  It has also provided a number 

of quantitative geneticists with training which allowed them to enter careers in genetics 

and breeding with varying degrees of success. However, its direct impact on the course of 

practical plant breeding has been quite limited. Part of the problem is that when working 

within a cross among lines derived from a population, one is only working with roughly 

half the available genetic variation, the rest is expressed between crosses. (On deriving 

inbred lines by selfing, Vg between cross means = Vg within crosses for a population in 

equilibrium.) Possibly more of a problem, for practical application, was that predictions 

for each cross could not be made quickly enough. By the time the appropriate crosses had 

been made and experiments carried out, then lines had already been developed and 

selections made for the next cycle of crossing. (If they weren‟t, the breeding programme 

was not very efficient.) For completeness, below, we give expected means and variances 

for the most commonly encountered generations. Remember, all variances are relative to 

the F2, with the advantage that there is no dominance component in the estimate of 

additive variation (= ½ Σa
2
) 

 

  mean   variance within 

  m [a]  [d] Va Vd Vad Ve 

P1  1  1 0 0 0 0 1 

P2  1 -1 0 0 0 0 1 

BC1  1 ½  ½  ½ 1 1 1 

BC2  1        - ½  ½  ½ 1        -1 1 

F1  1 0 1 0 0 0 1 

F2  1 0 ½  1 1 0 1 

F3  1 0 ¼  1½  ¾   0 1 

F∞  1 0 0  2 0 0 1 

 

The use of [] around a and d requires some explanation. In the P1, some alleles which 

increase performance will be fixed, and some which decrease performance will be fixed. 

The same is true of P2. The difference between P1 and P2, summed over all loci which 

are segregating in the cross is therefore a net effect. The [] symbolises this net effect. It is 

quite possible that the P1, P2 have identical means, yet additive genetic variation within 

the cross is still detected, because the additive genetic variance is gross not net: ½Σa
2
 . In 

fact this difference between the expectation for the means and variances can be exploited 
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to provide estimates of the degree of dispersion of increasing and decreasing alleles 

between the two parents – see K&P for details. Note however, although the dominance 

effect is written as [d], this is unaffected by the degree of dispersion of increasing alleles 

between the two parents, it doesn‟t matter which parent donated which allele, the F1 is 

always going to be heterozygous. 

 

The term Vad, which only involves the backcross generations, is a summed cross product 

of additive and dominance terms, with a value which depends on the degree of 

dispersion. It occurs because in the backcross, allele frequencies are no longer half.  See 

K&P for details. 

 

Estimation and testing of significance of these parameters is also described in K&P. From 

the table alone, it is clear how some may be estimated (eg [d] = F1 – ½P1 – ½ P2), but 

these are not necessarily the best estimates. Data from multiple families may give better 

estimates and different families mean are generally known with differing degrees of 

precision. 

 

We will mention one crude but cheap and cheerful estimate of genetic variation which is 

sometimes available, often for new or minor crops and/or newly introduced traits rather 

than for major crops. This is that Ve can be estimated directly from variation within the 

non-segregating generations: the parents and F1. Subtraction of Ve from variation among 

single F2 plants then gives an estimate of (Va +Vd) and thus the broad sense heritability.  

 

Note also that the variance components listed above are for the total variance for each 

generation. Variance in the F3, for example, could be partitioned into variance within F2 

family groupings and variation between F2 groupings. Details are to be found in K&P. 

 

 

Risks of over fitting models 

 

The model fitting approach introduced here can be extended to include means and 

variance components of epistasis (interactions between loci). There is a risk however, that 

one can get carried away with this model fitting process. My favourite example comes 

from an experiment in barley involving a subset of the families listed above. Specifically, 

the F1 was not included. (This is reasonable, the experiment was conducted in plots, and 

it is impractical to carry out sufficient hand crossing to generate the required quantity of 

F1 seed.) A simple model including [a] and [d] failed to fit the data so higher order 

interaction terms were included. The resulting model fitted the data well. However, the 

estimates of the parameters allowed a prediction of the F1 performance. The predicted 

yield was negative. That is to say, not merely lower than the low yielding parent but 

actually negative. Needless to say, this was not pointed out in the paper. It is highly likely 

that the consequences of competition between plants within plots differed between 

generations and distorted the estimates of genetic parameters. This is a Type III error: the 

initial model failed not because of epistasis, as the authors assumed, but for some other 

reason. None the less, it illustrates perfectly the risk with model fitting, especially as the 

number of parameters is increased, in explaining away the data in a manner divorced 
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from biological reality. This is true of much statistical and genetical modelling: the 

practice is probably quite prevalent and most statisticians/data hacks, including me, are 

likely to be guilty of it on occasions. This case is rare in that it is quite explicit that 

something had gone badly wrong. 

 

“The glitter of the t table diverts attention from the inadequacies of the fare.” Sir Austin 

Bradford Hill. The environment and disease: association or causation? Proc R Soc Med 

1965 58 295-300 

  

 (Bradford Hill was the epidemiologist who first demonstrated the link between smoking 

and cancer in 1950.) 

 

  

Cross prediction. 

 

One attempt to make the biometrical approach more immediately relevant to plant 

breeding was cross prediction. Here, on the basis of estimates of the mean and additive 

genetic variation within a cross, predictions of responses to selection within crosses could 

be made. If means and variances were estimated over a series of crosses, then selection 

could be made between crosses for those showing the greatest potential to develop 

improved varieties. The problem in implementing this scheme is that Va must be assessed 

very quickly. If a population of lines has to be produced and raised to estimate Va, then 

why not just select among the lines you have already got and get on with it? To overcome 

this, it was proposed that Va could be estimated approximately from the variance among 

F3 family means. However, to my mind there is a more fundamental problem. Suppose 

our set of crosses is among inbred lines derived from a randomly mated population. Then 

at each locus segregating in the population, there will be a proportion 

 

p lines of genotype AA 

q lines of genotype aa 

 

Heterozygous F1s will occur with frequency 2pq at each locus and only the progeny of 

these crosses will be genetically variable for that locus. If there are n independent loci 

segregating in the population, then the number of segregating loci will follow a binomial 

distribution with variance 2npq(1-2pq). For modest numbers of QTL segregating in the 

whole population at intermediate frequency, the variation in number of heterozygous loci 

(and therefore in Va) from cross to cross is too small to be detectable. For example, n = 

30, p = 0.5 gives 15 loci segregating per cross on average, but the standard deviation of 

this number is only 2.7. Only if QTL of particularly large effect are segregating, or if 

allele frequencies are extreme, are differences in variance likely to be detectable and 

therefore worth including in a selection strategy. (Differences in variance generally 

require quite large experiments to detect.) Nowadays, in such cases, QTL detection 

followed by MAS is more likely to be effective.  
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An interesting example of this comes again from barley. A small set of crosses between 

and among 2 and 6 row barley were produced. Cross prediction showed that the variances 

of the 2 x 2 row crosses were all similar but that those between 2 and 6 row barleys were 

larger. Most routine barley breeding in the UK is between 2 row barley. Estimation of 

variances to improve selection of crosses has nothing to offer here. Crosses between 

different populations can generate increased variation, but that is hardly a surprise.  

  

The most robust parameter to estimate from a cross is the mean m, and in the absence of 

epistasis this can be predicted as the mean of the two parents. So the approach of crossing 

the best with the best would appear to be the most effective, at least in the absence of 

additional information. Quantitative genetic methods have little to add here, although 

there remain breeders who will argue against this approach. 

 

 

Heterosis 

 

Under simple genetic models, for an F1 to exceed the performance of the best performing 

parent, there must either be overdominance at some of the QTL involved in the trait, 

and/or there must be some dominance, not necessarily complete, but with the increasing 

alleles dispersed to some extent between the two parents. Of these two explanations, 

quantitative genetic analysis favours dispersion. To some extent, this corresponds to 

common sense too. Dispersion of QTL between parents is nearly always found – even 

when extreme lines are crossed, including crosses between wild and cultivated forms. In 

fact, any response to selection would be impossible if QTL were not dispersed, otherwise 

the best parent would be as good as it is ever going to get.  

 

 

Combining ability 

 

In F1 hybrid evaluation, different crosses frequently share parents. It can be useful in 

such cases to estimate the average effect of each parental line. When applied to sets of 

crosses, these average effects are called general combining abilities. Depending on the 

quality of the phenotypic data, it can be more efficient to select on general combining 

ability (GCA) than on the performance of the lines themselves. GCA is more commonly 

used to predict the performance of crosses which have yet to be made; to suggest novel 

hybrids worth creating and testing. 

 

The deviation of the performance of a hybrid from its value predicted from GCA is 

termed Specific Combining Ability (SCA). Aside from experimental error, SCA 

measures the interaction between the GCA of the two parental lines. Although hybrids 

with high SCA (and high GCA) are best, SCA cannot easily be predicted in advance; 

usually the cross must be created. Attempts are continuing to be made to find methods of 

predicting SCA, using marker data for example, but as far as I am aware these have not 

been particularly successful so far. The relative magnitudes of variation in GCA and SCA 

are of interest however, in the design of efficient breeding and testing programmes. With 

lines derived from a randomly mated population, the variance in GCA results from 
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additive genetic variance and that in SCA from dominance variance (ignoring 

complications due to epistasis). 

 

Among F1 hybrids the genetic expectations of GCA are and SCA are  

 

Vgca = ½ Va 

Vsca  =    Vd  

 

The total variation among all hybrids is Va + Vd. Randomly mating the inbred parents 

reconstitutes a randomly mated, non-inbred population as we discussed earlier. In 

combining ability terms this is made up of: 

 

2Vgca +Vsca    

 

with half the GCA variation contributed by the male parents, and half from the females. 

Note that those hybrids which contribute to the GCA of a parent are related as half-sibs. 

However, Vgca is ½ Va and  not ¼ Va: the variance is inflated by a factor of two because 

these half-sib lines have inbred parents.  

 

As the expected variance among GCA is all additive, why bother estimating GCA, why 

not just select on inbred performance? Although the inbred parental lines may have 

average performance substantially different from the average of crosses, the variances are  

 

 Σpq[a+d(q-p)]
 2

  for GCA and 

  

4Σpqa
 2   

for the inbreds (ie 2Va) 

 

The covariance between inbred and GCA is: 

 

2pq[a
2
 + (q-p)ad] 

 

 

The correlation between inbred and GCA is therefore  

 

 

2pq[a
2
 + (q-p)ad]   /  [ 4pqa

 2
 . 2pq[a

2
 + (q-p)d]   ]

 ½
   

 

which  =  1. 

 

It is clear therefore, that under simple genetic models, parent and hybrid should have high 

correlation, so that selection may as well proceed on the inbred performance. This is the 

view taken by K&P. An alternative view can be found in much of the maize breeding 

literature. In practice, correlations are frequently quite low, but there are many non-

genetical reasons why this may be the case too. Maize breeders continue to argue the toss 

with epistasis and overdominance being invoked to explain the low correlations. 

Simulations by OS Smith (“Covariance between Line per se and Testcross Performance” 
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Crops Science 1986 26:540-543)  indicated that there is nothing mysterious about the low 

correlations often seen between inbred and hybrid performance and that they are to be 

expected even under simple genetic models. More recently, (Troyer & Wellin Crop 

Sci.2009:49:1969-1976)  a review of heterosis studies in maize, coupled with insider 

knowledge of the Pioneer Hi-Bred breeding programme has concluded that much more 

emphasis should be placed on direct selection among inbreds for yield. 

 

 

Estimation of GCA. 

 

Consider first the case where male and female inbred parents are different. If the crossing 

scheme is complete, then analysis and estimation can proceed exactly as for a two-way 

analysis of variance. The GCAs are estimated as simple averages across all crosses with a 

common parent. Generally, in practical breeding programmes, the crossing scheme is 

incomplete. Not all pairwise crosses have been made. However, GCAs and variance 

components for males and females can be estimated by standard methods for incomplete 

crossing schemes. 

 

When males and females comprise the same sets of lines, then this simple procedure must 

be modified somewhat, even when all n(n-1)/2 crosses have been made. The reason for 

this is as follows. Suppose we have four lines and all six crosses have been made. 

Summing across the (n-1) crosses involving parental line 1: 

 

T1 = 3μ + 3gca1  +  gca2  +  gca3  +  gca4. 

 

GCA is the deviation from the overall mean so  Σgcai = 0 

 

T1 = 3μ + 2gca1  

 

So we must divide ( T1 - 3μ ) by n-2 and not by n-1, to get the correct estimate of GCA. 

There is more on this in F&M. 

 

The set of all n(n-1)/2 crosses among the n parents is termed a half diallel. A full diallel 

involves all n
2
 possible crosses (ie crosses, reciprocal crosses and the parents selfed. The 

detailed full analysis of the diallel (the Hayman analysis “The analysis of variance of 

diallel tables.” Genetics 1954 39:789-809.) provides for estimates of variance 

components, the detection of gene interaction, dominance effects, reciprocal differences 

and so on, but is rarely carried out. K&P state that the number of parents is generally too 

small to allow confident inferences about the population from which the lines were 

drawn. A related concern is that the lines cannot often be regarded as a random sample 

from the population. A way around this is to regard the n parents as the founder lines of a 

new population (AJ Wright “Diallel designs, analyses, and reference populations.” 

Heredity 1985 54:307–311) . The circumstances in which one would wish to do this 

within a plant breeding programme are limited, however. 
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The analysis of diallels can be difficult with standard statistical software so it is worth 

searching out procedures written specifically for them. (There is one in GenStat, I‟ve not 

come across one for R.) Because the male parents and female parents are a common set, 

one cannot introduce males and females simply as two column vectors to feed into your 

favourite statistical software. Instead, you must have a column for each of the n parents, 

with a 0, 1 or 2 in each cell to indicate whether the parent is represented in that particular 

cross 0, 1 or 2 times. (2 times is for inbred parents). Then you would need to reduce the n 

columns to n-1 independent columns (subtract the last one from all the others). This is 

tedious to say the least. A simple way around the problem, proposed by R Thompson 

(“The use of multiple copies of data in forming and interpreting analysis of variance.” In: 

K. Hinkelmann (Ed.), Experimental Design, Statistical Model and Genetic Statistics, 

1984 Ch 11, pp155–171.), is to take two copies of the data, treat the male and female 

parents as if they were independent, but swap them over in the second copy. Then carry 

out the analysis across both sets. The total SS will be 2x too large. The males SS will 

equal the females SS and will also be two times to large. The residual SS will be two 

times too large. From the standard computer output, the correct analysis of variance can 

therefore be constructed. 

 

Estimation of variances in populations 

 

Generally, data will consist of measurements on sets of full sib families, half sib families, 

and sometimes selfed progenies. The simplest way to proceed is to estimate variance 

components using REML, and equate these with the expectations given in the table given 

earlier. Variance components can also be estimated by equating mean squares with 

expectations in an analysis of variance of these data, but if you have access to as 

statistical package which implements REML, this is easier. The only pitfalls to be aware 

of are those in analysing any set of trial data. If using variance components to compare 

breeding programmes (see the practical sessions) then we often end up assuming that 

dominance variation is negligible. For example we might estimate variance components 

empirically from S1 families but then use those components to predict the effectiveness 

of selection on full-sib families. We can generally get away with this since most of the 

programmes we wish to compare are based on family selection and the component of 

dominance variation in the family means is generally quite small. We are also fortunate, 

in plant breeding, to be working with large family sizes so the contribution of within 

family genetic variation to the family mean (Vwithin / family size) can be ignored too. 

Another pitfall is to ignore common environment effects at your peril. These will inflate 

between family variance components. Seed quality effects are important in crops. In 

crops where plants are grown as spaced plants, and in crops where vegetative rather than 

seed organs are harvested, the effect can be enormous. However, even is grain crops, 

there can be an effect. 
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Response to selection in the longer term – the Bulmer effect 

 

We have discussed how components of variation and means can be used to predict the 

response to selection over a single generation and how this can be used to compare and 

evaluate alternative breeding programmes. Unfortunately response to selection in the 

long term is not a simple matter of multiplying the response predicted for the first 

generation by the number of generations. A theory of everything has been developed 

which takes into account mutation, drift and changes in allele frequency. It is not easily 

applied to plant breeding programmes and may not be necessary; prediction over modest 

numbers of generations is probably all that is required. For example, in wheat, the most 

rapid breeding will give a cycle time of about four years (including DH production, seed 

multiplication and yield assessment). Ten generations is then 40 years, within which time 

period it is likely that disease pressure, climate, consumer preferences and economics will 

all impact on breeding objectives to the extend that the predictions made at the start, even 

if accurate, become less relevant. Breeding objectives, environment and germplasm 

change. 

 

1) Selection without recombination. 

 

Suppose we have a set of inbred lines, select 10% according to some criterion, then retest 

the remaining lines and select again. How do we predict the response to selection in the 

second cycle. This is a statistical problem rather than a genetic problem, and was first 

studied by Pearson (I think) and revived in the 1960s by Curnow, Finney and Young, 

who were considering the problem of sequential selection: how to allocate resources over 

a series of two or three years worth of testing in which some selection is carried out at 

each stage.  How intensely should we select at each stage? What is the optimum replicate 

number at each stage?  Are you better off testing all varieties in only a single replicate, or 

would you be better off throwing half of them out so that the remainder can be tested in 

two replicates?  This is all of great relevance to breeders, arguably more so than anything 

else in quantitative genetics / statistics.  

 

Suppose we have data for a normally distributed trait on a set of lines from which we 

select the best x%. The difference in mean between the selected group and the whole 

population (ie S, the selection differential)  is iσp. The selected group will have a reduced 

variance too, given (without proof) as:  

 

Vp‟ =  [1-i(i-z)] Vp 

 

We‟ve already discussed i. z is just the truncation point for selection on a standardised 

normal distribution. It can be looked up in tables of the cumulative normal distribution, or 

calculated directly using functions like normsinv in Excel. 

 

However, what we need is not the reduction in phenotypic variance, but the reduction in 

the genetic variance on retesting. On retesting, since environmental deviations for the 

original data and the retested set are independent, the only reduction in variance must be 

attributable to the reduction in genetic variance. If the heritability on initial testing was 1, 
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then one would expect all the reduction in variance to be carried forward. If the 

heritability was zero, then there will be no reduction. It turns out that the expected 

reduction in variance is given as: 

 

 Vg‟ = [1-i(i-z)] h
2
 ]Vg 

 

That is, the factor by which the phenotypic variance is reduced [1-i(i-z)] is multiplied by 

the heritability. As ever, we need to make sure that h
2
 and Vg are the correct values for 

the family means or individuals among which we are selecting. 

 

Once we have Vg‟ , we can predict response to selection from a second cycle of selection 

by calculating h
2
 for this second round, which if replicate numbers and plot sizes remain 

the same will be lower than in the first generation.   

 

This approach assumes that the distribution of genetic effects, after selection, is normal. 

This isn‟t true, but it has been shown, nevertheless, that the theory works well. Even 

better, we can apply this method another one or two times to give predictions of response 

over three or four (at a pinch) cycles of selection. This approach has been used to study 

optimum allocation of resources in sequential selection schemes and led to the Finney 

rule-of-thumb: the optimum allocation of resources comes from selecting equally 

intensely at each stage of selection and allocating equal resources at each stage of 

selection. For examples, with 200 varieties tested over two cycles of selection, we could 

select 20 for retesting before selecting a final set of two. We would test the 200 in single 

replicate trials, but the 20 in 10 replicates each. 

 

This procedure assumes no GxE, or equivalently that Vg applies to all environments and 

not just the initial testing environment. Design of testing programmes in the presence of 

extensive GxE is better studied using computer simulation. Nevertheless, this little bit of 

theory provides a quick and easy method of evaluating alternative testing programmes. In 

practice, most breeding programmes allocate too little resource to testing in the later 

stages of selection. 

 

Suppose our selection process is among a set of lines, derived initially from a randomly 

mated population. We can consider what has happened, in genetical terms, to the 

variance. First think about a pair of loci, A and B, with alleles at equal frequency, acting 

additively: 
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genotype AB Ab aB ab coeff of disequilibrium 

score  1.2 1.1 1.1 1  

freq  ¼ ¼ ¼ ¼   0 

 

Assume selection response is a direct function of the score. 

 

Unadjusted freq after selection: 

 

  1.2/4 1.1/4 1.1/4 1/4     

 

divide by total: 

 

  0.272 0.25 0.25 0.227  -0.00052 

 

As a result of selection, there is a change in allele frequency, but linkage disequilibrium 

has also been generated between the two loci. Although this disequilibrium effect is 

slight, with many loci affected the trait, there are very many pairs of loci. With many loci, 

it is the generation of this disequilibrium rather than change in allele frequency which 

accounts for the reduction of the genetic variance after selection. 

 

This can be formalised and made more explicit using something called the infinitesimal 

model, which is, in fact, the basis for much quantitative genetics theory. This assumes 

that a trait is governed by an infinitely large number of QTL, each of infinitesimally 

small effect. Over a few generations, for traits governed by only modest numbers of loci 

(30 say) it works remarkably well. An advantage of this model is that it can generate a 

finite response to selection with no change in allele frequency.  

 

More formally, over pairs of loci, the total genotypic variance is: 

 

Vg = VgA +VgB + 2cov(AB) 

 

Under the infinitesimal mode, allele frequencies do not change as a result of selection so 

VgA and VgB remain constant. Directional selection forces cov(AB) to be negative and 

Vg is therefore reduced. Other types of non-random mating and selection - assortative 

mating and disruptive selection for example - can cause 2cov(AB) to become positive and 

Vg to increase. 

 

This genetical interpretation has no impact on our consideration of the effects of selection 

within a single generation but is important for consideration of the effects of selection 

across generations. 
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2) Selection over several generations. 

 

Consider a population maintained by pairing individuals at random in each generation, 

with no selection. The additive genetic variation among the progeny in each generation 

can by partitioned into a between parental pairs component with value ½Vg and a within 

pairs component, also ½Vg.  

 

Moving on another generation, we can partition the variation into between grandparents 

(¼Vg), between parents within grandparents (¼Vg) and within parents (½Vg). Another 

generation would give the series 1/8, 1/8, ¼, ½ and if we went far enough back we could 

get a contribution to the current genetic variance of ½
n
 from the nth generation ancestors. 

The contribution of each ancestral generation is eroded at a rate of ½ per generation, to be 

replaced by variation within families - termed segregation variation - which emerges at a 

rate of ½Vg per generation and keeps Vg constant.  

 

Vg =  ½ Vgp +1/2 Vgw 

 

Now add in selection among the parents. After selection, but before generation of 

progeny, the genetic variation among the progeny is Vg‟. Half of this variation is passed 

forward to the next generation so that: 

 

 Vg  = ½ Vgp‟ + 1/2 Vgw 

 

So half the reduction in genetic variance is carried forward to the next generation. Going 

forward another generation, without any more selection, half the parental contribution is 

passed forward to become the grandparental contribution: 

 

 Vg =  ¼ Vggp‟  + ¼ Vgp + 1/2 Vgw 

 

and so over successive generations the reduction in Vg due to that single generation of 

selection will decay at a rate of a half per generation. However, if selection continues in 

each generation, then using subscript t to denote generations: 

 

 Vg(t+1) = ½ Vgt[1-i(i-z) h
2
 ] + ½Vg0 

 

This recurrent formula can be used to compute the decline in genetic variance over 

successive generations, to an equilibrium value at which  

 

Vg(t+1) = Vg(t)  

 

Note that the decline in variance can be severe, reducing Vg to up to half its initial value. 

However, once selection stops, it is reversible since i, and therefore i(i-z) is zero, 

although the recovery may take a few generations to work itself through the system. 
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This reduction in additive genetic variance on selection as a result of the generation of 

negative disequilibrium, is termed the Bulmer effect after its discoverer Bulmer in 1976. 

The theory can be used to compare alternative schemes for recurrent selection over 

several generations. It can also be used to consider if an additional generation of random 

mating, without selection, could improve response to selection per year or per generation 

by increasing Vg. This has been proposed and implemented by some breeders. We‟ll try 

it in the tutorial for inbred crops, where a cycle of selection might take 4 years, but two 

additional rounds of random mating might add only a year. 

 

The result above considers that selection acts to reduce the additive variance only. 

However, it is good enough even in the presence of dominance variation and can be 

extended to include linked loci. Ultimately these more complicated scenarios are 

probably better treated through computer simulation. It is clear however, that starting 

from a position of no loss of Vg through disequilibrium, linked loci will make things 

worse since the decay of disequilibrium through random mating is slower. If loci are 

smeared at random over chromosomes, and the number of chromosomes is reasonably 

large, then most pairs of loci will be unlinked and the additional effect of linkage on the 

reduction in genetic variance may be slight. If loci are located in linked clusters (eg gene 

families) the effect could be greater. I am not aware that this has been studied in the light 

of current knowledge of genome organisation. 

 

We shall briefly discuss two applications of the above theory. Firstly, selection between 

full sib families. Here the variance between families is ½ Va. This component of variance 

will be reduced by selection. 

 

   before seln after seln  next generation 

between families ½ Va  ½ Va[1-i(i-z)h
2
)] ¼ {Va+Va[1-i(i-z)h

2
)]} 

within families ½ Va  ½ Va   ½  Va   

 

This is less messy than it seems – only the between family component of variation is 

reduced by selection, and half of this reduction is passed on to the next generation. 

Within families variation is due to segregation and is unaffected by selection. A similar 

approach works equally well for other family types and can be used to consider, for 

example, complicated schemes of recurrent selection involving alternative cycles of  full-

sib family selection and S1 progeny testing within selected families (Mackay and Gibson 

– that‟s me: hooray). 
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This approach is also useful in predicting the response to selection within pedigree 

breeding programmes (Cornish).  In the absence of selection, at each generation of 

inbreeding from an F1, the additive variance has the following expectation  

 

  total  contribution from 

    F2 F3 F4 F5 F>5 

F2 Va  Va  

F3 3Va/2  Va  Va/2  

F4 7Va/4  Va  Va/2  Va/4   

F5 15Va/8  Va  Va/2  Va/4   

F∞ 2Va  Va  Va/2  Va/4  Va/8 Va/8 

 

The proportional reduction in genetic variance as a result of selection within any 

generation can be predicted as i(i-z)h
2
  as before. This reduction is passed on unchanged 

to the next generation, when additional variation is generated by segregation from 

residual heterozygosity within the line of descent. An expected additive variance 

component for the next generation can therefore be calculated and used to predict 

selection within this generation too. In this way, differing pedigree breeding schemes can 

be compared. In particular, the benefits of early generation selection, when heritabilities 

are typically low (small plots, low replication number) can be assessed. [ Class exercise ] 

In addition the whole pedigree breeding edifice can be compared with single seed descent 

and doubled haploid programmes, where selection is deferred until inbreeding is 

complete or near complete and cycle time is generally reduced. Remember, however, that 

this procedure is only optimising selection within a single cross. With multiple crosses, 

for an additive trait, half the variance is expected to be between crosses (initially), and for 

a complete treatment we must account for this, and for the reduction in between cross 

variance as a result of selection too. 

 

 

Selection limits and changes in allele frequency at a single locus 

 

A sophisticated theory of the consequences of long term selection on quantitative traits 

has been developed, largely by WG Hill and colleagues. See F&M for much discussion 

and details. Predictions of this theory have been compared to results of selection 

experiments. Most of these long term selection experiments have been carried out in 

animals, but the best experiment, still running, is the Illinois selection experiment for 

increased and decreased oil content in maize, started in 1896. It is a pity that no similar 

resources exist in other plant species. They could easily be generated in Arabidopsis 

within the time course of the standard government funded grant, for example. To initiate 

a long term selection experiment in a crop such as wheat, however, would require a 

commitment to long term funding which is not currently available. Broadly speaking, the 

predictions from these experiments are poor but the failures are for a diverse set of 

interesting reasons: natural selection countering the effects of artificial selection for 

example. Nevertheless, the available theory makes explicit some of the consequences of 

selection which might otherwise be neglected and is of relevance to plant breeders. Most 

crops were domesticated over 1000 years ago; 10,000 in the case of many. Domestication 
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of crops and animals are the longest term and most successful selection experiments of 

them all. 

 

Long term response to selection must take into account: 

 

1) Drift: favourable alleles can be lost through drift, especially if initial allele frequencies 

are low. 

  

2) Population size. 

 

3) Number of loci affecting the trait. For the same initial genetic variance, large numbers 

of loci of small effect have the potential to give a greater response than small numbers of 

larger effect. 

 

4) Mutation. Ultimately, all genetic variants will be fixed by drift of selection. Unless 

new variation is generated by mutation, there will be no further response. 

 

We shall give two formulae: 

 

In the absence of mutation, the selection limit is expected to be 

 

Rlim= 2Ne iVa/σp 

 

As the intensity of selection gets larger, the effective population size gets smaller. The 

maximum response is expected when 50% of the population are selected each generation. 

The time to 50% of this maximum is expected to be between 1.4Ne and 2Ne generations. 

 

With mutation, the steady state response to selection is expected to be 

 

 Rss = 2Ne iVm/σp 

 

Vm is the mutational variance - the additive variation arising from mutation per 

generation. This can be small, experiments in Drospohila suggested a value of Ve/1000, 

but the response to selection can be large if Ne is large. Ne is determined by the 

population size after selection, not before. 

 

F&M describe the response to long term selection as being of initial response coming 

from additive variation in the base population, diminishing gradually as variation is 

deleted through selection and drift. Then response due to new mutations becomes of 

increasing importance and this response should be maintained at a lower rate. The 

relevance of this theory and its consequences are important to plant breeding but have, as 

far as I am aware, not been discussed explicitly in this context. In particular, what 

proportion of QTL contributing to the improved performance of today‟s elite crop 

varieties originate from the wild progenitors 10,000 years ago, and what proportion was 

contributed by mutations post-domestication. For example, at the ppd gene in barley, the 

same day-length insensitive variant, which has allowed the range of barley to expand into 
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northern Europe, has been found within wild barley, whereas the several mutations 

changing ear conformity from 2 row to a 6 row ear, (viewed, with some uncertainly, to 

have an effect on grain yield) are believed to have originated much more recently, post 

domestication. It would be informative to extend these analyses to more general traits, 

yield and quantity essentially. How widely should we search within wild germplasm for 

new sources of favourable variation? There is no doubt that wild forms generally show 

more variation at the DNA level, but this need not necessarily translate to traits for 

adaptation to agriculture. Equally, wild sources of variation have been important for 

introducing novel disease and stress resistances. But what about yield per-se? What 

proportion of the increase in yield in major crops is the result of mutations which arose 

after domestication rather than from the selection of variants present at low frequency in 

wild progenitors? This seems to me to be an area worthy of additional research - treating 

domestication as a 10,000 year selection experiment. Surveys of variation within 

domesticated and wild forms have been carried out, but these could be augmented by 

multiple crosses between wild and domesticated forms followed by genetic analysis using 

quantitative and marker based methods. This approach has been very successful in the 

impressive but more modest Illinois long term selection experiment (Laurie et al 2004. 

The genetic architecture of response to long-term artificial selection for oil concentration 

in the maize kernel. Genetics 168:2141-2155; reviewed by Hill. 2005.  A century of corn 

selection.  Science 307: 683-684.) 

 

 

Multiple traits and environments. 
 

Breeders generally select for multiple traits. If the traits are unrelated, then there is no 

problem; we can select independently for each, possibly weighting effort or selection 

intensity by their importance. If the traits are completely correlated there is no problem 

either, except to ask why we are measuring two traits in the first place when one will do. 

The problem is how to treat traits for which the correlation is less than perfect but too 

high to ignore. In some instances, it is useful to treat selection in different environments 

for the same trait, as if we were selecting for separate traits too. This approach can have 

advantages yet is not something that plant breeders generally do. (Animal breeders tend 

to work this way more often.) Other treatments of GxE are also possible and will be 

discussed later. 

 

First, some notes of caution about correlations between traits: 

 

Correlations are not necessarily causal. Type III errors again. 

 

Correlations can arise from linkage or pleiotrophy. 

 

Correlations can be generated by selection: a bivariate version of the Bulmer 

effect. I don‟t think this has been studied, but it could account for the near 

ubiquitous negative correlation observed between yield and quality in crops 

and livestock, however yield and quality are defined. 
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Zero correlation does not necessarily imply no pleiotrophy or no linkage. Two 

traits can be completely pleiotrophic but show no correlation. At some loci 

the increasing allele for one trait may also be increasing for the other, 

whereas at other loci, the increasing allele for one trait is decreasing for the 

other. It is possible to write down very simple biochemical pathways which 

generate this pattern. The assumption that no correlation implies no 

pleiotrophy or linkage is termed “consistency of gene action” (Gale & Eaves 

1972 Heredity 29:135-149). Its prevalence and the consequences for 

quantitative genetic analysis and selection have not really been discussed as 

far as I‟m aware. Equally, linkage between loci can generate positive, 

negative, or zero correlation, depending on whether there is an excess of 

coupling or repulsion linkages in the population.  

 

The principle behind the handling of multiple traits is that, just as phenotypic variation 

can be partitioned into genetic and environmental effects, so too can phenotypic 

covariation. This covariation can, in addition, be partitioned into additive and non-

additive covariation, but we won‟t go there. As a consequence, we can derive genetic and 

environmental correlations between traits. These are often worth studying in their own 

right. They need not be of the same magnitude, or even of the same sign, and can on 

occasions give insight into the relationships between traits which might otherwise be 

missed. A disadvantage of genetic correlations is that they are generally not estimated 

with great precision: their estimated values can frequently be larger in magnitude than 

one. Moreover, the standard error for genetic correlation is not straightforward to 

estimate (see F&M). A resampling (bootstrap) or simulation method may help but would 

require care over what to resample, especially in unbalanced datasets. 

 

Estimation. 

 

Expectations of covariance between traits, in terms of environmental and genetic effects, 

are exactly the same as for variances of a single trait, so all the results given earlier still 

apply. For simplicity here, we shall assume we are dealing with sets of large families 

which are assessed in plots. Between replicate plot (co)variation can therefore be 

regarded as all environmental, and variation between family means as genetic and partly 

environmental (depending on the number of replicate plots). In practice, components of 

variation or covariation can be estimated from an analysis of covariance (which is just 

like an anova except you work with sums of products rather than sums of squares) by 

equating observed and expected terms in the analysis. An easy way of working with pairs 

of traits is to analyse the traits separately, then analyse the difference or sum of the two 

traits. Since  

 

V(a+b) =Va +Vb + 2cov(ab) 

 

the covariance terms can be extracted by difference.  
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However, variances and covariances can now be estimated directly by multivariate reml - 

though personally I have had trouble getting convergence - with the advantage that the 

reml estimation can be over >2 two traits at a time, which should be more accurate. 

Furthermore, GenStat also gives standard errors for the variance components which could 

be combined to give a standard error for the genetic and environmental correlation 

coefficients, though this is not that straightforward either. 

 

Correlated response to selection. 

 

Once we have estimates of (co)variance components, of particular interest is the 

prediction of the correlated response to selection. This is important for two reasons. 

Firstly, selection on one character (yield say) may adversely effect another (quality say) 

and we would like to know by how much. Secondly, it may prove more economic to 

select a second easily measured character, possibly of high heritability, to improve the 

key character, but we would like to quantify the effect of this indirect selection. Either 

way, for a pair of characters, the prediction is made by linear regression. We select on 

trait x to improve trait y. The direct response to selection on trait x is: 

 

  ihxσ(gx)  

 

The response measured in trait y, the indirect response, is the direct response multiplied 

by the regression of genetical values of y on genetical values of x. Logic dictates that we 

require the genetic regression because any component of the regression relating to 

environmental values will not be carried over into response. So the correlated response is 

 

  ihxσ(gx) bg(yx) 

 

  ihxσ(gx) covg / σ
2

(gx)   

 

This can be re-expressed in various ways, of which F&M‟s favourite is: 

 

  irghxhyσ(py)  

 

because this is analogous to single locus response with rghxhy equivalent to h
2
 for the 

single trait. With appropriate parameter estimates, the correlated response can be 

compared to direct response to decide which is best. 
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Index selection 
 

This is a means of optimally selecting across a set of multiple traits. Each trait is assigned 

an “economic value” – the cash value that a unit increase in the trait would be worth to 

the breeders‟ paymasters. Nb, economic value can be negative for a trait such as % 

disease infection. If we knew the genetic value of each variety we were testing, we could 

calculate the worth of the variety as the sum of products of the genetic and economic 

values:  

 

 Σeigi 

 

where ei is the economic value and gi is the genetic value of the i
th

 trait. 

 

However, we know only the phenotypic values, but we can construct a similar weighted 

score on the basis of these values: 

 

 Σbipi 

 

The best set of values for b is given, in matrix form as 

 

 b’ = e‟GP
-1

 

 

b is the vector of weights, or regression coefficients for the phenotypic scores 

e is the vector of economic values. 

G is the variance covariance matrix of genetic effects for the lines under test. 

P is the variance covariance matrix of phenotypic effects for the lines under test. 

 

Note the correspondence between GP
-1 

and the single trait heritability Vg/Vp. For a 

single trait, index selection reduces to the equivalent of selection on the expected 

response to selection (or breeding value) rather than on the trait itself. Where all lines or 

individuals are known with equal precision, this makes no difference other than to reduce 

each variety effect proportionally, but if variety means have been estimated from varying 

numbers of sites and years, or from varying replicates or measurements, this approach 

can make selection easier even for a single trait. For this, we multiply each phenotypic 

deviation from the mean by its personal heritability and select on the product. This 

product is a Bayesian estimate of the merit of the variety which incorporates the observed 

data with our prior knowledge, based on the population mean and the genetic variance. 

We shall come across this again and in more detail in the discussion of the mixed model 

and association mapping. Although we often end up estimating the mean and variance 

from the data too, this can be justified. The advantage of this process it that the 

phenotypes of varieties with limited data, which are know less precisely, are shrunk 

towards the mean to a greater extent than those with more replication. As a result, the 

ranking of varieties can change such that that a seemingly fantastic variety with little data 

will score lower than a more modest variety with lots of data. 



 222 

Note too, that if we are only interested in selecting for one trait, all values of e except that 

for the trait would be zero. This provides an easy method of selecting to improve a single 

trait (say yield), taking into account other measurements only insofar as they influence 

yield. More sophisticated selection indices can be constructed, in which trait means have 

optimum values, rather than merit increasing or decreasing without limit. Correlated 

responses to selection for each trait can also be predicted as a result of selection on the 

index. See F&M for details. Indices can also be developed in which an increase in trait 

mean has no value, but a decrease is deleterious.  

 

Selection index methodology has been applied primarily by animal breeders. They have 

generally been more interested in incorporating information from relatives rather than on 

incorporating information across multiple traits to improve response to selection. (You 

can‟t replicate animals in the same way as varieties of crops.) More recently animal 

breeders have moved to estimating breeding values using reml. Once the additive 

breeding values for each animal (or variety) have been predicted, these can be multiplied 

directly by the economic value. In crops, apart from the occasional failed sugar beet 

breeder, selection indices have been little used. Part of the lack of use is ignorance but 

part may be that heritabilities of variety means in crops are generally quite high by the 

time data on multiple traits are available. (That is not to say that these schemes are 

optimal however. Maybe selecting across more varieties but with lower replication would 

be better.) However, there is increasing interest in using reml to estimate variety 

performance, and in incorporating information from related varieties too. 

 

The consideration of correlated responses also offers a simple way of dealing with 

genotype x environment interaction in variety trials. This approach is old, but to the best 

of my knowledge has not been adopted in any plant breeding programme. Performance at 

each trial site is treated as a separate trait. Response to selection in any environment can 

then be improved by incorporation of performance data from the other environments. (Set 

the economic value to 1 for the environment you are interested in and to 0 for all the 

others.) Often, breeders select for average performance across a range of sites and are not 

so interested in improving precision in any particular site. There are instances where this 

is not so, however. A breeder based in the UK may be interested in selling in a new 

market, Erewhon say. S/he cannot afford an extensive series of trials within Erewhon, a 

single trial on its own may not give sufficient precision, but a single trial augmented with 

information from the home country may be just the ticket. 

 

The estimation of components of genetic and environmental (co)variance for analysis of 

data across sites in this way is simplified since the covariance across sites is all genetic – 

there is no environmental covariance provided different randomisation patterns have been 

used at each site. If this is not the case, interplot competitive effects and experimental 

edge effects will be correlated. This will inflate the covariance and make variety 

performance across sites appear more consistent that it really is. The effect may be slight, 

but this is another reason for using different randomisation plants at separate sites. Not to 

do so is sloppy. 
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The disadvantage of this approach to the analysis of GxE is that it is entirely statistical:  

there is no incorporation of any genetical or physiological knowledge into the analysis. 

An advantage is that it is simple. 

 

A cynically practical, but less formal method of dealing with GxE was adopted by 

Ellerton (he of the strange and unpublished trial design) for testing sugar beet in the UK. 

He simply selected sites for recommended list trials on the basis of their correlation with 

the mean of the official test sites (run at that time by NIAB). I‟m sure this isn‟t a unique 

approach, but once again Sidney was ahead of his time. 

 

 

 

Genotype x Environment interaction – adding in some genetics and physiology. 

 

If performance of a particular variety in a particular environment cannot be predicted 

from the marginal, or average effects of the variety and environment, then there is 

deemed to be GxE. In statistical terms. if the model  

 

yijk = m +gi + sj +eijk   

 

adequately describes the data, there is no GxE. If the model needs to be extended as  

 

yijk = m +gi + sj + geij  + eijk  

 

where the term ge represents the interaction of genotype g in environment s then we have 

genotype x environment interaction. The significance of ge can be assessed in an analysis 

of variance or other model fitting exercise. The s term can be partitioned into differences 

between years, regions, specific trial farms and so on. Equivalently the ge term can be 

partitioned further; into interactions of genetic effects with years and regions. The merit 

of this approach is that if components of variation are estimated (using eg reml) then they 

can be used to optimise selection schemes for testing over years and sites within years to 

maximise response to selection on average performance. Optimisation can take into 

account time and cost if required. This approach treats G x E as a nuisance to be coped 

with in selection for average performance. It is this way, at least within Europe, that most 

breeders operate: breeders select in the environment in which they wish to sell or 

distribute their varieties, generally by selecting on mean performance across a set of sites 

and years, and that is the end of the matter. It is hard to argue against this approach. The 

general problem is that although it is easy to detect GxE in the manner described above, 

attempts to predict variety performance in differing environments has been less 

successful, except in trivial and uninteresting cases: varieties of cereals bred for Spring 

sowing generally perform worse than varieties bred for Autumn sowing when both are 

sown in the Autumn, for example. Nevertheless, an extensive and growing quantitative 

genetic literature attempts to make these predictions. We outline some of the approaches 

below. 
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1) Include physiological measures as covariates in the analysis. Varieties may differ 

in their response to rainfall, for example. A regression coefficient measuring the 

response of each variety to rainfall at each testing location can be estimated and 

variety recommendations could be made for wet and dry areas independently. Of 

course, to estimate the regression coefficients you have to grow the varieties in 

wet and dry areas in the first place. Nevertheless, it is possible that selecting for 

predicted yield at a certain precipitation level may be more accurate than selecting 

directly on yield under that rainfall pattern (because the regression uses all the 

data). Other measures can be taken too; fertilizer levels, sunshine, temperature 

and so on. Moreover, the regression coefficients for each variety can themselves 

be treated as traits for selection – to select for responsiveness or stability. The 

direction of selection depends on your point of view, the trait, and the 

environmental factor under consideration. For example selection could be on a 

combination of average performance and for stability in the absence of rain, or for 

average performance and response to irrigation. The nature of selection depends 

on the breeding objectives. On the genetical front, the regression coefficients can 

themselves be subject to additional analysis. 

  

2) Rather than regress variety performance on an independent variable, regress it on 

the average performance of all varieties at a site. There are some statistical 

difficulties with this approach, but they can be overcome. The approach 

originated with Yates, but is better known as the Finlay and Wilkinson regression. 

It has been popular because it removes the requirement to identify and measure 

the components of the environment which are responsible for the variability in 

variety performance. Finlay and Wilkinson analysed data that had first been log 

transformed, and there is often a strong case for working on log transformed data 

for these types of cross sites analyses: though if all you are interested in is average 

performance across all sites, this matters less.  As a consequence of the way the 

regression is carried out, the expected regression coefficient in the absence of any 

effect is 1. Varieties which perform relatively better in high yielding sites will 

have regression coefficients >1 and varieties which perform more consistently 

across all sites will have regression coefficients <1. Again the regression 

coefficients can themselves be treated as traits. Quantitative genetics has been 

extended to incorporate GxE treated in this manner and is described in K&P.  

 

3) Ecovalence. Variety stability is assessed as the contribution of a variety to the 

interaction SS. This assumes, probably more realistically that the Finlay and 

Wilkinson regression, that the stability of variety performance across sites is not 

related to average site performance. In fact (2) and (3) can be combined, 

partitioning the GxE variation for each variety into a linear regression component 

and a remainder.  

 

4) Use of genetic covariance between sites to improve the precision of variety 

estimation at any particular site, as described in the earlier sections on “Multiple 

traits and environments” and “Index selection.” 

 



 225 

 

5) AMMI Additive Main Effect, Multiplicative Regression. This carries out a 

singular value decomposition on the matrix of estimated g x e components with 

elements: 

 

geij  = yij - m +gi + sj  

 

 We shall describe this in more detail. 

 

 

 

AMMI 

 

Remember that we can approximate a rectangular matrix as the sum of a series of terms. 

(By singular value decomposition or spectral decomposition – see the maths notes.) In 

each term, there is a vector for row effects, a vector for column effects and a scale factor 

(the singular value). The bigger the singular value, the more variation it accounts for. In 

AMMI, the matrix of ge terms is approximated by one or two singular values and their 

corresponding vectors. The idea is that the included singular values and vectors account 

for the majority of the G x E interaction, with the remainder attributable to noise. It is 

possible, but not guaranteed, that the singular vectors, the first giving loadings for 

varieties and the second for environments, may be interpretable in terms of knowledge of 

the environments and germplasm. They may discriminate between different origins of 

varieties on the one hand say, and on the other between different sets of environments in 

terms of rainfall, geography, whatever. This could then inform choice of parents and 

testing regimes for subsequent breeding. The full model is: 

 

yijk = m + gi + sj + 
N

n
nnn vwu '   + rij + eijk 

 

Subscipts and terms: 

 

 i for varieties 

j for sites or environments 

k for replicates within sites (only one if we working on site means) 

n for the columns of the spectral decomposition matrices (see maths notes) 

u is the singular vector for genotypes 

v is the singular vector for sites 

w is the diagonal matrix of singular values 

r is the matrix of residual GxE terms not accounted for by inclusion of the first N 

singular values. 

e is the error – will be confounded with r if there is no replication of varieties 

within environments 

 

Although we have described this analysis in terms of the spectral value decomposition of 

the GxE matrix, if we return to the relationships between eigenvalues and eigenvectors 
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and spectral value decomposition, it may become clearer what is going on. We‟ll call the 

matrix of variety x sites interactions X. Since these are interactions, formed by 

subtracting variety and site effects from the means, the rows sum to zero and the columns 

sum to zero (assuming no missing data). 

 

X’X is then the matrix of sums of squares and sums of products between varieties at pairs 

of sites – it measures the similarity between sites by the agreement in variety interaction 

terms. 

 

XX‟ is the matrix of sums of squares and sums of products between sites for pairs of 

varieties – it measures the similarity between varieties by the agreement in site 

interaction terms. 

 

X‟X and XX‟ have identical eigenvalues equal to ww‟ – the square of the individual 

singular values. 

 

Eigenvectors of X‟X are the same as the matrix of singular vectors v and eigenvalues of 

XX‟ are the same as the matrix of singular vectors u. Now the eigenvalues and 

eigenvectors of X’X are the raw results of a principal component analysis of sites 

(interaction terms) and the eigenvalues and vectors of XX‟ are the results of a PCA of 

varieties (interaction terms). So AMMI is doing the equivalent (for interaction) of taking 

the most important one or two principal components from a PCA on sites, and also the 

most important one or two principal components from a PCA on varieties.. 

 

There is an increasing amount of literature associated with this method of analysing G x 

E. An analysis of variance can be used to test the significance of these terms. An example 

is given in K&P. Although the estimate of the overall mean across sites for each variety 

is unchanged, the estimates of variety means at each site are changed and may be more 

accurate that the simple observed means. A comparison of this method of predicting 

means at a site with the selection index method discussed earlier is given by Piepho 

(TAG 1994 89:647-654): the selection index method won. However a combined method 

which outperforms either alone is described in Piepho (TAG 1998 97 195-201). Note that 

the AMMI approach can also be applied to the raw dataset: to a matrix of variety means 

at each site. This is not routinely carried out as far as I‟m aware. It would treat variety 

and site effects as multiplicative and assume there was no independent G x E terms. This 

isn‟t as mad as it seems - after all, transforming data from raw scores to logs before 

analysis also has the effect of transforming multiplicative effects to additive effects, so 

analysing the data with a multiplicative model may not be as crazy as it at first seems. A 

similar approach, in which site mean effects are subtracted from the matrix and analysis 

is on the matrix of g+ge terms has been proposed and argued over. 

 

AMMI is available as a procedure within GenStat. 
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Summary of G x E. 

 

The analysis and interpretation of GxE interactions has had as much effort put into it as 

any other field (ha ha) in crop quantitative genetics. In spite of this, it seems to me that 

the impact of the alternative methods of analysis on breeding programmes has been 

slight. This is because breeders have, probably quite sensibly, stuck to selecting in their 

target environment, in which case problems to do with GxE melt away. This will remain 

the case until the analysis of GxE changes from being descriptive to predictive. However, 

even if this happens, at some stage, as GxE effects increase in importance relative to 

genetic main effects, then separate breeding programmes become necessary for each 

environment. Once this occurs, the problem goes away again.  
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MAPPING GENETIC MARKERS 
 

 

Introduction 

 

“Molecular Markers in Plant Genetics and Biotechnology” by Dominique de Vienne 

is an excellent introduction to the use of molecular markers in plant breeding. Science 

Publishers, 2003 ISBN 1578082390, 9781578082391 

 

 

Why do we need to map genetic markers? 

 

Ultimately, we want to use markers to tag loci determining traits and develop systems of 

marker assisted selection. We can do this marker by marker, of course, and if the marker 

and the trait are closely linked, then this may be sufficient: we don‟t need a map. 

However, it needs high densities of markers to work like this, stringent significance 

thresholds to compensate for multiple testing and therefore large population sizes. In 

addition it is easier to integrate trait loci into breeding programmes if we know where on 

the chromosome our loci are. If genetics maps are available, comparisons of QTLs can be 

made across populations and sometimes across species. Finally, detecting QTL using a 

map is more powerful than detecting them without one (unless marker density is very 

high) because we can use information from multiple linked markers to gain in both power 

to detect and in precision to locate QTL. Therefore, with few exceptions, it is best to have 

a map. 

 

The mapping process can be broken down into three stages though these are not 

particularly independent: 

 

 Are markers linked? 

 What is marker order? 

 What are inter-marker distances?  

 

We‟ll go through these in some detail.  

 

To start with, we‟ll assume we‟re mapping in a set of doubled haploid lines derived from 

an F1. This is the easiest case. We‟ll extend to other populations later. 

 

We‟ll start with some definitions: 

 

The recombination fraction, r (or sometimes θ ) is the frequency of recombinant 

chromosomes. At meiosis: 
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________________ 

    one chromosome pair (a homologue) 

________________ 

 

 

    chromosome doubling (before meiosis starts) 

 

 

________________ 

________________  two chromatids  

 

________________ 

________________  two chromatids 

 

 

 
 

________________ 

_______   _______   

_______X_______  cross over between chromatids at a chiasma 

_____________ __   

 

 

 

________________  non-recombinant gamete 

 

________________  recombinant gamete 

 

_______________  recombinant gamete 

 

_____________ __  non-recombinant gamete 

 

 

 

Recombination is a result of chiasmata. A single chiasma will leave two recombinant and 

two non recombinant chromosomes as the product of breakage rejoining during meiosis. 

We can therefore define a (cytological) map distance m as the expected number of 

crossovers =  ½ the number of chiasmata in a length of chromosome. Map distance 

measured in this way is linear – total map length is the sum of map length of separate 

sections of chromosome. A further consequence of the relationship between crossovers, 

recombination and chiasmata is that the recombination fraction can never be >0.5. 

Mather‟s formula relates chiasmata to recombination fraction:  

 

recombination fraction = (1-p (zero chiasmata))/2 
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For markers which are very closely located on a chromosome, only zero or one single 

chiasma are likely to occur in a meiosis. For a small map distance m, p(one chiasma) will be 

2m and p(no chiasmata) will be (1-2m). Substitute this into Mather‟s formula and we get  

 

recombination fraction = map distance. 

 

So for small distances, recombination and map distance are equivalent, which means 

recombination fractions are additive too. 

 

This is not the case at longer distances. If we assume that in any chromosome interval 

chiasmata follow a Poisson distribution, then for a map distance m we require 2m 

chiasmata so the probability of no chiasmata is e
-2m

. Substituting this into Mather‟s 

formula, we get: 

 

r =  0.5 (1- e
-2m

) 

 

and   m  =  -0.5 (ln(1-2r) 

 

This is the Haldane mapping function for relating recombination frequency to map 

distance on which we shall say more later. 

 

 

Are markers linked? 

 

The Bruce Weir book is good here. 

 

Under random assortment (Mendel‟s second law, markers are on separate chromosomes) 

the pattern of segregation at one marker is independent of that at another. This is easily 

tested in a chi sq by comparing observed to expected: 

 

Example:  the F1 from the cross (AABB x aabb) is backcrossed to aabb to give: 

 

  AB  Ab  aB  ab  total 

observed 27  22  19  32  100   

expected N(1-r)/2 Nr/2  Nr/2  N(1-r)/2 

expected 25  25  25  25 

 

Chi-squared  = 3.92  (3 df) p = 0.270 

 

This chi-squared with 3 degrees of freedom can be partitioned into three 1 df tests, one 

for comparing the frequencies A:a to 1:1, one for B:b to 1:1 and one for linkage, which 

can be calculated by difference or by comparing (AB+ab):(Ab +aB) to 1:1. That is, we 

compare the frequency of non recombinants to recombinants. In this case the values are: 
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A:a  0.04  (p-value   0.841) 

B:b  0.64  (p-value   0.424) 

linkage  3.24  (p-value   0.072) 

 

However, we are not just testing if the number of recombinants is significantly different 

from expected, we are testing if it is significantly less than expected - because the 

recombination fraction cannot be >0.5. If we were testing with a t-test or similar, we 

would use a 1 tailed test rather than a 2-tailed test. In practice we get the usual t-test 

probability then half it. For chi-sq, we can proceed in exactly the same manner – look up 

the usual p-value then halve it. Formally, the test statistic is stated to be distributed as a 

50:50 mix of a distribution with a point probability mass of zero and a chi-sq distribution 

with 1 df. This is sometimes erroneously referred to as a one-tailed chi-sq test. This is 

incorrect. The usual significance tests we carry out with the chi-sq distribution are all one 

tailed: we test whether our statistic is greater than some threshold (eg 3.84 for 5% 

significance with 1 df). Testing  if values are significantly lower than some chi-sq value 

is a test if the data fit significantly better than expected. (It has been used in this manner 

in the long running debate about whether Mendel cooked his data: do the data look too 

good to be true?)  

 

If we reject the null hypothesis and decide that the markers are linked, the obvious (and 

ML estimate) of the recombination fractions is (number of recombinants / total). We can 

add confidence intervals to this if we wish using the formula for the variance of a 

binomial dist. 

 

r(1-r) /N 

 

This is simple in crosses when direct counting of recombinants and non-recombinants is 

possible. This is the case in backcrosses and populations of DH or SSD lines derived 

from an F2. For the F2 itself, this is not possible and both estimation and confidence 

limits are more complex. 

 

We can also use maximum likelihood (ML) for estimation, and the likelihood ratio test 

(LRT) for significance testing. This is often the only option in more complex cases. 

 

In the example, the estimate of  r is 41/100 = 0.41 

 

The LRT is -2ln(likelihood at r = 0.5 / likelihood at r = ML estimate)  

 

These likelihoods are equal to the probabilities of the observed classes for the two values 

of r. The distribution is binomial. Ignoring the factorial part of the binomial distribution 

which cancels out in the LRT: 
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log likelihood at  r = 0.5 = 100 ln(0.5)   =  -69.315 

 

log likelihood at r = 0.41  = 41 ln (0.41) + 59 ln(0.59) =  -67.686 

 

LRT   =   2*(69.315 – 67.686)  =   3.258 

 

which is very similar to the test for linkage from the chi-squared test and therefore gives a 

very similar p-value.  

 

If neither marker fits Mendelian expectations very well, we can still test for linkage using 

a contingency table test. For our example: 

 

   observed   expected   

 

   B b   B  b 

A 27 22  A 22.54  26.46 

  a 19 32  a 23.46  27.54 

 

chi-sq = 3.20  which is very close to the previous value, not surprisingly in this case 

given the very close agreement to Mendelian expectations. This test is valid provided that 

the cause of the distortion at one locus is independent of that at the other. Non-

independence of segregation distortion can mimic linkage and the test is no longer valid. 

 

Although we can test for linkage in this manner, estimating recombination frequency is 

more complicated. We must fit a model which estimates the distortion at each locus 

together with the recombination frequency between them. These three parameters take up 

the three degrees of freedom available and give a perfect fit to the data. This is most 

easily done numerically (we may have a go). In this case, the estimate is 0.4102: there is 

virtually no distortion in this example so the estimate is little changed. 

 

In backcrosses, segregation distortion at a single locus does not affect the test for linkage 

or the estimation of recombination frequency. If both loci are distorted, but the distortions 

are independent, then the estimation of r should be modified as above. If the distortion is 

not independent you are in trouble. Distorted segregation in the F2 presents more of a 

problem too. Most mapping programs ignore segregation distortion in their estimation of 

recombination fraction. The effect of distortion in DH or inbred lines is similar to that for 

the backcross. 

 

Suppose we have the progeny but we don‟t know the genotypes of the parents, so we 

don‟t know which alleles concur on the same chromosome: we don‟t know the phase of 

linkage. Then the tests for linkage can proceed exactly as before, but now we have a two 

tailed test rather than a one tailed test.  
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Assigning markers to linkage groups linked markers  linkage groups 

 

This is simple enough in principle: merely identify pairs of markers which are judged to 

be linked and cluster these pairs so that all markers in a cluster are linked to each other. 

Some programs identify triplets of markers which are linked and then cluster these. 

 

Mapmaker was the first freely available (and free) software for mapping markers in 

experimental crosses. From the mapmaker manual: 

 

“If the LOD score is greater than some threshold, and if the distance is less than some 

other threshold, then the markers will be considered linked. By default, the LOD 

threshold is 3.0, and the distance threshold is 80 Haldane cM.” 

 

That is to say, the criteria for clustering markers are a combination of LOD score (or p-

value) and distance apart. 80 cM corresponds to a recombination fraction of 0.4 – so we 

disregard loose linkages however strong the statistical significance. Sir Austin Bradford 

Hill would have approved. 

 

For n markers there are n(n-1)/2 pairs. With 100 markers (not that many if evenly spaced 

over a whole genome), there are nearly 5000 pairs. Applying a simple Bonferroni 

correction, for an experiment-wide 5% significance level we should apply a pair-wise 

significance level of 0.05/4950 = 0.00001. Significance, or evidence for linkage is 

frequently reported in LOD terms. This would be a LOD score of about four (remember 

the test is 1 sided). As the tests are not independent (if pairs AB and BC are linked, then 

AC must be linked as well) this value is probably a bit high (for 100 markers). There are 

more sophisticated ways of deciding what the correct LOD should be. In practice a LOD 

of three is often used, partly for historic reasons, partly because it is about correct for 

human genetics. There is more on selecting significance thresholds in the section on QTL 

mapping.  

 

It is possible that results from other mapping populations or a consensus map exist 

already. If your population has markers in common, these can help in assigning 

problematic markers within your own population. 

 

 

Ordering markers 

 

Consider three markers again. 

 

AB:  r  = 0.2 

BC: r  =  0.1 

AC:  r = 0.25 

 

B and C are closest, A seems closer to B and C, so the order we would select is: 

 

CBA 
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What we have done is select the order which gives the lowest sum of adjacent 

recombination coefficients (SAR). We could also use SAL (sum of adjacent likelihoods), 

or LOD scores or whatever. 

 

This is simple, but to extend the approach to more markers in the same linkage group is 

harder because the number of possible orders is n!/2 which for five markers is 60 and for 

10 is 1,814,400. So unless the number of markers is very small it is difficult to examine 

all orders and select that which fits best. 

 

Alternatives: 

 

Seriation 

Start with any pair of linked markers. Next, select the marker showing the closest linkage 

to one of these two and slot it into one of the three possible positions on the map 

following one of the strategies described above. Select another marker and slot it into one 

of the four possible positions. Repeat for all m markers. This requires (m-2)(m+3)/3 

evaluations -  52 for ten markers, a more manageable number. However, this provides an 

initial order, not the final order. Starting with different pairs or selecting different 

markers to add may result in a different order. One can try several then pick the best 

using SAL, SAR or likelihood. This process, or a version of it, is called seriation. The 

finished order can be perturbed a bit to see if local changes improve the fit. The 

perturbation usually takes the form of “rippling” or “flipping” or both. As the names 

suggests, a pair of adjacent markers (or maybe three) have their order reversed or flipped. 

If the fit improves, the new order is kept. Rippling can proceed through all markers, and 

be repeated several times. At this stage in the process, likelihoods of the more limited 

numbers of alternative orders being considered can be calculated and compared. 

 

Branch and bound 

Start with an initial reasonably good order of all markers. Then challenge this with a 

order created by adding markers one at a time. As markers are added, the likelihood will 

decrease. If at any stage the likelihood of the new order becomes lower than the 

likelihood of the initial order, then the new order is discarded. In addition, all descendant 

orders are eliminated from consideration. For example, if the true order is ABCDEFGH 

but the order CDFA is found to have a lower likelihood, then there is no point in 

considering CBDFA or CDHFA etc.etc. If a complete order is found which has higher 

likelihood than the initial order, then it is substituted and the process is repeated. As a 

result, the total number of orders to be considered is greatly reduced (but can still be too 

big to be practical). 

. 

The Joinmap approach 

Joinmap is the gold standard software for mapping markers but it is expensive and we are 

therefore not going to use it. It works on the matrix of pairwise recombination fractions 

as observations which it compares with a matrix of predicted values. Any of the possible 

orders of markers, with intermarker distances, can be used to create a matrix of predicted 

recombination fractions among all markers. The best order is taken to be the one which 
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minimises the sum of squares between observed and predicted values. Although more 

computationally intensive than the other methods, in a simple form this is possible in 

Excel for quite large numbers of markers.  However, Joinmap is more sophisticated than 

this, in that weighted least squares rather than ordinary least squares is used. Here, the 

recombination fractions are weighted by the precision with which they are estimated: 

smaller recombination fractions are estimated more precisely than larger.  

 

This method has the advantage of easy extension to combine maps from different 

populations: in fact it was this application that first led to its development.   

 

PCA 

Principal component analysis or equivalent methods can also be used to create an order 

for maps, working on the matrix of recombination coefficients or (additive) map 

distances. If the latent vectors of the two largest PCA are plotted, a horseshoe 

arrangement will be revealed. Joining-up the dots with give the order. Software for this 

approach is now available http://cbr.jic.ac.uk/threadmapper/ This is more sophisticated 

than the simple description given here and will cluster markers into linkage groups in 

addition to ordering within groups.  

 

Simulated annealing 

As a liquid cools, the molecules within it move about less and eventually crystallise into a 

solid. Simulated annealing mimics this process. We start off with an order of markers, 

and estimate a function, the likelihood say. The order is changed at random and the 

likelihood estimated again. If the likelihood is improved, the new order is accepted. If the 

new order is worse, it is accepted with some probability; otherwise the original order is 

kept. This process is repeated many times, but as time passes the probability of accepting 

a worse order is reduced; the equivalent of the liquid cooling down.  

 

There are a lot of control parameters that can be adjusted: temperature, the extent of the 

perturbation of marker order, and so on. However it seems to work in practice and is 

encoded in the software GMendel. The method is similar in principle to “genetic 

algorithms” in which improved solutions to very general problems, not just genetic ones, 

evolve by mutation and selection. (Sometimes recombination is added too.) 

 

You may come across this approach being used in other problems in genetics too. For 

example the in the program simwalk, which is used for mapping traits in large human 

pedigrees (but is not, as far as I‟m aware used for ordering markers). 

 

 

The three marker case in more detail 

 

We shall map three markers by maximum likelihood – partly to show that we can and 

partly because it provides another way of looking at mapping functions. 

 

Suppose the backcross AaBbCc x aabbcc gives observed genotypes: 

http://cbr.jic.ac.uk/threadmapper/
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       recombinant or non-recombinant 

 observed No.   A_B  B_C  A_C 

1 ABC  77  NR  NR  NR 

2 ABc  3  NR  R  R 

3 AbC  11  R  R  NR 

4 aBC  9  R  NR  R 

5 abc  70  NR  NR  NR 

6 abC  5  NR  R  R 

7 aBc  15  R  R  NR 

8 Abc  10  R  NR  R 

      

 total 200    

 

Chromosomes are labelled as recombinant or non-recombinant for each of the three 

recombination fractions. Estimate of these are  

  

AB 0.225 

BC 0.170 

AC 0.135 

 

Under the assumption that recombination in one interval is independent of that in another, 

then for any order, the overall likelihood is just the product of the likelihoods in the two 

intervals. Suppose the order is A_B_C. Then the likelihood of observing  an ABC 

individual or an abc individual is: 

 

p( no recombination in A_B) x p( no recombination in B_C) = (1-0.225)(1-0.170)  

 

The log likelihood of observing 147 such individuals is therefore  

 

147 ln[(1-0.225)(1-0.170)] = -64.86 

 

The likelihood of observing an Abc or aBC  individual is: 

 

p(recombination in A_B) x p( no recombination in B_C), which for 19 individuals is 

 

 19ln[0.225(1-0.170)]  = -31.881 

 

and so on.   

 

For all possible orders this gives the following likelihoods: 
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   order   

  A_B_C A_C_B B_A_C unlinked 

r in 1st interval  0.225 0.135 0.225 0.5 

r in 2nd interval  0.17 0.17 0.135 0.5 

ABC 77 -33.974 -25.514 -30.794 -106.745 

ABc 3 -6.081 -11.323 -6.772 -4.159 

AbC 11 -35.900 -21.087 -18.003 -15.249 

aBC 9 -15.102 -19.699 -31.447 -12.477 

abc 70 -30.886 -23.195 -27.994 -97.041 

abC 5 -10.134 -18.872 -11.287 -6.931 

aBc 15 -48.954 -28.755 -24.550 -20.794 

Abc 10 -16.780 -21.888 -34.941 -13.863 

      

LL  -197.810 -170.334 -185.789 -277.259 

LRT  158.898 213.850 182.939  

LOD  34.504 46.437 39.725  

 

For completeness, I‟ve included the likelihood under no linkage and therefore constructed 

a likelihood ratio test and the corresponding LOD score. (These have two degrees of 

freedom: two recombination fractions have to be estimated. We can also calculate 

expected numbers of recombinants and non-recombinants under each order. For example, 

if the true order is A_C_B: then the classes Acb and aCB result in equal frequency from a 

recombination in the first interval but not in the second. Their expected numbers are 

therefore 0.135*(1-0.17)*200 /2 = 11.205. The complete table of expected numbers is: 

 
   A_B_C A_C_B B_A_C unlinked 

1 ABC  64.3 71.8 67.0 25 

2 ABc  13.2 2.3 10.5 25 

3 AbC  3.8 14.7 19.5 25 

4 aBC  18.7 11.2 3.0 25 

5 abc  64.3 71.8 67.0 25 

6 abC  13.2 2.3 10.5 25 

7 aBc  3.8 14.7 19.5 25 

8 Abc  18.7 11.2 3.0 25 

 

χ
2

2  71.1    5.3       42.2 255.6 

 

Whether comparing observed with expected in a χ
2

2 goodness of fit test as above (we 

require non-significance or low values) or using LODs (we are looking for the highest 

value), the best order is ACB, as we inferred from the two locus recombination fractions. 

Note that the comparison of LODs between different orders is not a formal significance 

test: all models (locus orders) have the same degrees of freedom: there is no nesting of 

hypotheses here. The comparison with the unlinked LOD is valid however. 

 

The observed recombination fraction between A and B is not the sum of the two 

component intervals A_C and C_B. Recombination between A and C will only be 

observed if there is a recombination in AB but not in AC, or a recombination in BC but 
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not in AB. Recombination in both AB and BC - a double recombination - will result in no 

apparent recombination between A and C. Thus we have: 

 

rab  =  rac(1-rbc) + (1-rac)rbc 

 

=  rac +  rbc - 2racrbc 

 

The relationship is not linear.  It can be re-expressed as: 

 

(1-2rab)   =  (1-2rac)(1-2rbc) 

 

which is additive on the log scale: 

 

ln(1-2rab)  =  ln(1-2rac) + ln(1-2 rbc) 

 

 

ln(1-2r) could be used as a mapping function. But when r is small: 

 

ln(1-2r) ~ -2r  (remember the maths revision) 

 

Therefore, if we rescale the function by multiplying through by -0.5 

 

-1/2 ln(1-2rab)   =  -1/2 ln(1-2rac)  + -1/2 ln(1-2 rbc) 

 

This is just the Haldane mapping function again and  at small distances 

 

-1/2 ln(1-r)   ~  r 

 

The Haldane mapping function is a linear function of recombination fraction based on the 

assumption that recombination in adjacent intervals is independent. In fact it is frequently 

found that the relationship 

 

rab  = rac + rbc - 2 rac rbc 

 

does not hold. Generally, the presence of one chiasma greatly reduces the probability of 

another occurring close by in the same meiosis. This interference is quantified by the 

“coefficient of coincidence” c. 

 

rac  = rab + rbc -2crabθbc 

 

This relationship will always hold: there are three parameters on the right hand side to fit 

the three observed recombination frequencies. LRT or chi-sq tests of the significance of 

c, given the marker order, are easily made.  

 

Setting c = 1 gives the Haldane mapping function as we have seen.  
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Setting c  = 0 at very close distances and to 1 at r close to 0.5 yields the Kosambi 

mapping function which is much used and generally gives a better fit than using the 

Haldane function. The Kosambi function, not derived here, is: 

 

m = ¼ ln[(1+2r)/(1-2r)] 

 

r = 1/2[(e
4m

 – 1) /(e
4m

 + 1)]  

 

There are many other mapping functions, which approximate reality better than Kosambi 

or Haldane. However, in practice, for QTL mapping, it makes little or no difference what 

function is used, especially at high marker densities when map distance and 

recombination fractions converge. More important is to get the order correct. It is also 

important to know what function is being used when maps are presented, since we may 

wish to convert from map distance to recombination fraction or vice-versa, depending on 

the analysis software we intend to use. Genetics odds and odds.xls provides a spreadsheet 

which allows inter-conversion from Haldane, Kosambi and recombination fraction. 

 

As an alternative to working out marker order on the basis of pairs of markers, some 

mapping programmes will map all sets of three markers (or sometimes four) in a linkage 

group and use these to construct the full map. This can give a better final order yet still 

avoids evaluation of all possible orders. 

 

 

The effect of errors 

 

Genotype error is the bane of mapping. Molecular biologists believe all data they 

generate are error free. It is an uphill task to put them right with any degree of diplomacy. 

I once had an argument with one of the breed. He couldn‟t understand that most of his 

marker genotypes appearing 100% heterozygous among individuals in a randomly mating 

population indicated a problem: the selective death of homozygotes required to maintain 

this level of heterozygosity would amount to genocide. Fortunately he has moved on to 

become a physician, a profession where belief in your own absolute authority is de 

rigueur.  

 

Genotype errors act to increase estimates of recombination frequency. Small error rates 

can have big effects. As a result of errors, total map length is increased. In fact, as 

genotyping quality has improved, so map length has decreased to the extent that map 

length estimated from markers generally agrees well with that estimated by counting 

chiasmata. There are two approaches to dealing with genotype error and it is possible to 

use both. 

 

Firstly errors can be detected and eliminated or corrected (by re-scoring gels and by re-

genotyping using a different method “a different chemistry” as the jargon has it). A well 

established detection method is to search for double recombinants. These should be rare, 

especially with closely linked markers, and are always worth checking. K&M suggest 

treating any double recombinants within a distance of 15cM with suspicion.  As with any 
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data cleaning exercise, a decision to remove a double recombinant (by switching off a 

marker) is a judgement. Some double recombinants are expected. Multiple individuals 

with double recombinations involving the same interval are an indication of an error in 

marker order.  

 

A more quantitative approach to detecting possible errors is to drop one marker from one 

individual and recalculate the likelihood. If the likelihood drops substantially, then this 

implies that the specific genotype is wrong. Many packages have routines that do this for 

you. Note that the test is not a LRT: you are dropping data not parameters so you cannot 

directly assign a probability in this way. For example, suppose we have three linked 

markers with a recombination frequency of 0.1 in both intervals and a recombination 

frequency between the two outermost markers of 0.18 (assuming no interference). Then 

from a single inbred line, the contribution to the likelihood with no recombination is 0.9
2
. 

If the central marker is falsely scored, resulting in an apparent double recombination, the 

contribution is 0.1
2
. If the central marker is dropped from the analysis the contribution is  

0.82. The improvement in log likelihood as a result of dropping the central marker is 

ln(0.82 / 0.81) = 0.013  when the marker is correctly called and 4.41 (ln(0.82 / 0.1
2
)) with 

the genotyping error: a considerable effect from a single data point. If we expressed this 

in terms of a pseudo LRT (8.8) or a pseudo LOD (1.9) the improvement looks even more 

impressive for a single marker (not that we can assign any p-value to these values). 

 

It is worth keeping an eye on single marker segregation distortion and on markers with 

low calling rates: these are also indications of problems. 

 

The second approach to dealing with genotype errors is not to detect and correct them but 

to include parameters for genotype error rates with the estimation of recombination 

fraction. The likelihood of the observations depends not only on whether recombination 

has occurred but also on whether each marker has been correctly called. Some packages 

can do this. The effect on map length and LRT can be studied for different assumed error 

rates. To estimate error rate directly, either repeat genotyping is required or pedigree 

structure must be exploited to detect illegal inheritance patterns (not all errors will be 

detected, but provided some are, this can be modelled). Crosses between inbred lines are 

not particularly good for this, however. 

 

The best approach, of course, is to maintain high standards of genotyping: stains from 

bad data are never completely removed in the statistical wash. 

 

 

Populations 

 

Choice of a suitable population for mapping markers depends on more than mere 

statistics:  selection of parents for subsequent QTL mapping, or breeding, the availability 

of dominant / codominant markers and so on can be more important. 

 

The most commonly used populations for mapping are the F2, the backcross, or inbred 

lines (or DH) derived from the F1.  
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Backcross 

An advantage of the backcross over the F2 is that it is easy to understand. A disadvantage 

is that we can only map markers for which the recurrent parent is fixed for the recessive 

allele, or for markers which are codominant. So with AFLPs and the like, we would 

expect only ½ the markers differing between the parents to segregate. (We could always 

work with backcrosses to both parents.) 

 

F2 population 

Contains more recombination than the backcross: 2x the number of meioses. The  

estimation of recombination fraction is not simple, but is possible through maximum 

likelihood. 

 

Inbred lines and doubled haploids derived from F2 or F1. 

The absence of homozygosity makes life straight forward. The expectations and analysis, 

after a bit of rescaling of recombination fraction for inbred lines (see below) are the same 

as for the backcross. 

 

Inbred lines and DH derived from a backcross. 

I‟m not aware that these have been used but there is no reason why they shouldn‟t be. 

Although homozygous, markers will be segregating in a 3:1 ratio.  

Full-sib families (genetically equivalent to 4 way crosses among inbred lines). 

Not much used in plant genetics, where homozygous lines are often available. Used in 

animal breeding, and in outbred crops. Up to four alleles will be segregating.  Loci may 

be linked in coupling or repulsion and this may be unknown. We can write down 

expectations for each observed class and estimate r by maximum likelihood. There are no 

new principles, but it is harder. It is much easier if the phase is known. 

 

Extended / mixed  pedigrees 

Hardly ever used in plant breeding. There are some crops where this may be the only 

option eg long generation time outbreeding perennials (trees). This is also the only option 

in human genetics. It is difficult, but fortunately there is software to take the strain. 

Human geneticists initially used CEPH families (Centre d‟Etudes du Polymorphisme 

Humain). These were large nuclear families (ie full-sibs) in which the grandparents were 

known. Known in the sense of being alive and available for genotyping. As a result the 

phase of the linkage in the grandchildren was known. These families are now available as 

immortalised cell lines though the software for detection and estimation of linkage has 

improved so that mapping in humans is no longer restricted to these more simple 

pedigree structures.  
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Map  expansion 

 

Different mapping populations can give different estimates of recombination frequency, 

even though the true map order is identical. For example, doubled haploid lines derived 

from an F1 will have undergone only a single meiosis. DH lines derived from an F2 will 

have undergone three meioses (one in the paternal and maternal gametes producing the 

F2, and then an additional one in generating the DH line). Inbred lines derived by selfing 

an F2 will have undergone many meioses, but as selfing proceeds there are fewer and 

fewer heterozygotes (and therefore double heterozygotes) so that there is less and less 

recombination. As a result, inbred lines and F2 derived doubled haploids will have a 

greater map length - larger recombination fractions for each interval - than DH lines 

derived from the same cross. This phenomenon is called map expansion. For the example 

given, if the recombination fraction, as estimated from the DH lines, is r, then the 

estimated recombination fraction from the inbred line is 

 

R = 2r/(1+2r) 

 

so  

 

r = R/2(1-R) 

 

If r is small, then R~2r:  

 

there is roughly 2x as much recombination in small intervals for inbred lines. Following 

original work by Haldane, this has been extended and simplified for multiple markers 

more recently. (Teuscher & Broman “Haplotype probabilities for multiple strain 

recombinant inbred lines” Genetics 2007, 175:1267-1274) 

 

None of this matters much except, when comparing maps or using maps derived from 

one population for QTL analysis in another, it is important to be sure where the maps 

came from and whether they are published in units of R or of r. Different software 

packages will handle this in different ways too. 

 

 

Scale and precision 

 

Different types and sizes of populations can be compared by comparing the expected 

standard errors of recombination fractions. Formulae for variance of DH (= BC) inbred 

lines and the F2 are given below, for codominant markers 

 

 

DH & BC Vr  = r(1-r)/N 

 

inbreds  Vr  = r(1+2r)
2
 / 2N 

 

F2   Vr  = r(1-r)(1-2r+2r
2
) /2N(1-3r+3r

2
) 
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The F2s are best. The inbreds start well then fade away. These are all for constant 

population size. 

 

If we make the BC and the inbred populations 1.5 x the size of the F2 we get this: 

 

 

N = 150 (BC & INB); N=100 (F2)
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So over distances of <0.15 the three populations are equivalent if we raise 1.5 times more 

DH or inbred lines than F2 individuals.  

 

A couple of additional points. Firstly, F2s are really cheap to produce and can be made on 

a grand scale. For mapping markers why don‟t people use F2s more often? Of course you 

can‟t maintain the plants indefinitely but so what: you can generate a lot of DNA from 

each plant and keep it. The answer is presumably partly that, for QTL mapping, inbred or 
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SSD lines will have to be genotyped anyway and partly that for dominant markers the F2 

is no longer such a good population for mapping. When linked in repulsion, the variance 

of estimates is very high at low recombination frequency. Nevertheless, with high density 

SNP genotyping chips being developed, it seems to me that large F2 populations provide 

an opportunity to generate accurate fine scale maps which should not be overlooked. 

 

Secondly, although recombinant inbred lines look bad at high recombination frequency, 

they are more accurate than DH lines for recombination frequencies ≤ 0.15, which is the 

most useful range for mapping both markers and QTL. 

 

Finally, an interesting consequence of using inbred lines is that they make the Haldane 

mapping function fit the data better: because recombination can occur in adjacent 

intervals in different generations this reduces the amount of apparent interference when 

recombination is estimated in the final generation. 

  

 

How many markers do we need? 

 

To map a QTL we require about four evenly spaced markers per chromosome. However, 

to identify such markers we need to start with many more. 

 

The simplest approach is to assume that we have a single circular chromosome - this gets 

rid of end effects - and to assume that markers are uniformly distributed over the 

chromosome. Suppose we want to be 95% certain to have a marker every 10cM. Suppose 

further the total map length is 3,000cM – a bit on the large size for a plant but smaller 

than wheat. There are 300 10cM intervals. We can treat the number of markers falling 

into an interval as following a Poisson distribution. Then with m markers, the average 

number in an interval will be m/300. So the probability of none in an interval is e
-m/300

 

from which it turns out that we would need about 900 markers to be 95% certain of 

having a marker in each 10cM interval.  Equivalently, we could ask how many markers 

do we need for any genome location to be within 10cM of a marker. In this case, a pair of 

markers 20cM apart would cover an interval, so we would have the equivalent of 150 

intervals and we could halve the number of markers. However you look at it, you need a 

lot. 

 

More sophisticated approaches are possible, which account for the numbers of 

chromosomes and for chromosome ends. For example, Bishop et al. (1983) derived the 

following formula for the probability
 
of at least one marker within a specified map 

distance of a
 
major gene:  

 

  

in which C is the haploid
 
number of chromosomes, L is the total map length,

 
X/2 is the 

desired distance within which a marker must fall,
 
and N is the number of segregating 

markers. This formula is
 
valid only if X is less than the length of the shortest chromosome
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in the genome. Assuming that, in general, at least one chiasma
 
must occur per 

chromosome, then the minimum map length of a
 
chromosome will be 50 cM, and this 

formula will be valid for
 
desired intervals up to 25 cM. Since linkages in excess of 25

 
cM 

will be of little use in selecting for a linked QTL, effectively
 
this formula covers the 

values of linkage of practical interest
 
to plant breeders.

 
 

 

Finally 

 

Remember, the finished map is an approximation. The markers are unlikely to be ordered 

correctly, and intermarker distances are estimates only. 
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DETECTING MAJOR GENES AND MARKER-QTL LINKAGE. 
 

 

No markers, qualitative trait. 

 

Segregation patterns can be directly tested for agreement with Mendelian expectations by 

a chi-squared test.  

 

 

No markers, quantitative trait, possibly showing bimodality. Use of mixture models. 

 

  
observed distribution             is a mixture of two underlying distributions 

 

We need to fit a model to estimate the parameters of the two constituent distributions, and 

also to test if the two-distribution model fits better. Use maximum likelihood. 

 

For a single normally distributed trait, Ø, the probability density function (pdf) of an 

observation, zi is 

2
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where the mean (μ) and variance (
2
) are known. If we treat the mean and variance as 

parameters to be estimated, then the likelihood of the observation is 
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The likelihood of the whole set of n observations is the product () of the likelihood of 

each observation: 


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This equation can be solved to find the estimates of the mean and variance for which it is 

maximised: the maximum likelihood (ML) estimates. Of course, the likelihood can be 

solved algebraically: the ML estimate of the mean is just the sample mean and the ML 
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estimate of the variance is the sum of squares divided by the number of observations i.e. 

SS/n. The ML estimate of the variance is slightly biased: it should be SS/(n-1). 

 

With a distribution composed of two underlying normal distributions, we need to 

estimate the proportion of individuals coming from each distribution, and the mean and 

variance of each distribution. We can write down the likelihood by relying on conditional 

probability: 

 

Probability of observation zi =   (probability that zi is in group 1) x  

(the pdf of  zi given that it is in group 1) 

      +  

(probability that zi is in group 2) x  

(the pdf of  zi given that it is in group 2) 

 

In symbols: 

iii zzz ppl 2211    

and 





n

i

zz i
ll

1
 

 

p1 = probability of belonging to group 1. 

p2 =  probability of belonging to group 2. 

Ø1 =  pdf for group 1, with mean and variance μ1,  1
2
 

Ø2 = pdf for group 2, with mean and variance μ2,  2
2
 

 

p1 and p2 are the proportions of the whole population coming from each of populations 1 

and 2. p1 + p2 = 1. 

 

This set of likelihoods is harder to solve. It is still possible in Excel though (use Solver). 

 

Not only does the method of maximum likelihood provide us with estimates for p1, p2, μ1, 

μ2, 1, 2, but we can use the maximum likelihoods themselves to provide significance 

tests. We compare the maximum likelihood for the full model given above with the 

maximum likelihoods of models with more restrictive assumptions or with fewer 

parameters. For example, if we set μ1 =  μ2 and 1 = 2  then we are essentially fitting a 

model with just a single normal distribution. The likelihood from this restricted model 

can be compared with the likelihood from the full model in a likelihood ratio test (LRT). 

One interesting model, applicable in experimental crosses, is to compare the full model 

with a model in which p = 0.5, in say a backcross population or among a set of F2 

derived inbred lines. Here, non-significance of the LRT compared to the full model, and 

significance compared to a model with only a single distribution can be taken as evidence 

that a major QTL is segregating in a Mendelian manner. 
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These models are called mixture models. The can be fitted in Excel without too much 

trouble (see class practical). Software is also available – eg emmix. (Expectation-

maximisation mixture geddit?)  

 

Fittings a model to an inheritance pattern is called segregation analysis. It is easy enough 

for F2 populations, but can also be carried out over multiple generations and families. 

This is sometimes done in human genetics - absence of experimental populations means 

there isn‟t an alternative. In my experience, the software (eg PAP - pedigree analysis 

package) is not easy to use, to say the least.  

 

 

Single markers 

 

We have a quantitative trait, as before, but instead of fitting a mixture distribution 

directly to the phenotype, we fit the effects of a single marker which we believe is linked 

to our QTL. Consider an F2. For each marker state (MM, Mm, mm) we want the 

probability of observing the possible QTL genotypes (QQ, Qq, qq). These can be written 

down, following the normal rules of segregation as:- 

 

PQQ|MM  = (1-r)
2
 

PQq|MM   = 2r(1-r) 

Pqq|MM   = r
2
 

 

PQQ|Mm  = r(1-r) 

PQq|Mm   = (1-r)
2
 + r

2
 

Pqq|Mm   = r(1-r) 

 

PQQ|mm  = r
2
 

PQq|mm   = 2r(1-r)
 

Pqq|mm  = (1-r)
2
 

 

 

Here, PQQ|MM means the probability of the genotype QQ at the QTL, conditional on (|) 

having marker genotype MM. r is the recombination fraction between the QTL and the 

marker. 

 

We can apply these probabilities to each individual in turn, given its marker genotype and 

its phenotype, to derive the likelihood. For example, for an MM individual:- 

 

qqQqQQz rrrrl
i

 22 )1(2)1(   

where: 

 

ØQQ =  pdf for the QTL genotype QQ 

ØQq =  pdf for the QTL genotype Qq 

Øqq =  pdf for the QTL genotype qq 
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The likelihood over all individuals is again: 
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and this can be solved to provide estimates of the parameters for the QTLs. 

 

More simply, for single marker analysis, we can carry out an analysis of variance 

between the three marker classes with a significant result taken as evidence of a closely 

linked QTL. In fact, in this case: 
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Here  a is the additive effect of the cross 

 d is the dominance effect of the cross. 

 

The marker means alone cannot distinguish between a closely linked QTL of small effect 

and a loosely linked QTL of large effect. 

 

Single marker analysis (sometimes called single-point analysis and sometimes called 

two-point analysis in human genetics) is always worth carrying out. It is conceptually 

easy, but in addition the loss of power from genotyping errors is not as great as in 

multiple marker methods.  

 

 

Selective genotyping and bulked segregation analysis 

To save money on genotyping, sets of lines from a mapping population can be selected 

such that there is little loss in power but a great saving in genotyping. The simplest case 

is to select the extreme phenotypes. Essentially, some proportion, the top 10% and 

bottom 10% say, are selected on phenotype and then genotyped. Differences in marker 

frequency between the two groups are then treated as evidence of linkage to a QTL. This 

approach is much easier to apply than to understand theoretically. The expected average 

allele frequency in the selected set was given by Hill (“A note on the theory of artificial 

selection in finite populations and application to QTL detection by bulk segregant 

analysis” Genet Res 1998;72:55-58) as: 
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P(n) is the probability P(n1...,nj...,nk) that there are nj
 
individuals of genotype j out of a 

total of N individuals in
 
the pool selected from a total of M individuals in the population.

 

Genotype j has a frequency in the population qj and a genotypic
 
value, measured in 

phenotypic standard deviation units aj. Φ(y)
 
denotes the distribution function and Ø(y) the 

density function
 
of the standardized normal distribution.

 
This complex formula can be 

used in estimates of power calculation of selective phenotyping. For example, it has been 

used in studies of bulked segregation analysis and in choice of population and marker 

system for BSA  (Mackay & Caligari Crop Science 2000, 40:626-630 (2000); me again - 

hooray. In bulked segregation analysis, additional savings in genotyping are made by 

bulking the selected individuals and genotyping the bulk.  Depending on the marker 

system, allele frequencies may be estimable from the bulks, or alternatively, we can 

search for markers which are fixed in the selected group. The efficiency of this process 

depends on the penetrance of the markers in the bulks. 

The formula above can be simplified a lot if we assume large sample sizes (after 

selection). In this case, simple mixture models could be fitted by ML to (truncated) 

normal distributions. Unfortunately, in BSA, sample size is often quite small.  

 

Multiple Marker Methods: Maximum Likelihood 

 

To improve precision of QTL analysis, methods were extended to locate QTL within 

intervals flanked by pairs of markers. Writing down the likelihood in this case is more 

complicated, but involves nothing new. For example, consider an F2 segregating for two 

markers M1 and M2 with a QTL located between them. Assuming the parents were 

M1QM2  and m1qm2 homozygotes, the gamete types from the F1 have probabilities:- 
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r1 is the (unknown) recombination fraction between M1 and Q 

r2 is the (unknown) recombination fraction between Q and M2 

 

From these F1 gamete types, the probabilities of the F2 genotypes can be composed. For 

example: 

 

 221 2/)1)(1(
2211

rrP MQQMMM   

 

These probabilities can then be used to derive the likelihood of each individual, 

conditional on its two locus marker genotype. Maximizing this likelihood will give more 

accurate estimates of effects for the QTL, and also of the recombination fraction r1, 

between the QTL and M1. Only a single recombination fraction is needed, because we 

rely on a genetic map of the markers having been previously supplied (or created). Given 

the recombination fraction between M1 and M2, r2 can be calculated from r1.  

 

This is essentially what Mapmaker/QTL and R/QTL do. ML estimates of QTL effects are 

calculated at regular intervals between the two marker loci, and the results, as LOD 

scores, are plotted against chromosome location. 

 

Again, we can work simply on means, but now estimates of both QTL effect and of 

location can be obtained. For example:- 
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Since r1r2 will be small, even if M1 and M2 are quite a distance apart, the difference 

between the two non-recombinant homozygous marker classes can be taken as an 

estimate of the additive effect of the F2. After which,  
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taking means over marker over marker 1 only. 

 

The advantage of QTL detection via maximum likelihood is that it is generally easy to 

write the likelihood down, even for quite complicated crossing schemes, phenotypes and 

marker types. Numerical methods have been developed to solve these likelihoods and are 

available in software such as Mapmaker/QTL and R/QTL. A disadvantage of these 

methods can be that they take a lot of computer time. This is less of a problem now than 

it was, but for repeated running of genome scans on randomised data, to derive genome 

wide empirical significance levels for example, it can still be limiting. Other methods of 

mapping are also available, however, which do not work directly with likelihoods. 
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Multiple Marker Methods: Kearsey & Hyne 1994 

 

Kearsey and Hyne (“QTL analysis: a simple „marker-regression‟ approach” TAG 

1994,89:698-702) introduced a marker based regression method, probably the easiest of 

all, which uses all markers located on a chromosome simultaneously.  

 

Recall that for a single marker, Mi say, with a single QTL 
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If the QTL is correctly located on a chromosome with multiple markers, a regression of 

difference between the homozygous classes on (1-2ri) for each marker will give a straight 

line with slope 2a, passing through the origin. 

 

If the QTL is located incorrectly and this regression is carried out, the goodness of fit of 

the line will not be so good. Therefore, for a set of markers on a chromosome, we can 

slide the putative position of the QTL from one end to the other and identify the position 

at which the error sum of squares is minimized as the most likely location of the QTL. 

 

This approach is less simple, potentially, than it appears. Firstly a simple regression treats 

the markers as independent, whereas they are not, they are linked. This is corrected for by 

relying on empirical significance levels obtained by simulation. Secondly, the error 

variances around each marker will vary depending on the distance of the marker from the 

QTL. This can be accounted for by using a modified regression method – general least-

squares regression, rather than ordinary least squares though I am unaware how much 

difference this makes in practice. 

 

Also note that the regression can be carried out on 
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to detect and locate the dominance effect, d, although the test has less power. 

 

The method can be extended to consider multiple QTL located on a chromosome by 

multiple regression on pairs (or more) of putative QTL locations, with a grid search of 

possible locations. 

 

This regression method is encoded in the software QTL café 

(http://www.biosciences.bham.ac.uk/labs/kearsey/applet.html). Note it will not work 

simply for dominant markers in an F2. 

 

http://www.biosciences.bham.ac.uk/labs/kearsey/applet.html
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Interval mapping by least squares regression: Haley & Knott 1992 
 

This has nearly identical power to ML estimation, but is simpler computationally. The 

method works by estimating the additive and dominance effects, a and d as regression 

coefficients in a regression of the phenotype on a function of the marker genotypes. The 

trick is to find this function. 

 

As usual, 

 

μQQ  = μ + a 

μQq  = μ + d 

μqq  = μ -  a 

 

We have two flanking markers M1, M2, each with alleles  M and m. 

 

We are looking for a regression:- 

 

ii edxaxz  21  

 

Taking the mean over any flanking multiple marker genotype, for example M1M1M2M2:- 

 

212211
dxaxMMMM    

 

We need to calculate the mean of this marker class directly and equate terms involving 

QQ and qq with x1 and terms involving Qq with x2. 

 

For an F2, write down the conditional probabilities of the QTL, for this marker class. 

(Hint – write down probabilities of gametes from the F1 first – already done for ML 

estimation). 
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r1   = recombination fraction between M1 and Q 

r2   = recombination between Q and M2 

r12  = recombination fraction between M1 and M2 

 

The addition of these three equations gives:- 
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as could be written down directly by considering M1 and M2 only, ignoring the QTL 

 

We can now write down the probability of each QTL class, conditional on the marker 

genotype M1M1M2M2.  The conditional equations are just those above divided by [(1-

r12)/2]
2
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We can now write down the expected mean for the marker class: 
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The terms in square brackets are the x-values for the regression equation, for the marker 

class M1M1M2M2.  

 

Terms can be written down for the other marker classes, and also for crossing schemes 

other than an F1. As you can see, this is fiddly and error prone. Fortunately, it has already 

been done. 

 

Armed with these sets of coefficients, all that remains is to regress the phenotype upon 

them. This is done for a range of values of r1 varying the QTL location from M1 to M2, 

just as in ML interval estimation. The best placement for the QTL is the location which 

gives the smallest error sum of squares, or the largest value for SSregression/SStotal. This 

latter quality can be converted to a LOD score equivalent for plotting purposes, if desired. 

 

The method has become widely used, and can easily be extended for multiple QTL, the 

inclusion of covariates, and so on. It is available in virtually all software for QTL 

mapping.  
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How many QTL might we detect? 

 

Noor et al. (Genetics 2001,159:581–588) studied the effect of variation in gene density 

and recombination frequency through a simulation study in Drosophila in which 50 QTL 

were distributed over the genome in proportion to known gene density.  

 

 Regions of high gene density – expect more QTL 

 Regions of low recombination – expect more QTL  

 

The number of genes per cM is the driver. 

 

There should be no large QTL but: 

 
 

 

In the same theme: 

 

Kearsey & Farquhar Heredity 1998 80:137-142.  Mapping studies rarely detect more than 

12 QTL and most detect many fewer. 

http://www.nature.com/hdy/journal/v80/n2/abs/6885001a.html  

 

Hyne and Kearsey TAG 1995 91:471-476  The upper limit to the number of QTL that 

one can reasonably expect to detect in a mapping experiment is 12. 

http://www.springerlink.com/content/v21062881u7270w5/  

 

http://www.nature.com/hdy/journal/v80/n2/abs/6885001a.html
http://www.springerlink.com/content/v21062881u7270w5/
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The harder you look the more you find? In the Illinois long term selection experiment 

fine mapping in a derived highly recombined population detected 50 QTL and predicted 

there to be 100. Laurie et al. Genetics 2004, 168:2141-2155 

http://www.genetics.org/cgi/content/abstract/168/4/2141 

 

Estimates of number of QTL from mapping experiments are minimum estimates and 

there could be many more which are undetected, or for which we only detect their 

combined effect when linked in coupling. 

 

 

Ghost QTL 
 

This term relates to a grosser version of the effect described above. If a pair of QTL are 

linked in coupling, then linkage analysis may detect a single large QTL located between 

the two. Equally, if the QTL are linked in repulsion, both may avoid detection. 

Composite interval mapping (below) can reduce the occurrence of these effects. 

 

 

The Beavis effect 

 

The is the QTL version of  “the winner‟s curse.” Suppose we have 20% power to detect a 

QTL as significant at p = 0.05 in a population of DH lines. Suppose we have 101 genes 

of equal effect a=1, segregating in an F2-derived set of inbred lines for a trait with a 

heritability of 100%. Testing for significance of the difference in means between the two 

classes (assuming a normal distribution), the expected value of the test statistic is  

 

E(t) = 

5050

2

VgVg

a



  = 1 

 

since the expected difference between the two homozygous classes is 2a and the residual 

genetic variation within classes is Σa
2
  = 100 

 

The 5% significance level, the two-tailed threshold is 1.96 (treating t as normally 

distributed. 

 

The probability that one of our tests exceeds 1.96 is  (in R) 

 

1-pnorm(1.96,1,1) = 0.1685276 This is our power. 

 

That is, we expect to find significant 17 loci out of the 101 total, and their minimum 

estimated effect must be 1.96 (solving E(t) = 2 for a in the equation above) showing  

there is very large bias in this case. In fact we can go a bit further: 

 

The mean difference between classes for loci which exceed the threshold can be 

calculated  following the methods for computing the intensity of selection as  

http://www.genetics.org/cgi/content/abstract/168/4/2141
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i = Φ(z)/p 

 

 

This is correct for a standard normal distribution, N(0,1), only.  In our case, the variance 

of E(t) is 1 and the mean is also 1. We require 

 

 

i = Φ(1.96-1)/0.1685276   = 1.49 

 

Adding back in the mean E(t) gives the mean of the selected group as 2.49 – a large bias. 

The calculation is easy in R:  

 
dnorm(1.96-1)/0.1685276 

 

or the whole exercise can be simulated 

 

x<-rnorm(100000,1,0) produce 100,000 N(1,1) numbers 

y<-subset(x,abs(x)>1.96) select those < - 1.96 and > +1.96  

> length(y)/length(x) how many are significant (= power) 
[1] 0.1714 

> mean(y)    the average of the significant subset 
[1] 2.454452 

 

The answer is very close to that which we calculated. The advantage of simulating is that 

we could build on this to draw our gene effects from more realistic distributions rather 

than keeping them all equal as here.  

 

This bias is named the Beavis effect after its discoverer. It describes the upward bias in 

the estimation of QTL effects in mapping experiments. For a given effect, as power 

increases, the bias is reduced, but in practice in most realistically sized mapping 

experiments, some QTL of minor effect will be detected and their effect will be grossly 

overestimated.  
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What is the distribution of QTL effects? 

 

Xu (Genetics 2003 163:789-801) used a Bayesian method to estimate marker effects at 

all markers simultaneously over the whole genome (barley). The unbiased distribution of 

gene effects is L shaped whereas single marker regression (not the best of methods to 

select for comparison) show more apparent QTL of larger effect: 

 

 
 

(a) Multiple-marker Bayesian analysis; (b) individual-marker regression analysis 

 

The debate over the number of genes contributing to variation in the typical quantitative 

trait has had a long history. Even before marker based analysis, there were strong 

divisions into those who believed the number was large, and those who believed it was 

small. As the results from QTL mapping experiment first emerged, it seemed as though a 

small number of QTL commonly accounted for most of the genetic variation. This 

position has been eroded and the consensus view now is that the number of genes 

affecting the typical trait is large, closer to 100 than 10, and that most of these genes have 

small effects. Moreover, though a small number of genes do have large effects, there is 

more caution that formerly about immediately concluding that seemingly large QTL are 

the result of a single gene. Nevertheless, QTL of large effect do undoubtedly exist. 

http://www.genetics.org/content/vol163/issue2/images/large/GEN6429.f2.jpeg
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Detecting multiple QTLs: Composite Interval Mapping 

 

So far we have only considered attempts to find QTL one at a time – we compare 

likelihoods for the presence of a QTL at a location with no QTL at the location. As a 

result of QTL segregating elsewhere in the genome, the error variance will be increased 

and the power to detect any specific QTL will be reduced. A simple way of increasing 

power is to reduce the error variance (talking in ANOVA terms) by including covariates. 

You can do this anyway - the covariate could be flowering time, disease incidence, 

whatever. But take care: if the covariates themselves are genetically correlated with your 

trait, you are redefining the trait you are trying to map. Equally, a covariate could be 

another marker linked to a known QTL. An example might be in mapping yield or quality 

in wheat, if the population is segregating for dwarfing genes or for the photoperiod 

response gene, ppd, you would wish to include genotypes at these loci as covariates.  

 

If we don‟t know what marker covariates to include, we can carry out an initial genome 

scan, then include the marker closest to the peak QTL as a covariate and repeat the 

analysis, then add in the marker closest to the second largest QTL and so on. There would 

need to be stopping rules - AIC or similar -and there would need to be different 

significance thresholds at each scan, but this would work. Composite Interval Mapping is 

simply a method of doing just this.  

 

Which markers to include? Always included the two markers flanking the interval being 

considered (ie we consider four markers in total). This is sufficient to absorb the effects 

of all the linked QTL on the chromosome except those in the intervals adjacent to the one 

being tested.  

 

Number of unlinked markers? No more that 2√n where n is the number of individuals. 

We require some method of selection – select those which come up significant on interval 

mapping. or select those which show the largest single marker effects. 

 

 

Multiple QTL mapping 

 

CIM is still only searching for a single QTL at a time, with added covariates. 

 

A two locus equivalent of interval mapping is to scan every pair of intervals 

simultaneously. For each putative QTL pair there are four genotype classes (assuming 

we‟re working with inbred lines). giving 1 df for the effect at each locus and one for their 

interaction. It is possible to maximize the likelihood for every pair of positions in every 

pair of intervals and report the results. This is implemented in R/QTL. Because so many 

positions are scanned, this is very slow especially when getting significance values by 

permutation. 

 

Note that we also need permutation values for each LOD. There are three basic LODs: 
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full model with 3df 

 partitioned into 

additive 2df 

interaction  1df 

 

There are also the two individual LODs for each QTL considered separately. R/QTL 

calculates five LODs, following a slightly different partition: 

 

full model      3df 

additive      2df 

interaction      1df 

(additive minus largest of the single LODs)  1df 

(full minus largest of the single LODs)  2df 

 

These last two are tests for the additional effect of a second QTL given the first (largest). 

 

R/QTL does much of its multiple QTL analysis by imputation. Here, rather than 

modelling the probability of a QTL at specific positions within intervals, pseudo-marker 

data are first generated by imputation. In this, the probability that a specific chromosome 

location has originated from one or other of the parents is used to sample at random a 

progeny chromosome. Over the whole genome, this then gives a set of pseudo-markers 

which can be used in the QTL detection and location analysis, rather than including 

probabilities within the mapping exercise. So for example, if the probability at a 

particular locus is 0.8 that it is inherited from parent A, then samples of chromosomes 

would be drawn of which 0.8 would be A and 0.2 would be from the other parent. The 

initial imputation is slow, but subsequent analyses are fast. Multiple imputations are 

required to get significance levels, otherwise we would generate an excess of false 

positive results by treating the pseudo-markers markers as real. This approach, which I 

think is much used in Bayesian analysis, is good for multiple QTL analyses, since we end 

up carrying out the equivalent of single marker analyses which are faster. 

 

 

The Advanced Intercross 

 

This approach to fine mapping was introduced by Darvasi and Soller in 1995. Rather than 

mapping in an F2, or in inbred lines derived from an F2, one first intermates the F2 for 

several additional generations.  

 

If θ is the recombination fraction in the F2, the expected frequency of a recombinant 

gamete in the Fn generation is: 

 

θ‟ =  [ 1-(1- θ)
n-2

  (1-2θ) ] /2  

 

For small values of θ 

 

(1- θ)
n-2

  (1-2θ) ~ e 
-θ(n-2)

 e
-2θ

 ~ e 
-θ(n-2) - 2 θ

 ~ e 
-θ(n-2) - 2 θ

 ~ e 
-θn
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and provided θn is small too 

 

θ‟ ~  (1- e 
–θn 

)/ 2 ~ (1-(1- θn))/2 = θn/2 

 

So as the number of generations is increased, the proportion of recombinant gametes is 

increased.  This “map expansion” gives greater precision in mapping. Mapping with lines 

derived from an advanced intercross proceeds exactly as for lines derived from an F2, but 

using the expanded map. For example, a QTL which is mapped to a 0.2 Morgan interval 

in the F10 has actually been mapped to a 0.05 Morgan interval on the F2 map. This 

approach requires more markers for mapping and more time. There is a loss of power to 

detect QTL - in effect we are carrying out more multiple tests. However, there is nothing 

to prevent one mapping as normal in the F2 or with F2 derived lines, and then fine 

mapping in the advanced intercross. 

 

A simple extension to this approach has been implemented by Mott et al (PNAS 2000 

97:12649-12654). In this, a population with >2 founders is established, intermated for 

many generations and then used for mapping. Mott et al were fortunate enough to access 

a mouse population with eight founders which had undergone 60 generations of random 

mating. The advantage of having multiple founders is that it increases the number of QTL 

segregating within the population and the number of traits for which the population is 

likely to be informative. Analysis methods become more complex, though single marker 

analysis remains straight forward. Simulations studies have demonstrated the power and 

precision of this method and it is being very successful in mouse: mapping multiple QTL 

for multiple traits to intervals of a few cM. In crops, the same approach has been called 

the multiparent advanced generation intercross (MAGIC) (Mackay and Powell TIPS 

2007 12:57-63) and populations are being established in wheat, with some uptake now 

into other crops too. 

 

 

Doubled haploid lines and single seed descent lines 

 

These are not identical for mapping purposes. Doubled haploid lines have only a single 

round of meiosis between the F1 and their creation. SSD lines have many sexual cycles, 

but as homozygosity is approached, the opportunity for recombination declines with the 

frequency of double heterozygotes. As a result, the linkage map is expanded in SSD lines 

compared to the map in the F2 or in doubled haploids.  This was first worked out by 

Haldane and for closely linked markers the apparent recombination fraction is doubled. 

So mapping in SSD lines could give twice the precision, at some loss of power, compared 

to doubled haploids. This will be offset, partly, by the fact that the SSD lines are never 

completely homozygous. 

 

This is something to be wary of in mapping experiments. If you are creating your own 

marker map from the same population in which you plan to map QTL, then there is no 

problem. However, if you plan to use a map from a different population, or a consensus 

map, you need to take care that it is on the correct scale for your own use: a map 
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produced on doubled haploids could be half the length of the map you require for your 

population of SSD lines. A simple way around this it to keep the marker order the same 

but re-estimate the recombination fraction using your own data. Also note that QTL 

mapping programs have different conventions for how they read map distances. Some 

may apply the map directly to the data, some may expand the map for you if you declare 

that you are mapping SSD lines. You need to take care not to map SSD lines as if they 

were equivalent to DH lines or vice versa. This is aside from whether Kosambi or 

Haldane is treated as the default mapping unit. 

 

 

Significance 

 

Firstly a note on LODs and LRTs. You must not use these interchangeably. They are 

different. The likelihood ratio test, in the context of QTL analysis, is two times the 

natural logarithm of (likelihood there is a QTL linked to the marker or chromosome 

location / likelihood there isn‟t a linked QTL). For the sorts of sample sizes usually dealt 

with in linkage analysis, it is distributed as a chi-squared test. We are testing whether θ 

<0.5 against θ=0.5. We are not interested in testing θ >0.5. For this reason, we must half 

the usual probability from the chi-squared test. Usually, but not always, the test has 1df. 

The logarithm of odds is the log10 of the (likelihood there is a QTL at point x / likelihood 

there isn‟t a QTL at point x). It was introduced by Morton in 1955 to simplify the reading 

of results from linkage analysis experiments, particularity of humans. A LOD of 3 

corresponds to an odds ratio of 1000 – the odds of their being a linked QTL is 1000 times 

greater that the odds that there isn‟t one. The mistake that is often made is to equate this 

to a probability of 10
-3

. To convert a LOD to a LRT we multiply by 2ln(10) or 4.605. A 

LOD of 3 gives a LRT of 13.82.  Treating a LRT as if it were a LOD will give a very 

optimistic view of the strength of evidence in favour of linkage. The probability 

associated with chi-squared = 13.82 (1 df) is 0.0002. Halving this, we get 0.0001. So a 

LOD of 3 is equivalent to a p-value of 10
-4

 and not 10
-3

. 

 

In fact, a LOD of three isn‟t a bad threshold to use for declaring statistical significance in 

many species. If we test only a few markers, we can use the Bonferroni correction to 

assign a significance level to the whole experiment. With interval mapping, as a first 

approximation we can use the Bonferroni correction to adjust for the number of intervals 

tested. Linkage between markers means that the tests among adjacent markers are not 

independent so the Bonferroni correction can be far too stringent. This can be taken into 

account. Lander and Bostein give the following formula for calculating an appropriate 

LRT threshold: 

 

 LRT = (C+2Gχ)p(χ) 

 

C is the number of chromosomes.  

G is the total genetic length (in Morgans not cM). 

χ is the value of chi squared  

 

The LOD threshold is then just  LRT / 4.605 
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There is a workbook in “genetics odd and sods.xls”  which does this. For a genome of 10 

chromosomes, each 1 M long, this gives a genome wide LOD threshold of 3.07. That is, 

one genome scan in 20 will give a LOD greater than this under the null hypothesis. This 

corresponds to a nominal per-test significance level of 1.71 x 10
-4

. In fact, the Lander and 

Botstein method of calculating thresholds is too stringent too. Significance levels are 

often determined empirically; by permuting the phenotype against the marker data and 

reanalysing. This works well, but can take an awful amount of computer time. An 

advantage of permutation testing is that it also accounts for effects of segregation 

distortion and missing data which are otherwise hard to deal with. 

 

 

Support intervals for QTL location. 

 

The convention is to provide the 1 LOD support interval; that is the interval of 

chromosome on either side of the peak LOD which is within one LOD unit of the peak. 

This is sometimes helpfully extended outwards to give the pair of flanking markers which 

encompass this interval. Although they cannot be translated exactly, this isn‟t too 

dissimilar from a 95% confidence interval for a mean: a 1 LOD support interval 

corresponds to a 4.61 LRT support interval. p(χ
2

1= 4.61) = 0.016 (1 tailed test), not too 

far of 0.025 for a conventional 95% c.i. 

 

 

Sample sizes, marker numbers and power 

 

Power depends more on sample size than on marker density. Once a mean density of 20-

25cM is obtained, it is better to increase the population size than to add markers. There is 

little point in increasing marker density below 10 cM intervals. K&P are very clear – four 

or five well spaced markers per chromosome are adequate. For advanced intercrosses and 

mapping in more highly recombined populations, more markers will be required.  

 

The typical mapping population consists of 100-200 SSD or DH lines. An incomplete 

survey of populations available with the EU (for a grant application) gave: 

 

  no. average minimum maximum 

wheat  18 153  65  241  

OSR  7 270  101  1100 (one large population) 

maize  4 149  70  236 

durum wheat 9 196  100  384  

 

These numbers seem on the low side to me.  

 

For a single locus test, sample size for any chosen levels of significance and power can 

be calculated from the properties of the normal distribution, just as for a standard test 

between two means (in this case the mean of the two markers classes). Following F&M, 

this simplifies to: 
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n  ≥2  (zα +zβ)
2 

/ (d/σ)
2
 

 

n is the number in each markers class, so the mapping population should be ≥2n 

 

zα is the cut-off corresponding to the (two-tailed) significance level 

ie 1.96 for α = 0.05 

 

 zβ is the cut-off corresponding to the desired power of 1- β (nb-one tailed). 

 

 d is the difference between the two means 

 

 σ is the standard deviation of the mean of a marker class. 

 

for a very modest α = 0.05, β = 0.1 (90% power) d/σ = 1 (QTL heritability of 0.2 among 

DH or SSD lines this gives a desired population size is 42. 

 

If we have a target LOD of 3, (p= 0.0001) then the population size increases to 107, and 

if we have a QTL heritability of 0.1, then the population size is 240. These calculations 

assume perfect markers for the trait so in practice these are lower estimates of sample 

size, though multiple marker methods of mapping will help. 

A single locus heritability of 0.1 is still a large effect. Inbred lines are cheap to produce. I 

do not understand why, with a few exceptions, mapping populations are as small as they 

are. There is no requirement to genotype or phenotype all lines immediately but at some 

stage it is guaranteed that you will need more; you become interested in epistasis, the 

detection of which requires large sample sizes or you want to map for something like 

drought in a subset of lines with very similar maturity (this is still epistasis). Or you just 

want more precision. Whatever. You need a larger mapping population. Knowledge is 

power (Francis Bacon). 

 

More accurate power calculations can, as usual, be determined by simulation. 

Simulations have the advantage that they can use real genotypes, complete with patterns 

of missing data for your specific mapping population. 

 

 

Combining data across populations 

 

The LOD score was originally introduced into human genetics by Newton Morton in 

1955. The idea was that it is easy to understand, but also that it is additive across 

pedigrees. Over time, LODs on separate pedigrees could be added to give better support 

for linkage. So combining data across mapping experiments should be straight forward, 

yet is little used. 

 

Firstly, I‟ll make explicit what is meant. We‟ll assume we have two inbred mapping 

populations with the same markers. We fit a QTL with an identical effect, a, at the 

identical chromosome position, p, in both populations. Then the LOD with 1 df (or 

equivalently the LRT) for a at p over both populations is just the sum of the LODs for a 
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and p in the two populations analysed separately. This is only true if a and p are kept 

constant in both populaions. If a is maximized independently in each population (still 

holding p the same) then the sum of LODs is now a two 2df test (we have fitted two 

parameters). This is acceptable, but the increase in df will lose power. The difference 

between the two LODs is a 1 df test for the difference in QTL effect between the two 

populations.  

 

The frustrating thing about this simple approach is that not all our populations are likely 

to be segregating for the same set of QTLs, so by adding in populations we may just be 

adding noise. However, one cannot select populations where a seems large for a joint 

analysis– we would get very strongly biased effects and spurious significance levels. 

More complex models have therefore been developed in which the probability that a 

population is segregating is included in the model, or where a is treated as a random 

effect which varies from population to population. There are also methods and software 

such as MetaQTL (Veyrieras at al MBC Bioinformatics 2007 8:49) which do not require 

reanalysis of the raw data; they can work on published maps and estimates of location 

and QTLs. This could allow meta-analysis of several decades of QTL mapping 

experiments. Is there a risk here of publication bias? Probably not too great because most 

QTL mapping experiments seem to find something somewhere and therefore get 

published, usually quoting the negative results as well as the positive. 

 

  

Beyond inbreds:  full sibs, half -sibs, complex pedigrees 

 

I shall say little about these because they are not much used in plant breeding. In animal 

genetics large half-sib families are common. In human genetics mapping has been mainly 

in multiple small full-sib families, especially of sib-pairs for which special methods exist. 

However there are some species where the generation of mapping populations is difficult 

or mapping must be attempted in near-natural populations. Coconut is my favourite. 

 

For mapping within full-sib families and half-sib families, single marker analysis based 

on a t test remains straight forward and is described in more detail below. 

 

Half-sibs 

 

Mapping with half-sibs compares the difference in phenotype between alternative alleles 

from the common parent (typically the male in animal genetics and typically the female 

in plant genetics). We are mapping using those loci for which the common parent is 

heterozygous. We may have multiple alleles, for an SSR for example. The expected 

difference in means for a pair of markers is: 

 

(1-2θ)(a1-a2) where ai is the additive effect ith QTL allele.  

 

Different half-sib families can have different linkage phases. Working on the square of 

the difference between the two alleles avoids this problem and has the expectation: 
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(1-2θ)
2
σA

2
+ Verror 

 

which no longer depends on phase. 

 

If we carry out a t test for each of n families, square them and add them up,  this is 

approximately a chi sq test with n df  provided samples sizes are reasonably large. More 

effectively we can carry out a hierarchical ANOVA. 

 

The problem with this approach is that rare QTLs, even of large effect, will be missed 

because most common parents will not be heterozygous. Though perhaps one could 

select on parental phenotype first. 

 

Full-sib families 

 

Again, we can compare differences between genotype classes using an ANOVA. There 

may be up to four alleles segregating. Expectations are more complicated. To combine 

over multiple families, we can carry out a hierarchical analysis of variance.  

 

Mapping in phase known full-sib families (equivalent to a four-way cross) is easier. 

R/QTL will analyse these. R/QTL cannot currently analyse phase unknown full-sib 

families. For small family sizes, QTL express http://qtl.cap.ed.ac.uk/ will work. For 

complex pedigrees, Merlin or Simwalk  are good starting points. If anyone needs more 

information about these approaches, best to contact me directly. 

 

Power to detect QTL in these more complex population structures is weak compared to 

mapping in a population of SSD or DH lines. 

 

 

Mapping traits with a non normal distribution 
 

In order of increasing complexity: 

 

1) Single marker analysis is always possible in general statistics packages. 

2) Just analyse as usual and hope for the best. 

3) Transform the data to try to make it normal. 

4) Analyse as usual and use permutation to get significance. 

This will be OK for type I error but may lose power. 

5) If you know the distribution, work directly on maximizing the likelihood. 

  

Option 5 may be available in some mapping packages already. It is promised (long term) 

in R/QTL. 

  

http://qtl.cap.ed.ac.uk/
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Genetical Genomics 

 

I wanted to mention this somewhere. This term was introduced by Jansen and Nap (TIG 2001 

17:388-391) to describe the marrying of genomics and proteomics with genetic analysis. 

They had in mind in particular the increasing availability of large quantities of gene 

expression data. By taking the expression profile of each individual in a mapping population, 

expression levels at each gene can be treated as a phenotype and QTL located. Sometimes the 

QTL are found to map to the same location as the gene, implying, but not absolutely 

demonstrating, variation in cis acting regulatory factors. QTL mapping to different 

chromosomes can only be a result trans acting regulators. One can compare expression 

patterns at different genes with each other and with their map position and infer biochemical 

pathways. Correlations with phenotypes of more direct relevance to breeders can also be 

incorporated. These mapping experiment have big multiple testing problems so stringent 

significance levels need to be set. Example analyses can be found in yeast, Arabidopsis, 

barley, and maize and I am sure there are others. The approach has been extended too, to use 

association mapping rather than linkage mapping, permitting application to humans and other 

species in which linkage analysis is difficult.  
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METHODS FOR LINKAGE DISEQUILIBRIUM MAPPING IN CROPS. 

 

This section has been published as: 

 

Mackay, I.J., Powell, W. (2007) The Significance and Relevance of Linkage 

Disequilibrium and Association Mapping in Crops. Trends Plant Sci. 12: 53-53. 

 

See also 

Cavanagh C, Morell,M, Mackay I, Powell W (2008) From mutations to MAGIC; 

resources for gene discovery, validation and delivery in crop plants. Current 

Opinion in Plant Biology 11:215-221 

 

Abstract 

 

Linkage disequilibrium (LD) mapping detects and locates quantitative trait loci by 

the strength of the correlation between a trait and marker. It offers greater precision in 

QTL location than family based linkage analysis and will therefore lead to more efficient 

marker assisted selection, facilitate gene discovery and help meet the challenge of 

connecting sequence diversity with heritable phenotypic differences. Unlike family based 

linkage analysis, LD mapping does not require family or pedigree information and can be 

applied to a range of experimental and non-experimental populations. However, care 

must be taken during analysis to control for the increased rate of false positive results 

arising from population structure and variety interrelationships. We discuss the suitability 

for crops of the alternative methods of LD mapping which have recently been developed. 

We advocate the development of multiparent advanced generation intercrosses in crop 

plants to facilitate future fine mapping projects. In addition, fine mapping of existing 

linkage regions and candidate genes should be attempted in existing sets of phenotyped 

cultivars, using statistical methods to control the rate of false positives. 

 

 

Linkage disequilibrium mapping: methods developed for human genetics find 

applications in crops. 

 

Linkage disequilibrium (LD) mapping, also known as association mapping or 

association analysis, detects and locates quantitative trait loci (QTL) based on the 

strength of the correlation between mapped genetic markers and traits. It relies on the 

decay of LD, initially present in a population, at a rate determined by the genetic distance 

between loci and the number of generations since it arose (Box 1). Over a series of 

generations, in an unstructured population (a randomly mating population with no 

complicating factors such as population subdivision and immigration), only correlations 

between QTL and markers closely linked to the QTL will remain, facilitating fine 

mapping. However, most populations have some degree of structure or subdivision and 

the simple relationship between strength of correlation and meiotic distance does not 

apply: correlations between unlinked loci often occur. Recently, methods of LD mapping 

which adjust marker-trait associations for these spurious associations have been 
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introduced. Originally developed for human genetics [1, 2], these methods and their 

derivates are now being applied to crops; driven by the development of cheaper, higher 

density molecular markers. Successful use will lead to more efficient marker assisted 

selection, facilitate gene discovery and help meet the challenge of connecting sequence 

diversity with heritable phenotypic differences. 

In this review, we first describe the relationship between family based linkage 

analysis and LD mapping. We then outline the methods currently available before 

discussing the opportunities and challenges of LD mapping in crops. A review of 

practical results in crops can be found be found in [3]. 

 

 

Family based linkage mapping and LD mapping compared 

 

Family based linkage (FBL) mapping can be regarded as a special case of LD mapping in 

which LD is generated by establishing a population from a very small number of 

founders in the very recent past. An F2 population, for example, is derived from a single 

F1 plant. The meiotic process and an appropriate experimental design ensure that the 

strength of the correlation between a marker and trait is proportional to the genetic 

distance of the marker from the QTL, with the correlation between unlinked loci being 

zero. Precision of QTL location depends on the detection of differences in recombination 

fraction () between QTL and adjacent markers. In an F2 with markers located 0, 1 and 

10 cM away from a QTL, the proportion of non-recombinant chromosomes is roughly 1, 

0.99 and 0.9 respectively. Detecting a difference in signal strength between these markers 

requires a large experimental population. If the F2 was randomly mated for 100 

generations, then the non-recombinant chromosomes are at frequencies of 1, 0.68 and 0.5 

respectively [4] and QTL could be located more precisely. In natural populations of crop 

plants, or among collections of cultivars, there have often been many rounds of historical 

recombination. LD mapping exploits this historical recombination and provides 

opportunities for fine mapping that are difficult to achieve through family based linkage 

analysis. However, for QTL detection, rather than location, FBL mapping will generally 

be more powerful. In this case, the lack of recombination between a QTL and linked 

marker increases power of detection. For these reasons, it is unlikely that LD mapping 

will supersede FBL mapping: the two approaches are complimentary.  

FBL and LD mapping also differ in their dependency on allele frequency in the 

population being mapped. In populations of plants derived from an F2, QTL are either 

not segregating, or are segregating at a frequency of 0.5 (ignoring selection and drift). 

Careful choice of parents, for example selecting phenotypic extremes, is therefore 

required to ensure that the population is segregating for most QTL for the trait of interest. 

LD mapping generally samples lines from a pre-existing population with multiple 

founders.  The greater range of genetic material in such a population makes it more likely 

that multiple QTL will be segregating for multiple traits. However, allele frequencies at 

QTL and markers will also vary. Power of detection of QTL depends strongly on QTL 

allele frequency; rare alleles have low power of detection. Detection is also more likely if 

QTL and marker allele frequencies match. In LD studies therefore, it is wise to ensure 

that the full range of marker allele frequencies is covered. Moreover, if prior knowledge 

suggests that QTL allele frequencies are rare (for example a rare trait may show 
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Mendelian inheritance) then LD mapping is unlikely to be successful and FBL mapping 

is preferred. 

For LD mapping to be possible, LD must be present in the population under 

study. Causes of LD are outlined in box 2. 

 

 

Methods for LD mapping  
 

1. The Multiparent Advanced Generation Intercross 

In the Advanced Intercross [5], F2 individuals are intermated for several generations 

before mapping. The successive rounds of recombination cause decay of LD and the 

precision of QTL location to increase. This approach has now been extended to include 

populations with multiple parents, to take into account information from multiple linked 

markers [6, 7], and to prioritise candidate polymorphisms [8]. Its resolution and power 

are reviewed in [9]. The multiparent advanced generation intercross (MAGIC) was first 

proposed and applied to mice [6] where it is described as “heterogenous stock.” Recent 

successes are described in [10]. In both crops and animals, an advantage of the method is 

that a population can be established containing lines which capture the majority of the 

variation available in the gene pool. Although it may take several years before these 

populations are suitable for fine mapping, they are cheap to set up and their value as 

mapping resources increase each generation. In plants, MAGIC can be used to combine 

coarse mapping with low marker densities on lines derived from an early generation, with 

fine mapping using lines derived from a more advanced generation of crossing and a 

higher marker density. If such populations were established now, they would be well 

placed to exploit the advances in genomics technology and reduction in genotyping and 

sequencing costs predicted to occur in the next few years [11-13]. 

 

2. The Transmission Disequilibrium Test and derivatives. 

The ability to map QTL in collections of breeders‟ lines, old landraces or samples from 

natural populations has great potential. In these populations LD often decays more 

rapidly than in controlled crosses. Also, phenotypic data often already exist, saving time 

and money. The challenge is to distinguish QTL–marker associations arising from LD 

between closely linked markers from spurious background associations. The first and 

most robust method of achieving this was the transmission disequilibrium test (TDT) 

introduced by Spielman et al. in 1993 [14]. 

 The TDT provides a way of detecting linkage in the presence of disequilibrium 

[14]. Neither linkage alone nor disequilibrium alone (i.e. between unlinked markers) will 

generate a positive result so the TDT is an extremely robust way of controlling for false 

positives. At its simplest, multiple families consisting of two parents and a single progeny 

are collected, as shown in Figure 1. 

 

Figure 1. The transmission disequilibrium test. In the simplest case, progeny are selected 

for an extreme phenotype and transmissions to the progeny from heterozygous 

parents counted. In the case show, there are four heterozygous parents from which 

allele „A‟ is transmitted three times and allele „a‟ once. This frequency is compared to 
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the 1:1 ratio expected in the absence of linkage disequilibrium between the marker 

and linked QTL.  

Aa Aa
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AA     aa

Aa

AA     Aa
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Aa aa

aa

parents

selected progeny

Figure 1

 
The single progeny in each family is usually selected for an extreme phenotype. 

In human genetics this typically means they are affected by the disease under study. 

Parents and progeny are genotyped, but only parents heterozygous at the marker locus are 

included in the analysis. From each parent, one allele must be transmitted to the progeny 

and one is not transmitted. Over all families, a count is made of the number of 

transmissions and non-transmissions. In the absence of linkage between QTL and marker, 

the expected ratio of transmission to non-transmission is 1:1. In the presence of linkage it 

is distorted to an extent which depends on the strength of LD between the marker and 

QTL. The distortion is tested in a chi-squared test. Power depends on the strength of LD 

and on the effectiveness of selection of extreme progeny in driving segregation away 

from expectation. 

  This elegant test is extremely robust to the effects of population structure, 

but is very susceptible to an increase in false positive results generated by genotype error 

and biased allele calling [15]. This risk can be reduced by modelling genotype errors and 

missing data in the analysis [16-18], or by comparing the transmission ratio for extreme 

phenotypes to that for control individuals or for the opposite extreme. The TDT has been 

extended to study haplotype transmissions, quantitative traits, the use of sib pairs rather 

than parents and progeny, and information from extended pedigrees.  A review of the 

TDT and other family based association tests is given in [19]. 

 In crops, parental and progeny lines are usually separated by several generations 

of gametogenesis rather than by one. In this case the TDT is still valid, but might no 

longer be so robust: the process of breeding might itself distort segregation patterns. A 

family-based association test based applicable to plant breeding programs has recently 

been proposed [20]. The authors point out that for candidate gene studies, this method is 

more cost effective than the alternative methods described below since no additional 

control markers are required. Some power will be lost, however, since only progeny 

derived from F1s known to have a heterozygous marker genotype are informative. 
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3. Genomic control 

Population structure arising from recent migration and population admixture will 

generate LD between a trait and markers distributed over the whole genome.  This can be 

detected by studying whether the distribution of the test statistic for association, 

estimated empirically from a set of genome-wide distributed markers, differs from the 

expected null distribution. This is the basis of genomic control (GC) [21, 22]. To estimate 

the empirical distribution accurately would require many markers. However, all that is 

required is to estimate the mean test statistic and compare with its expected value (1.0 for 

a 1 degree of freedom chi-squared test) for which only approximately 50 markers are 

required [23]. If the average chi-squared at a set of 50 control markers is much greater 

than one, population structure is indicated. 

For any candidate marker, the null-hypothesis is now no longer absence of 

association between it and the trait. Rather, it is that there is no association above the 

background level resulting from population structure. To test for this, we simply divide 

the observed chi-squared between the candidate and trait by the average chi-squared at 

the control markers and look up the p-value of the adjusted chi-squared in the usual 

manner. 
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 GC is valid for any single degree of freedom test. Preferably, the control markers 

should loosely match the test marker in allele frequency, but this is not critical [22].  

 For quantitative traits, the difference between trait means for each marker class is 

usually tested in a t-test. Provided the number of observations is reasonably large, t
2
 is 

distributed as a 1 degree of freedom chi-squared and GC can still be carried out. More 

recent work has suggested that greater accuracy is achieved by treating the test statistic as 

an F test with one degree of freedom (df) in the numerator and degrees of freedom in the 

denominator equal to the number of control loci [24]. 

 More sophisticated versions of GC are available. With large numbers of candidate 

polymorphisms to test, the majority are not expected to be genuinely associated with the 

trait. In this case, procedures and software are available in which, in effect, the candidate 

markers act as their own controls. GC has also been extended to control for bias in 

accuracy of genotyping between DNA samples from different origins [25] and to tests 

with greater than one df [26]. 

 GC also corrects for unknown kinship among collections of lines [21]. The 

presence of related lines can greatly increase the frequency of false positives. For many 

crop datasets this will be the greatest source of bias. 

 The correction of the false positive rate using GC comes at a cost: power is 

always decreased. This loss of power can be great in cases of extreme population 

subdivision [27]. Also, since loci can vary in their differentiation between populations, 

the uniform adjustment of GC might be insufficient for some candidate polymorphisms 

and overcorrect at others [28].  
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4 Structured association 

Structured association (SA) provides a sophisticated approach to detecting and 

controlling population structure [29-31]. Again, additional markers are required, 

randomly distributed across the genome. Just as for GC, recent migration and population 

admixture are assumed to generate LD among unlinked and loosely linked markers which 

has yet to decay fully. However, we expect the parental populations themselves to be in 

linkage equilibrium. By trial and error one could allocate the individuals in our sample to 

parental populations such that disequilibrium within populations was minimised. One 

could then include information on population membership in the test of association. This 

is the approach taken for SA. First individuals are allocated to populations, then this 

information is used to control for population membership in test of association [29-31]. 

 To allocate individuals to populations we need to know in advance how many 

populations there are. If unknown, this can be estimated: the allocation process is 

repeated for different possible numbers and the best fitting selected. Nevertheless, 

deciding on population number can be problematic. 

 The computer program STRUCTURE [29] uses computationally intensive 

methods to partition individuals into populations. Many individuals or lines will not 

belong uniquely to one, but will be the descendents of crosses between two or more 

ancestral populations. STRUCTURE also estimates the proportion of ancestry 

attributable to each population.  

 Following allocation of individuals to populations, the test for association is 

carried out in a model fitting exercise. Here, the principle is that variation attributable to 

population membership is accounted for first, using estimates of population membership 

from STRUCTURE, and then the presence of any residual association between the 

marker and phenotype is tested. For example, to test for association between a 

quantitative trait and a microsatellite, the trait is first regressed on the estimated 

coefficients of population membership and then on the marker – coded as a factor as if in 

an analysis of variance [32]. 

 SA is effective in detecting and adjusting for the presence of population structure, 

but does not deal with consanguinity within populations. Recently, the Buckler group 

introduced a method in which population membership is estimated using STRUCTURE 

and kinship among varieties is estimated empirically from a second set of control markers 

[33]. The analysis takes into account both population structure and the correlation 

between individuals which results from their relationships. This method is implemented 

in the software TASSEL [ 29, 34] 

 

5. Logistic regression 

Recent simulations suggest that multiple stepwise logistic regression may be robust to the 

effect of population structure in its own right [27]. Here disease status (affected or 

unaffected) was used as the outcome variable in a logistic regression on multiple null and 

candidate markers. Stepwise multiple logistic regression gave false positive rates close to 

the desired significance level with little loss of power. The authors propose logistic 

regression with null markers as covariates as a less conservative (fewer false negatives) 

method than GC, but with a lower requirement for additional markers than SA. To date, 

the method has not been tested on crops and has not been adapted for quantitative traits. 
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Multiple regression with stepwise selection has been applied to barley however, to 

consider the joint effect of multiple marker-trait associations [35].  

 

6. Principal component analysis 

Recently a method termed EIGENSTRAT has been proposed, based on principal 

component analysis (PCA) across a large number of bialleleic control markers with a 

genome wide distribution [28]. The PCA summarises the variation observed across all 

markers into a smaller number of underlying component variables. These can be 

interpreted as relating to separate, unobserved, sub-populations from which the 

individuals in the dataset (or their ancestors) originated. The loadings of each individual 

on each principal component describe the population membership or the ancestry of each 

individual. These estimates are not ancestral proportions however (values can be 

negative) in the same way that estimates of ancestry from STRUCTURE are. The 

loadings are used to adjust individual candidate marker genotypes (coded numerically) 

and phenotypes for their ancestry. The adjusted values are independent of estimated 

ancestry so a statistically significant correlation between an adjusted candidate marker 

and adjusted phenotype is therefore evidence of close linkage of a trait locus to the 

marker. 

The approach in EIGENSTRAT is similar to that of SA, but is less dependent on 

assessing the number of ancestral populations. Although each principal component is 

attributed to a separate population, the analysis is robust to the number included in the 

analysis, provided this is sufficiently large to capture all true population effects. 

EIGENSTRAT was developed for application to human datasets with high 

density genotyping and low levels of population differentiation. Many crops have much 

higher levels of population differentiation and often only low densities of markers are 

available. In addition, EIGENSTRAT does not cope with close kinships. The authors 

suggest identifying these by other means and then selecting the largest subset of unrelated 

individuals. However, they also suggest combining EIGENSTRAT with GC to control 

for residual confounding. It is possible that such use of GC would also account well for 

kinship. EIGENSTRAT, unlike SA, will not readily handle multiallelic markers. 

However, a microsatellite with 10 alleles could be coded as 10 biallelic loci, all in 

complete LD. An analysis of human data showed EIGENSTRAT was little affected by 

LD among over three million SNPs. It is possible therefore, but remains to be 

demonstrated, that EIGENSTRAT will be applicable to more modest numbers of 

microsatellite genotypes, suitably coded. The method therefore shows great promise, but 

additional research is required to establish its suitability for crops.  

 

Haplotype analysis 

LD mapping can be extended to consider multiple markers simultaneously. For closely 

linked markers, haplotype analysis can offer advantages over single marker-by-marker 

analysis [36]. There are many possible approaches and methods and research in this area 

is continuing. Within the scope of this review, it is not possible to discuss these. The 

simplest approaches are:  

1) Test each haplotype in turn against a pool of all others. This converts a system of 

n haplotypes to one of n biallelic loci. Analysis is then straightforward, but 

adjustment for multiple testing is required. 
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2) Ignore haplotypes, but analyse the constituent markers and their interactions 

jointly. A significant interaction is evidence of a haplotype effect over and above 

any effect attributable to the single markers.  

 

 

Recommendations and conclusions 

 

The substantial quantities of phenotype data already in existence from the variety 

trials of breeders and variety testing organisations are valuable resources for LD 

mapping. For example, a genome wide survey of associations with yield and yield 

stability components has been carried out in barley [35] using historic data. To generate 

novel phenotypic data for mapping traits such as stability of yield would usually be 

prohibitively expensive. Moreover, QTL are detected in germplasm of direct relevance to 

the crop. Unfortunately, all methods currently available for controlling population 

structure in such collections have weaknesses. For ease of application and low marker 

requirement we favour GC, even though it can be conservative: in the long run, false 

negative results are less damaging than false positives. With higher marker densities, the 

more intensive methods of SA and EIGENSTRAT should have greater power. However, 

even here GC can have a role: to confirm that these more sophisticated approaches have 

worked. 

The resolving power of LD mapping depends on how rapidly LD decays with 

genetic distance. This varies between populations of landraces, wild progenitors and 

modern cultivars as a result of the diverse history to which crop plants have been 

subjected since their domestication [37]. In some populations, LD will decay so rapidly 

that they are best suited for fine mapping, whereas in others the decay might be so slow 

that whole genome scans are practical. In crops where collections of contemporary, 

historical, and wild material exist, selection of different sets of lines may permit both fine 

and coarse mapping [37]. However, in most crops, marker density is currently too low for 

genome scans. Before attempting these, power calculations should demonstrate that, 

given the rate of decay of LD in the population to be studied, the density of markers and 

their allele frequency distribution are adequate to detect linked QTL accounting for 

specified proportions of the phenotypic variation. Population size is also important. An 

LD mapping experiment will almost always have lower power than a FBL mapping 

experiment of equivalent size: if 100 lines are just sufficient for a FBL study, they will be 

too few for LD mapping. 

For these reasons we believe that the best use of LD mapping is to refine the 

location of QTL identified in FBL and candidate gene studies. Longer term, prospects for 

high throughput genotyping and resequencing may make whole genome scans by LD 

mapping more feasible. The challenge is to identify and create the appropriate 

populations so that computational, analytical and profiling advances can be rapidly 

harnessed by the crop science community. For this purpose, the MAGIC is ideal: highly 

diverse, no population structure, and suitable for both fine and coarse mapping. We 

believe MAGIC populations should be established now in all crops.  
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Box 1 Linkage disequilibrium. 

 

1. Principles of detecting and quantifying linkage disequilbrium 

Linkage disequilibrium is the non-random association of alleles at separate loci 

located on the same chromosome. If one locus has alleles A and a with frequencies pA 

and 1- pA, and a second has alleles B and b with frequencies pB and 1- pB, then at 

equilibrium, even though the loci are linked, the expected haplotype frequencies are the 

product of the constituent allele frequencies. To take the AB haplotype for example: 

 

pAB = pA . pB    

  

We define any departure from this state of linkage equilibrium as: 

 

D =  pAB - pA . pB 

 

At equilibrium, D = 0. 

 

D is the coefficient of linkage disequilibrium. It can be difficult to interpet: its range 

depends on allele frequency and it is not symmetrical about zero.  It is therefore usually 

rescaled to give it a range from 0 to 1.  

 

2. The decay of linkage disequilibrium with time 
 Recombination causes gamete and haplotype frequencies to change towards their 

equilibrium values. Following random mating, in the absence of mutation, selection and 

chance effects, the value of the coefficient of linkage disequilibrium, D, in successive 

generations is: 

  Dt+1   =   Dt (1-) 
and therefore 

  Dt   =   D0 (1-)
t
 

 is the recombination fraction between the two loci. 

t is the number of generations of random mating since the start. 

D is the coefficient of linkage disequilibrium. 
 

LD decays quicker at higher recombination frequencies. For unlinked loci, the 

decay is at a rate of ½ per generation. 

 

For close linkage and larger values of t: 

  Dt   ~   D0 e
-t

 
 

Thus recombination frequency and time are interchangeable – a halving of recombination 

fraction is compensated for by doubling the number of generations. Figure 2 shows the 

decay in LD over time at a series of recombination fractions. 
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Figure 2. Decay of linkage disequilibrium with time for four different recombination 

fractions (θ). For unlinked loci, θ = 0.5 and LD decays rapidly within a small number 

of generation. For very closely linked loci, the decay in LD is extremely slow. 
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LD decays very rapidly in the absence of linkage but persists for a very long time with 

very tight linkage.  

 

 

Box 2. Causes of linkage disequilibrium 
 

Mutation 

 Immediately after a mutation occurs, it is in LD with all other loci: the new 

mutation only occurs on a single haplotype. In successive generations, recombination 

causes LD to decay as new haplotypes are created, but this process takes a long time for 

closely linked markers. Most polymorphisms we observe are old: many generations are 

required for allele frequencies to rise to a frequency at which we detect them. Therefore, 

most pairs of polymorphic loci show little LD originating from mutation unless closely 

linked.  

 

Population bottlenecks, founder effects and drift. 

 A population bottleneck is an extreme reduction in population size. It causes loss 

of variation and increased LD. A founder effect is a special case, occurring when a 

species colonizes a new environment. The number of founders can be extremely small - 

only a few seeds may be introduced to establish the crop.  Most crop plants underwent at 
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least one bottleneck during domestication. The activities of plant breeders themselves can 

result in bottlenecks - the introduction of a new disease resistance or agronomic trait may 

result in a period of breeding in which a small number of parental lines are used 

extensively. In fact, any finite population size generates some degree of LD, just as 

genetic drift changes allele frequencies.  

 

Selection 

 Directional selection changes allele frequencies at QTL determining the selected 

trait. Allele frequencies will also change at closely linked markers. This process, called 

hitchhiking, generates LD among markers around the selected locus [38, 39]. A region of 

increased LD, often accompanied by reduced polymorphism, can indicate a history of 

directional selection. Similarly, a region of increased LD and increased polymorphism 

can result from balancing selection. Such regions have been identified in maize and 

Arabidopsis for example [40, 41].  

 

Migration and population admixture 

 If two populations, differing in allele frequency, are brought together, LD is 

created. Less extreme population admixture or migration also generates LD. If population 

admixture is known to have occurred and if markers are available which discriminate, 

even imperfectly, between the parental populations, then these markers can be used to 

map traits for which the populations differ. This is “admixture mapping” [42, 43] and has 

been applied in plants [44, 45].  

More typically, migration and admixture are a problem for LD mapping. The long 

range LD they introduce mask the marker-trait associations arising from the close linkage 

which we wish to detect.  
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Glossary 

 

admixture: intermingling of individuals from genetically different populations. 

analysis of variance: a method to test the statistical significance of differences among 

several categories, rather than just two; in which case a t-test is usually used. 

candidate polymorphisms: polymorphisms which have not been chosen at random to 

test for trait association, but for which prior knowledge exists: they may be in a 

known linkage region or in a gene predicted to affect the phenotype for example. 
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centiMorgan (cM): a measure of genetic distance, additive over loci. At small values, 

distance in cM and recombination fraction (x100) are nearly identical. 

chi-squared test: a widely used test of statistical significance. 

consanguinity / kinship: close genetic relationships between individuals. 

drift: the change in allele frequency over time which results from sampling variation 

from generation to generation. 

false negative: the declaration of an outcome as statistically non-significant, when the 

effect is, in fact, genuine. 

false positive: the declaration of an outcome as statistically significant, when there is no 

true effect. 

family based linkage analysis: a method of mapping in which the co-inheritance of 

markers and traits is related to known genetic relationships between members of the 

same family or pedigree. 

haplotype: a set of genetic markers located on the same chromosome, sufficiently 

closely linked to tend to be inherited as a unit. 

landrace: an old cultivated form of a crop, potentially adapted to local growing 

conditions, but unimproved by contemporary plant breeding. 

linkage disequilibrium (LD): the non-random association of alleles at separate loci 

located on the same chromosome (see Box 1). 

logistic regression: a form of regression analysis in which the dependent variable is 

either 1 or 0, denoting presence or absence. In human genetics and epidemiology it is 

commonly used with 1 denoting diseased individuals and 0 healthy or control 

individuals. It can also be used to regress the presence/absence of a particular allele at 

a locus onto phenotype, as an alternative to the t-test. 

mapping: the process of locating a genetic variant on a chromosome.  Coarse mapping 

will only locate a variant within a broad interval. Fine mapping increases precision, 

ultimately allowing the identification of the functional polymorphism(s) responsible. 

mapping population: a set of individuals or lines, typically derived from an F2 or a 

backcross, which are used to construct genetic maps and to detect and locate QTL on 

those maps by family based linkage analysis. 

marker: an identifiable location on a chromosome. 

microsatellite: repetitive lengths of short DNA sequences used as genetic markers. 

multiple regression: regression analysis in which there are multiple independent 

variables. In LD mapping, these could be multiple markers, within the same or 

different genes. 

multiple testing: in an experiment involving many candidate polymorphisms, many 

statistical tests will be carried out. A consequence of this multiple testing is that it is 

more likely that a false positive result will be declared by chance. Modified methods 

of significance testing can control the expected number of false positive results. 

non-experimental population: a population not established specifically to map markers 

or QTL. It is not necessarily a natural population. For example, it could be a 

collection of breeders‟ lines. 

population structure: the non-random distribution of genotypes among individuals 

within a population. 

population subdivision : the partition of a population into subgroups such that most 

mating occurs within subgroups.  
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quantitative trait locus (QTL): a polymorphic site contributing to the genetic variability 

of a quantitative trait. 

recombination fraction: the fraction of meiotic events that show recombination between 

a pair of loci. 

single nucleotide polymorphism (SNP): a polymorphism involving a change in only a 

single nucleotide.  

stepwise selection: a set of methods in which the best subset of all independent variables 

available for multiple regression is selected. Ideally, only those variables which have 

an effect on the dependent variable are selected, and all others are rejected. In LD 

mapping this approach attempts to separate markers affecting a trait from those which 

do not. 

structured population: a population in which mating does not occur at random. 

t-test: a test for the statistical significance of a difference between two means. 
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THE MIXED MODEL AND ASSOCIATION GENETICS 

 
No good model ever accounted for all the facts, since some data was bound to be misleading if 
not plain wrong. James Watson 

 

 

Introduction 

 

This is an attempt to explain the mixed model, particularly in the context of association 

genetics. This has become the default method of controlling kinship and population 

structure in association mapping in plants. All methods fit models to the data. Different 

models have different weaknesses. In the absence of an experimental crossing scheme or 

a prior understanding of genetic relationships within the dataset, the mixed model seems 

to be the best compromise, but it is not perfect. Where possible, I‟ve highlighted 

relationships between the mixed model and these alternative approaches. 

 

I have laboured discussion about the form of the genetic relationship matrix, which has a 

central role in genetic applications of the mixed model. In my view this is quite difficult 

to understand, and different accounts are often ambiguous. Moreover, although software 

exists to solve the mixed model equations, often it is left to the user to provide their own 

kinship matrix, or to choose between alternatives and it is quite easy to get this wrong. 

  

A model is described as mixed if, in addition to a base error or residual term, it contains a 

mixture of fixed and random terms. Remember, fixed effects are generally the things that 

you are interested in, for example fertilizer treatments, and random effects are generally 

things that get in the way of accurate estimation of the fixed effects, for example fertility 

effects in yield trials. This distinction is not always precise:  blocks in a variety trial, 

usually treated as random variables, can sometimes be better considered as fixed if they 

are placed to account for specific known fertility effects in the experimental field. 

However, I‟ve never come across an experiment in which fertilizer treatments could 

justifiably be regarded as random, though I expect one could be devised. 

 

The Bayesian approach to statistics has no truck with these distinctions: all effects are 

random. The only thing that differs among different effects is their prior information. 

 

In association mapping, the mixed model contains two random effects: the base error and 

an additional term to account for genetic variation among individuals (or lines). These 

individuals are often related. In such a case, to account for the genetic correlations among 

individuals we must incorporate into the model something called the numerator additive 

genetic relationship matrix (A). This is often referred to as the relationship matrix, which 

confusingly, isn‟t quite the same thing. The model also contains at least one fixed effect: 

the marker for which association with the trait is being tested.  
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A simple example 
 

First we‟ll consider the difference between treating a line as fixed or random in a very 

simple genetic experiment. Suppose we have a set of n inbred lines derived from an F1, 

which we test in a completely randomised experiment with each line being tested in r 

replicates. 

 

Whether treated as fixed or random, the model we are fitting is: 

 

 yij = μ + gi + eij 

 

where yij  is the jth observation on the ith line 

μ  is the mean 

gi  is the effect of the ith line  

eij is the error for the jth replicate of the ith line. 

 

 

If we treat the lines as random, the analysis of variance has the following structure: 

 

Item   df  expected mean square 

Between lines  n-1        Ve  + nVg 

Within lines  n(r-1)        Ve   

 

We can test for statistical significance among the lines with an F test in the usual manner. 

Vg and Ve can be estimated by equating the observed mean squares with their 

expectation or we could use an algorithm like REML to deliver us the variance 

components directly. In this case ANOVA and REML estimates would agree exactly. 

Heritability can be estimated as Vg/(Ve+Vg). Remember this is the heritability for a line 

tested in a single plot. For a line tested in r plots the heritability of a line mean would be 

Vg/(Ve/r +Vg). ) 

 

If we treat the lines as fixed – perhaps they are not a random sample from the cross but 

were selected for some other reason – then the analysis of variance, expected mean 

squares and significance test remain unchanged. However, Vg can no longer be regarded 

as the genetic variance of the population of lines which could potentially be produced, 

but merely a measure of the variance among the fixed set of lines which we have selected 

in this study.  (NB If the lines were selected in a known manner, say only lines exceeding 

some phenotypic threshold were included, then in principle the selection process could be 

included in the model and an estimate of the population Vg could still be made.)  The 

difference between treating the lines as fixed or random is in the estimation of their 

means. Treating the lines as fixed, the estimate of each mean is just the average over all 

replicates: 

 

  
j

ijy  / r  = ̂  +  iĝ    with variance Ve/r 
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This follows since e ~ N(0,Ve) and we average over r eij terms in estimating the mean. 

This estimate is the Best Linear Unbiased Estimate, or BLUE. 

 

The estimate of a variety mean, when treating varieties as random is more complicated. 

Each line is regarded as a random draw from a population of lines which has a 

distribution: 

 

  g ~ N(0,Vg) 

 

In this case, even if there are no observations for any particular line, its effect can still be 

estimated: 

 

  ĝ i = 0     with variance Vg 

 

Therefore the estimate of the mean of the line with no observations is just the estimate of 

the population mean, ̂ . 

 

In Bayesian terms, the distribution g ~ N(0,Vg) is the prior distribution of g. 

 

If we have data we also have a direct estimate of the effect - Σyij / r  - ̂ , just as in the 

fixed case. We therefore have two sources of information, from the prior and from the 

data. These can be combined to produce a best estimate of g. Intuitively, as the number of 

replicates goes up and up, we would expect to place greater weight on the data and rely 

less on the prior information. In the limit we would ignore the prior information entirely 

and rely on the estimate from the data alone. To formalise this, we take a weighted mean 

of the two estimates; weighting by the reciprocal of the variances: 

 

  wf = r/Ve for the fixed effect  

 

  wp = 1/Vg for the prior:   

 

As with all weighting procedures, we need to scale the weights to add up to 1 by dividing 

by their sum. This is: 

 

 r/Ve + 1/Vg = ( rVg  + Ve )/ (rVe.Vg) 

 

Labelling the estimates of g as gf and gr for the fixed and random effects and the prior as 

gp : 

 

 gr = (wpgp +wrgr )/ (wp +wr)    

 

  =  0  . 1/Vg  +  gf (r/Ve )] /  [ (rVg +Ve) / (rVe.Vg) ]  

 

  = gf (r/Ve ) rVe.Vg /   (rVg +Ve)   

 

  = gf rVg ./ (rVg +Ve) 
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Dividing the numerator and denominator of the last term by r gives: 

 

 gr = gf (Vg) / (Vg +Ve/r) 

 

Vg/(Vg+Ve/r) is just the heritability of a line mean based on r replicates and so we have: 

 

 gr = gf h
2
 

 

where  h
2 

is the heritability of the line mean. 

 

The mean of the variety is then: 

 

   ̂   +  gf h
2
 

 

So the estimate of the random effect is the deviation of the line mean from the population 

mean scaled by the heritability. In Bayesian terms, this estimate has a term for the prior 

information (with mean 0) and a term coming from the data (gf) which is weighted by the 

heritability. For very high heritabilities, means from the random and fixed effects models 

are very similar. With very low heritabilities, the contribution from the data is reduced 

and the estimate is shrunk back towards the population mean. “Shrinkage” is the term 

generally used to describe this difference between means from random effects models 

compared to fixed effects models. 

 

There is a simple, non Bayesian, way of viewing the random effects estimate. Remember 

the breeders‟ equation: 

 

  R = h
2 

 S 

 

The response to selection (measured as a deviation from the population mean) is just the 

mean of the selected group (also measured as a deviation) multiplied by the heritability. 

When selecting a single variety, S is the difference between the variety mean and the 

population mean (ie  gf) and R or gr is its predicted deviation in the future, on retesting in 

a second experiment. So in the context of breeding, fixed effects for lines are the 

observed effects from the data, and random effects for lines are the predicted future 

effects of selected lines. 

 

Means for the random terms in the model are called Best Linear Unbiased Predictors or 

BLUPs. 

 

Note, in passing, that for the purposes of selection in breeding programmes, provided all 

lines are equally replicated, whether they are treated as fixed or random effects makes no 

difference to the line ranking. This is because the heritability of all line means is identical 

– all estimates are shrunk by the same constant. However, if replication varies from line 

to line, then individual line means will be shrunk by varying proportions as the 

heritability varies from line to line. In this case, the ranking can change. Treating the lines 
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as random is of use here to create a ranking for selection purposes which takes into 

account the varying degrees of replication. Other methods of selection among lines with 

unequal amounts of information can get awfully messy. There is much to recommend 

treating varieties as random even if they cannot be regarded as a truly random sample 

from a population. (Piepho 2007).  

 

 

Association analysis with fixed and random effects: simple example. 

 

Consider the same example as above, but suppose there is a marker, m, segregating 

which we wish to test for association with the trait. As we are working with lines derived 

from an F2, provided these lines are a random sample from the cross, or provided the 

selection of lines was independent of the marker genotype, the test of significance 

between marker classes is a direct test for linkage. The lines are fully inbred so there are 

only two marker classes and the analysis of variance, treating lines as random, takes the 

form:  

 

Item     df        expected mean square 

marker alleles    1        Ve  + nVg   + kVm 

Between lines (within alleles  n-2        Ve  + nVg 

Within lines    n(r-1)        Ve   

 

In this example, the marker is treated as a fixed effect. In most linkage and association 

analyses, marker effects are treated as fixed, but this is not always the case. In this, 

therefore, the variance Vm associated with the marker SNP cannot be used to make 

inferences about some population of markers.  With no missing data and if each marker 

allele is carried by half the number of lines, the coefficient of Vm (k) will be nr/2. 

However, Mendelian sampling makes it unlikely that exactly half the lines carry each 

allele and k will be slightly less than nr/2 

 

From the expected mean squares, the appropriate F test for marker association is 

obviously to test the marker alleles item against the between lines item. This will give the 

same p-value as a t-test between the marker alleles, working on line means: standard 

practice for single marker linkage analysis. However, if lines were treated as fixed, the 

analysis of variance has the following form: 

 

Item     df        expected mean square 

marker alleles    1        Ve    + kVm 

Between lines (within alleles)  n-2        Ve  + nVg 

Within lines    n(r-1)        Ve   

 

The marker alleles item is now tested against the within lines item. Assuming there is any 

genetic variation at all within the cross, treating lines as fixed will inevitably give rise to 

an increased frequency of significant results compared to treating the lines as random. 
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A more complex family structure 
 

Suppose we have a set of 200 F1 crosses with five inbred lines derived from each cross: 

1000 inbreds in total. For the time being, we‟ll assume that the 400 parents of these F1s 

are unrelated. Therefore the five lines within each cross are related but lines from 

different crosses are not. More accurately, we should say that the lines from different 

crosses have very low relatedness: there is no such thing as an unrelated pair of lines. If 

one goes back far enough there will be a common ancestor. 

 

Taking this family structure and a phenotype, we can analyse the phenotypic data in an 

analysis of variance: 

 

Item   df  expected mean square 

Between crosses 199        (Ve + Vg)   + 5 Vg 

Within crosses  800        (Ve + Vg) 

 

 

As there is no replication of individual inbred lines, we do not have an independent 

estimate of error (Ve). However, we can still easily estimate Vg and Ve from the 

expected mean squares. This is for a random effects model: differences between F1s 

crosses are treated as random. Vg is therefore an estimate of the genetic variation in the 

population from which the parental lines were selected at random. 

 

If we were to treat differences between F1s as fixed effects, the analysis of variance 

remains the same, but the expected means squares change: 

 

Item   df  expected mean square 

Between crosses 199        (Ve  + Vg)   + 5 Vg* 

Within crosses  800        (Ve  + Vg) 

 

Vg* is the estimate of genetic variation among crosses within the sample used in this 

particular experiment. Vg is the genetic variation expressed within crosses and must be 

assumed to be identical within all crosses.  Note that Vg* can be estimated, but Vg 

cannot be separated from Ve.  However, the F ratio to test for differences between 

crosses is valid (and identical) whether crosses are treated as fixed or random. 

 

Estimates of cross means themselves differ depending on whether they are treated as 

fixed or random. The model is: 

 

  yij = μ + ci + gij + eij 

 

where yij  is the jth observation on the ith cross  

μ  is the mean 

ci  is the ith cross effect 

gij  is the effect of the jth line in the ith cross 

eij is the residual effect for the jth line in the ith cross. 



 289 

The gij and eij are completely confounded, so we can simplify the model by ignoring gij: 

 

  yij = μ + ci + eij 

 

In effect we have now redefined the e term. What was formerly g + e is now regarded as 

just e, distributed as e ~N(0,Ve) 

 

For fixed effects, the estimate of a cross mean is just the arithmetic mean of the 

individual lines within that cross: 

 

  ̂  +  ĉ i = 
j

ijy  / 5   

 

For random effects, the estimate of a cross mean is shrunk to: 

 

  ̂  +  ĉ i (Vg) /(Vg +Ve/5) 

 

Now suppose there is biallelic marker segregating in the population at a frequency of 0.5 

which we wish to test for association with the trait. We expect ½ the crosses to be 

segregating for the marker, ¼ to be fixed for one allele and ¼ to be fixed for the other. 

This makes the analysis of variance highly unbalanced. Treating the crosses as fixed, the 

significance of the fixed terms (markers and crosses) depends on the order in which they 

are fitted. Each term fitted is tested against residual variation after fitting that item. This 

will include not only error variation but also variation due to the remaining terms. 

Equally, the lack of balance introduces correlations between the two fixed terms such that 

some variation is common to both and is claimed by the first to be fitted. For example, 

with simulated data and an associated marker, I get the following F test statistics: 

 

Marker fitted first   Crosses fitted first 

Marker  306.13   Crosses 3.37  

Crosses 2.56   Marker  145.01 

 

Treating crosses as fixed, fitting the effect for crosses first in the analysis of variance is 

analogous to “structured association” (SA).  Generally with SA, covariates which 

indicate the membership of each line to each subpopulation are fitted first. In this 

example, the different crosses are equivalent to different subpopulations. We see that the 

F ratio for the marker is much reduced if it is fitted after the term for crosses:  test of 

significance of the marker has been adjusted for spurious association which arises from 

the distribution of the SNP genotypes over families.  

 

In crop association genetics, SA is less effective than the mixed model in controlling 

false positive results. This is partly because it is hard to assign the ancestry of each line 

accurately to appropriate subpopulations and partly that multiple separate ancestral 

subpopulations never existed in the first place. A symptom of this is the very common 

complaint among crop scientists using the software STRUCTURE that it is impossible to 

decide how many subpopulations there are, or to get stable and repeatable results from 
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replicate runs of the program. The extended pedigree on which all members of any 

collection of lines or individuals lie results in kinships among individuals varying in a 

near continuous manner.  In contrast, in most human association mapping datasets, 

virtually all pairs of individuals can be treated as unrelated.  

An analysis of variance is also possible if families are treated as random, but no longer 

has a simple form. Because between family variation is treated as a source of error, an 

estimate of the SNP effect can be made from comparisons between crosses in addition to 

the comparisons within crosses on which the fixed effects model relies (if family effects 

are fitted first). These two estimates have different amounts of information. Using the 

same data as above, the random effects anova is: 

 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
cross stratum 
SNP 1  125.2934  125.2934  63.59 <.001 
Residual 198  390.1028  1.9702  2.57   
  
cross.*Units* stratum 
SNP 1  111.3178  111.3178  145.01 <.001 
Residual 799  613.3670  0.7677     
  
Total 999  1240.0810       

 

The analysis has two separate strata and two separate significance tests.  These can have 

slightly different interpretations (see below), but each provides an estimate of the SNP 

effect. A mean across the two strata, weighted by their relative information is also given. 

Increasingly, with unbalanced data like this, the analysis is carried out using REML 

which can handle more complex data sets than possible with anova. REML gives tests the 

significance of the fixed effects and estimates of their means (identical to the anova 

weighted mean in this example) in addition to estimating variance components. In 

essence, the significance test for the SNP is adjusted to account for the differing kinship 

relationships among lines. In this example there are only two: pairs of lines within 

crosses are more related than pairs of lines from different crosses. In this case, the simple 

structure of the data mean that it isn‟t necessary to specify what these relationships are, 

but this is not generally the case in association mapping.  

 

To illustrate further the different consequences of treating crosses as fixed and random, 

I‟ll give results from some more simulations. To recall, there are 200 F1s with 5 inbred 

lines derived from each. Vg = 0.25, Ve = 0.5. Ve refers to the error of an inbred mean. 

Assuming the F1s are unrelated, and that we are dealing with inbred lines, the genetic 

variation between F1s = 0.25 and the genetic variation between lines within F1s is also 

0.25 . So the total expressed genetic variation = Ve  = 0.5 and Vp = 1.  
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I‟ve simulated two SNPs: 

 SNP1: half the families are fixed for allele A, the other half for allele a. 

SNP2: alleles segregate at random among the population of parents at a frequency 

of 0.5, so half the families are expected to be Bb, the others either BB or 

bb. 

 

SNP1 partitions the data into two subgroups. Such a SNP could result from a genuine 

linkage with a trait locus. For example it could be a vernalisation gene splitting the data 

into Spring and Winter subgroups. The associated phenotype could be flowering time. 

Alternatively, the SNP could be one of many markers which are not linked to the trait but 

which happen to be associated (through drift or selection) with the partition of the lines 

into Spring or Winter types. 

 

There are three phenotypes, simulated from Vg, Ve, and the SNPs. These are:  

 

 Vg and Ve only 

 Vg and Ve plus 1 (for AA inbreds) or plus 0 (for aa inbreds): a SNP1 effect 

 Vg and Ve plus 1 (for BB inbreds) or plus 0 (for  bb inbreds): a SNP2 effect 

 

Data were analysed with no family effect, with family effect fixed, and with family effect 

random. The table below gives results for all 18 tests. The test statistic is the Wald 

statistic. This is frequently used in mixed models. It can be treated as a chi-squared 

statistic, here with 1 df so a value >3.84  corresponds to a p-value < 0.05.  

 
  Wald statistics 

phenotype family effect SNP1 SNP2 

Vg + Ve none 5.66 2.62 

Vg + Ve fixed 0 0.04 

Vg + Ve random 2.97 0.76 

    

Vg+Ve+SNP1 none 187.47 0 

Vg+Ve+SNP1 fixed 0 0.04 

Vg+Ve+SNP1 random 98.44 0.02 

    

Vg+Ve+SNP2 none 0.41 205.07 

Vg+Ve+SNP2 fixed 0 112.4 

Vg+Ve+SNP2 random 0.2 173.35 

 

The first three lines of results are for the null phenotype. Anything significant is a false 

positive. Without accounting for family structure, SNP1 is statistically significant and 

SNP2 has quite a large test statistic too. This is a result of “double counting.” The 

analysis assumes all lines are unrelated so we think there are more independent data than 

there actually is, error is underestimated and significance rises. However, with families as 

fixed, any test signal is completely wiped out. With families treated as random, SNP1 

still gives quite high results.  
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The next three lines give the results for the phenotype influenced by SNP1.  In this case, 

all three test statistics for association with SNP2 are very small. Association with SNP1 is 

very strong with no family effect included. The signal is roughly halved with families 

treated as random, and is again completely wiped out with families treated as fixed.  

SNP1 could be a genuine effect or it could be indirectly associated with subpopulation 

structure. Although association mapping methods act to control the problem of 

population structure and kinship, there is always a risk that they also remove genuine 

affects. Caveat emptor. 

 

The final three lines give the results for the SNP2 phenotype. There is no significant 

SNP1 effect and everything is significant for SNP2, with random families giving a signal 

intermediate between the two other tests. The reason the fixed effect model has less 

power here than the random effects model is that the fixed effect model only uses 

information from the within family stratum of the analysis. With families treated as 

random, an estimate of the difference between SNP alleles is also made from differences 

between family means, and the two estimates are optimally combined. This is analogous 

to the recovery of inter-block information in trial designs: variety comparisons are also 

possible by making comparisons between blocks if the blocks are treated as random 

effects.  

 

Thus, a major difference between the mixed model and structured association  - in fact 

the only one in this example – is that the mixed model treats population structure (family 

membership in this example) as random and structured association treats it as fixed.  

 

A significant result from the between family stratum in the random effects model could 

result from population subdivision (eg SNP1) rather than LD. However, the within family 

comparison from either fixed or random effects models is completely robust to the cause 

of any differences between families. This is because it is a direct test for linkage of the 

marker with the trait. Pooled over a large number of families it is a 1 df test (for a bi-

allelic marker) for linkage disequilibrium rather than just for linkage. This is because 

genetic linkage between the QTL and marker will give a significant result within a single 

family, but when averaged over a large number of segregating families, the magnitude of 

the average association will be reduced. The direction of the association will change from 

cross to cross, depending on whether the QTL and marker are linked in coupling or in 

repulsion. Over many crosses repulsion and coupling linkages will cancel each other out. 

However, the closer the marker to the QTL, the stronger the LD is likely to be, so that 

either coupling or repulsion linkages will come to dominate. This is a plant equivalent of 

the transmission disequilibrium test in humans, with the same advantages and 

disadvantages: it is extremely robust to the presence of population structure but is very 

wasteful of data: no information from the non- segregating families is used.  

 

It is possible to develop this further. For n segregating families, there would be n 1 df 

tests for linkage. Pooling these across families would give an n degree of freedom test for 

linkage which could be partitioned into a 1 df test for the net effect of linkage (ie for LD), 

and an n-1 df test for heterogeneity of association (ie for residual linkage). This is in 

effect a joint regression analysis on SNP genotypes coded as 0 and 1. The joint regression 
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term and heterogeneity of regression term correspond to the test for linkage 

disequilibrium and residual linkage respectively. One would expect that as markers get 

closer and closer to the QTL, the association test would get stronger and the 

heterogeneity test smaller. This is the basis of the quantitative trait disequilibrium test, or 

QTDT, used in human genetics (Abecasis et al 2000). A more general procedure has also 

been proposed for crops (Stich et al 2006). 

 

In our example, the families fixed (SA) analysis does striking well in adjusting for false 

positives – all signal is wiped out except for the one clearly genuine case: (SNP2 

phentype : SNP2 genotype). However, power has been lost compared to the mixed model 

for reasons discussed. The mixed model (families as random) doesn‟t do badly - with 

more power than SA but not quite such good control of false positives. This is the 

opposite of the current view of methods for association mapping in plants where the 

mixed model is held to be superior. There are two reasons for this. Firstly, with real 

datasets there can be great problems in allocating individuals to families or 

subpopulations. Secondly, the simple hierarchical subdivision of the data into discrete 

families or subpopulations modelled here is virtually never appropriate. Relationship 

among variety pairs is effectively a continuous variable whereas our simulated example 

has only two values. The most effective way to treat this is to incorporate relationships 

into the model. This is done through an extension to the mixed model which incorporates 

a relationship matrix into the analysis. However, the mixed model doesn‟t always 

guarantee perfect control of all genealogical sources of false positives, as we‟ve seen in 

the simple example here. This can be viewed as a failure of randomisation: in trial 

designs, the randomisation process – of varieties within blocks and of blocks over the 

field, guarantees unbiased estimates. In association genetics, you have to work as best as 

you can with what you are given.  

 

 

The role of the relationship matrix 

 

In matrix form, a fuller form of the full mixed model is: 

 

Y = Xβ + Zg + e 

 

Y  = phenotype data 

β  = the fixed effects              includes the marker(s) tested for association 

g  = the random effects             the genetic effects (families in our example) 

X  = design matrix for fixed effects    

Z  = design matrix for random effects          aka A, the numerator additive relationship 

       matrix 

e  = residual error terms 

 

The residual errors terms are, as usual, treated as unrelated and are represented as:  

 

Var(e) = Var(e) = σ
2

e I 
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where I is an identity matrix. (A square matrix with ones down the leading diagonal zeros 

elsewhere.) 

 

The random genetic effects are no longer treated as independent of each other. They have 

a variance/covariance structure given as 

 

Var(g) = σ
2

g K 

 

K is the additive relationship matrix. If individuals are outbred and unrelated this is also 

an identity matrix. 

 

The relationship matrix is symmetrical. Part of this matrix for the example we used in the 

last section is below: 

 

Example numerator additive relationship matrix

1

½ 1

½ ½ 1

½ ½ ½ 1

½ ½ ½ ½ 1                       

0 0 0 0 0 1

0 0 0 0 0 ½ 1

0 0 0 0 0 ½ ½ 1

0 0 0 0 0 ½ ½ ½ 1

0 0 0 0 0 ½ ½ ½ ½ 1

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 ½ 1

etc

family 1

family 2

family 3

 
 

The composition of this matrix is unambiguously explained by CR Henderson (1963, 

1976) who was pivotal in developing and promoting the use of the mixed model in 

animal breeding as a means of estimating breeding values. Its elements are the 

coefficients of the additive genetic (co)variance between the individuals in the dataset. In 

the context of animal breeding, the matrix generally includes all founder individuals and 

ancestors of those in the dataset: the pedigree is extended backwards. Founders are 

assumed to be non-inbred. This makes the prediction of breeding values robust to the 

effects of selection within the pedigree.  Strictly, the additive numerator relationship is 

applicable to additive traits only. However, the mixed model can be extended to include 

dominance and epistatic sources of genetic covariance too, by including relationship 

matrices for these effects.  
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The diagonals of the matrix are the coefficients of additive genetic variance for the 

individuals themselves. The off-diagonal entries in the table are coefficients of 

relationship, or twice the coefficients of kinships, both introduced earlier in the 

population genetics section of this manual. The coefficient of kinship between two 

individuals is the probability than an allele picked at random from one individual is 

identical by descent to an allele picked at random from the other, or p(ibd).  These are 1/4 

for full-sibs and 1/8 for half-sibs. For a population with no inbreeding, the diagonal 

entries are also coefficients of relationships or 2x the coefficients of relationship. The 

p(ibd) of an non-inbred individual with itself is a half (ie the inbreeding coefficient of its 

progeny), so the coefficient of relationship of an outbred individual with itself is one. 

Thus, in the absence of inbreeding, the complete relationship matrix required in the 

mixed model equations is 2x the kinship matrix. 

 

With inbreeding, the off-diagonal elements are still genetic relationships or 2x the 

coefficients of kinship. The diagonal elements, however, are no longer relationships but 

1+F; the coefficient of the additive genetic variance for an individual with inbreeding 

coefficient F. The diagonals will thus have a maximum value of 2 and a minimum of 1. 

  

For a population of inbred lines, or doubled haploids, the diagonal of the relationship 

matrix required for the mixed model equations is 2. The inbred line analogue of a full-sib 

family is a set of progeny lines derived from the same cross. In this case, p(ibd)  (aka 

kinship) is  ½ so the off diagonal elements will be 1. The whole matrix is therefore 2x the 

equivalent matrix for an outbred population. However, as we shall see, this simple scalar 

adjustment to the matrix makes no difference to the association test and is therefore often 

ignored. The additive relationship matrix for the mixed model equations is therefore 

commonly treated as if it were merely the kinship matrix or 2x the kinship matrix. If the 

population under study is all fully inbred and there are no crosses between related lines 

this is not a problem. If this is not the case, this is dangerous. How dangerous in practice, 

I do not know.  

 

We shall return to methods to construct the relationship matrix shortly. First, we‟ll 

describe some results analysing the simple example given below. 

 
id  pa ma  phen  SNP 

  5 1  2   0.665  1  

  6 1  2   2.113  0 

  7 1  2   0.667  1 

  8 1  2  -0.161  0 

  9 1  2   0.170  1 

  10 3  4   1.669  0 

  11 3  4   1.957  1 

  12 3  4   0.108  0 

  13 3  4   1.789  1 

  14 3  4   2.881  0 

 

This example has two full sib families, each with five individuals, a single phenotype and 

a single SNP. The first family has father no. 1 and mother no. 2. The second family has 

father 3 and mother 4. We‟ll treat the parents as unrelated. (It may seem odd that there 

are only two SNP classes – 0 and 1 for an outbreeder. We‟ll assume that one allele is 
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sufficiently rare that no homozygotes were observed. If they were, they would be coded 

as 2.)  

 

First, analysing the data ignoring the pedigree information gives 

 

Error variance Ve     = 1.161 

Test for association (Wald statistic)  = 0.16 

 

The significance of the SNP association is tested by the Wald statistic. This is the 

standard test statistic used by the GenStat implementation of REML. Other software may 

produce a likelihood ratio statistic, which also behaves like a chi-squared test. In mixed 

models however, the LRT is no longer simply twice the difference in likelihoods between 

models. 

 

As the data are nicely balanced, we can fit a mixed model just by including a random 

term for families without explicitly defining a kinship matrix. In fact the kinship matrix 

used is I. This gives: 

 

Variance between families  Vb  =  0.266 

    Variance within families Vw  =  1.001 

                                        Wald stat            =  0.06 

 

Thus, incorporating the family structure has reduced the Wald statistic. Also, with no 

inbreeding and assuming an additive trait,  

 

Vb    =   ½ Vg 

Vw   =    ½ Vg  +  Ve 

     

So  

     Vg   =   0.532 

     Ve   =   0.735 

           Vg/Ve  =   γ    =   0.724 

 

In mixed model methodology, rather than reporting Vg, often the ratio γ   = Vg/Ve is 

given; here 0.724. This is because: 

 

Var(y) =  Var(g) + Var(e)  =  σ
2

g K + σ
2

e I 

       =  σ
2

e I ( γK + I ) 

 

It is γ rather than σ
2

g which the computer algorithms tend to work with and so this often 

gets reported by default. Note that heritability is 

 

σ
2

g  / ( σ
2

g + σ
2

e ) = γ / (1 + γ) 

 

To adjust for kinship requires that the numerator relationship matrix is be inverted. For 

small datasets, this is no problem, but for very large datasets, national dairy herds for 
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example, this is computationally intensive. CS Henderson developed a method whereby 

the inverse of a kinship matrix could be written down directly from the pedigree. This is 

encoded as a special routine in some statistical software, VPEDIGREE in GenStat for 

example. However, for this example, we shall provide the matrix and incorporate it 

directly. I‟ve given the GenStat code for this below. 

 
"Simple association analysis using the mixed model in GenStat." 

 

"In the results, the between family component is expressed as gamma = Vg/Ve." 

"Heritability is then gamma / (1 + gamma)." 

"Beware - gamma and therefore Vg are very specific to the relationship matrix used." 

"They refer to a conceptual population with an identity matrix" 

"(1's on the diagonal, 0's off.) so if the marker based relationships show all lines" 

"are related, then Vg can be surprisingly large." 

"This doesn't affect the validity of the test for association, however." 

 

"Clear out the old data." 

 

endjob 

 

 

"Read in data"  
 

"id - unique identifier for each entry." 

" ma and pa - you don't need - only if using GenStat's VPEDIGREE command to get kinship 

estimates from the pedigree." 

"phen is the phenotype." 

"SNP is the marker to be tested for association." 

 

read id,ma,pa,phen,SNP 

  5 1 2   0.665  1  

  6 1 2   2.113  0 

  7 1 2   0.667  1 

  8 1 2  -0.161  0 

  9 1 2   0.170  1 

  10 3 4   1.669  0 

  11 3 4   1.957  1 

  12 3 4   0.108  0 

  13 3 4   1.789  1 

  14 3 4   2.881  0 

 : 

 

“Note: if using VPEDIGREE parents precede progeny in id number” 

 

"Convert from variates to factors." 

 

group [re=yes]id,ma,pa,SNP 

 
 

"Read relationship matrix" 

"The example is for two unrelated full sibs families with five individuals each." 

 

SYMM [r=10] relationships 

read relationships 

 1.0                                                                                                         

 0.5 1.0                                                                                               

 0.5 0.5 1.0                                                                                   

 0.5 0.5 0.5 1.0                                                                       

 0.5 0.5 0.5 0.5 1.0                                                            

 0.0 0.0 0.0 0.0 0.0 1.0                                                

 0.0 0.0 0.0 0.0 0.0 0.5 1.0                                    

 0.0 0.0 0.0 0.0 0.0 0.5 0.5 1.0                        

 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 1.0             

 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 1.0 

 :  

 
 

"You need to create a dummy variable to partition G and E within each individual" 
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factor [lev=10; val=1...10] id2 

 

 

"Do the analysis" 

 

 VCOMPONENTS [SNP] RANDOM=id2+id; INITIAL=1; CONSTRAINTS=none 

 VSTRUCTURE [TERMS=id]  MODEL=fixed;matrix=relationships 

 

"A warning will be printed that we have specified two residual terms." 

"This is OK - ignore it." 

 

 REML [PRINT=model,components,WALD] phen 

 

 

This code isn‟t that intuitive, which is why I have given it here in full. In particular, in 

GenStat, it is necessary to define a second index variable (id2), identical to the first (id1) 

and explicitly fit variance components to both. One indexes the Ve terms, the other Vg. 

Any attempt to do otherwise leads to madness. On running, this code will give exactly the 

same answer as before. We can now study the effect of varying kinships. Suppose we had 

the more complex relationship matrix given below: 

 
 1.0                                                                                                         

 0.5   1.0                                                                                               

 0.5   0.5   1.0                                                                                   

 0.5   0.5   0.5   1.0                                                                       

 0.5   0.5   0.5   0.5   1.0                                                            

 0.125 0.125 0.125 0.125 0.125 1.0                                                

 0.125 0.125 0.125 0.125 0.125 0.25 1.0                                    

 0.125 0.125 0.125 0.125 0.125 0.25 0.25 1.0                        

 0.125 0.125 0.125 0.125 0.125 0.25 0.25 0.25 1.0             

 0.125 0.125 0.125 0.125 0.125  0.0 0.0  0.0  0.0 1.0 

 

Note there are very few pairs of unrelated individuals. The analysis now gives: 

  

    Ve   =   0.305 

    γ    =   3.615 

    Wald stat =  0.10 

 

The relationship matrix is not totally flexible. It must be positive semi-definite: it must 

have an inverse. If this is not the case, this implies that there is something wrong with the 

specification of the relationship matrix. Identical (or even very closely related 

individuals) can cause problems. With our simple example, the following relationship 

matrices give exactly the same Wald statistic for association with the SNP. 

 

diagonal within  between Ve  gamma  Vg 

   families families 

1 1  0.5  0  0.735  0.725  0.533 

2 1  0.25  0  0.203  5.259  1.068 

3 1  0.5  0.25  0.469  2.272  1.066 

4 1  0.5  -0.5  0.868  0.307  0.266 

5 2  1  0  0.735  0.362  0.266 

6 2  0.5  0  0.203  2.629  0.534 
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The relationship matrix specifies the form of the variances and covariances. With regard 

to the test for association, the absolute values don‟t matter: simple addition or 

multiplication of all the elements of the matrix has no effect on the test for association. 

Even negative values on the off diagonal have no effect. This is discussed below. The 

form of the relationship matrix does, however, affect the interpretation of the variance 

components.  

 

For the top three rows of the table, the relationship matrix is appropriate for  two full-sib 

families, two half sib-families and two full sib-families nested within a half-sib 

(something akin to the Nested Association Mapping design of Ed Buckler) respectively. 

Vg represents the variance among unrelated non-inbred individuals from the population 

(ie a set of individuals with a relationship matrix of I). The estimate of Vg in the second 

line is twice that in the first line, as it should be:  the coefficient of Vg in the between 

families mean square is ½ assuming full-sib families and ¼ for half sibs. Inevitably the 

estimate of Vg doubles.  

 

The fourth row has negative relationships among the individuals classified previously as 

unrelated. Ignoring how these relationships might be estimated, we shall first consider 

what they mean. As mentioned earlier, relationships among individuals are based on a 

fiction: that there is such a thing as a population in which all individuals are unrelated. (It 

is for this reason that RA Fisher eschewed the use of Sewall Wright‟s inbreeding 

coefficients and ploughed his own furrow to quantify inbreeding through the theory of 

junctions, or so my old supervisor and guru JS Gale, one of RA Fisher‟s last PhD 

students, told me.) Once we have defined a reference population, we can estimate 

relationships and inbreeding coefficients of any individuals derived from that population. 

All relationships and inbreeding coefficients are relative to that reference. An extreme 

case is encountered when dealing with individuals derived from an F2. The F2 can be 

treated as the base population in which all individuals are defined as unrelated and non-

inbred. However, the two parental lines are less related than individuals in the F2 and the 

F1 is less inbred than the F2. The only way to quantify this is to allow relationships and 

inbreeding coefficients to be < 0. (We‟ve come across something similar to inbreeding 

coefficients <0 before: the term used to describe the departure of genotype frequencies 

from Hardy-Weinberg expectation can be either positive or negative depending on 

whether a deficiency or excess of heterozygotes is observed. In the wholly made up 

relationship matrix on line four, therefore, pairs of individuals with negative relationships 

are less related than are pairs in the (conceptual) reference population.  

 

The remaining two lines of the table are cases where the diagonal elements are no longer 

one, yet even in these cases, the Wald statistic remains unchanged. Case 5 represents 

inbred lines derived from two unrelated F1s. Case 6 is the inbred line equivalent of two 

half sib families: inbred lines within each family have one common inbred parent and one 

unrelated parent. Cases 5 and 6 have estimates of Vg which are half that for the outbred 

analogous cases 1 and 2. This is correct. The estimate of Vg refers to the conceptual 

outbred population of unrelated individuals. The additive genetic variation among these 

outbred individuals is expected to be half that seen among unrelated inbred lines. We 



 300 

could use relationship matrices of the form given in cases 1 and 2 to analyse the inbred 

data given in cases 5 and 6. This is common practice, but we must also take care over the 

interpretation of Vg (or γ ) and understand the estimate produced is for a population of 

inbred lines and not of outbred individuals. 

 

Occasionally, one may have a mixed collection of inbred and outbred individuals to 

analyse. For example, in maize one may be working on inbreds and F1s. (In this case, a 

simple additive model of genetic variation is unlikely to be acceptable. We would need to 

account for dominance. This can be done, but not here.)   In this case, the diagonal 

elements would be mixed – some would be 1 and some 2, or more generally (1 + F). In 

our example, if we treat the second family as inbred – diagonals 2 and off diagonals 1, 

and the first as outbred – diagonals 1 and off diagonals ½ then we get: 

 

Ve =  0.672 

Vg  =  0.412 

γ   =  0.614 

Wald   =  0.10 

 

These estimates seem reasonable. 

 

 

The estimate of the additive genetic relationship matrix 

 

Traditionally, particularly in animal breeding, the mixed model has been used for 

association mapping. For this purpose, the pedigree of all animals in a breeding herd is 

tracked. The genetic relationship matrix is calculated directly from the pedigree. To speed 

up computation, Henderson developed simple methods which allowed kinships to be 

written down sequentially, starting with the founder individuals, who were assumed to be 

unrelated and non-inbred. He also developed a method which allows the inverse of the 

matrix to be written down in the same manner, without the need to first produce the 

relationship matrix or to invoke matrix inversion routines, which otherwise take a lot of 

computer power (Henderson 1976).  Several computer programmes will compute the 

additive genetic relationship matrix and its inverse from the pedigree.  I am most familiar 

with GenStat which provides the command VPEDIGREE to generate the inverse 

relationship matrix directly from the supplied pedigree. Its use on the simple example 

above does indeed give the same answer but beware. These procedures can only be 

applied to inbreeding crops if there is no consanguinity – no breeding loops – within the 

pedigree. In this case, the computed relationship matrix will be exactly ½ its true value.  

If there are breeding loops, that is to say if there are some lines derived from related 

parents, this is no longer the case. This is because the progeny of related lines are 

partially inbred and will have diagonal elements in the relationship matrix which are >1. 

Doubling the relationship matrix to make it applicable to a set of inbred lines would give 

diagonal elements >2 which implies a p(ibd)  >1 for an inbred line. As p(ibd) is a 

probability, this should be impossible. I am uncertain what the consequences of this are, 

but it would be relatively easy to test with simple example pedigree structures. 
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More recently, molecular markers have been used to estimate kinships.  This change has 

only been possible as high densities of informative markers become available. Marker 

based estimates of relationship have come to prominence for two reasons. 

 

Firstly, no pedigree information may be available. This is particularly so for wild species. 

Marker based estimates of kinship and inbreeding coefficients now allow estimation of 

variance components and heritability of wild species measured in-situ. This has opened 

up new opportunities for research in population and ecological genetics studies. K 

Ritland is a pioneer of this approach (Ritland 2000).  In domesticated species too, 

pedigree information is often incomplete, even for very recent sets of cultivars. Breeders 

often wish to keep this information secret, or the pedigree may involve proprietal lines 

whose origin is not public, or a line assumed to be derived from an F2 may in fact 

originate from a backcross. 

 

Secondly, even when pedigrees are known perfectly, marker based estimates can be more 

accurate. The relationship between two full-sibs, ½, is an expected value: the mean over a 

large number of full-sib pairs. In practice, Mendelian sampling within a family results in 

any particular pair deviating a little from this mean. With sufficient markers, this 

deviation can be measured accurately, in which case it is better to use the estimate rather 

than the expected value. (There will be a Bayesian estimate which incorporates the prior, 

½, with the estimate from the markers. The more markers, the lower the weight given to 

the prior.) This approach has been used in human genetics to estimate heritabilities within 

full-sib families by correlating covariance in phenotype with within family variation in 

relationships. This provides estimates of heritability from variation within families. These 

estimates are not confounded with common environment effects which can otherwise be 

a problem in human genetics. (For what it‟s worth, the new estimates agree well with the 

original estimates from twin studies and the like).  This approach was developed by Peter 

Visscher (2009).  

 

As far as I‟m aware, the question about how many markers is sufficient to estimate 

kinship with accuracy adequate for use in mixed modelling has not been thoroughly 

studied for plants. It will be a function of the extent of LD within the population (the less 

extensive LD, the more markers are required), the true variability in relationships and the 

informativeness of the markers / diversity of the population studied (which amount to the 

same thing). One sees published work which relies only on tens of SSR markers. Whether 

this is adequate I don‟t know. 

 

There are several methods to estimate kinship, and hence the additive genetic relationship 

matrix, from markers. This is an area of active research still. Discussion is usually 

couched in terms of the probability of identity by state of alleles, p(ibs), which is what 

you observe at a locus, and the probability of identity by descent, p(ibd), which is what 

you wish to infer. For association mapping, I suspect the result for the candidate markers 

themselves don‟t differ too much among methods but estimates of Vg can differ 

enormously.  
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I shall describe two simple methods. More information will be found in the 

documentation for the tutorial. 

 

1. Simple allele sharing. 

 

For each marker, compute the probability that a randomly drawn allele from one 

individual is shared (ie is ibs) with a randomly drawn allele from the other. For haploids 

and inbreeders such as wheat, this is 1 if the two alleles are identical and zero if not. This 

can be averaged over all loci to give the estimate of kinship. The estimate of kinship of an 

individual with itself is its inbreeding coefficient F.  The additive relationship matrix 

should therefore have elements 2 times kinship on the off diagonal and 1+ kinship on the 

diagonal.  For fully inbred lines, F will be correctly estimated as 1, and the raw kinship 

matrix can be used directly in the mixed model (with care over the interpretation of 

variance components). 

 

For diploid outbreeding individuals, the estimate of F will be <1. Strictly, the diagonal 

elements should be set to 1+ F and the off-diagonals to 2 times kinship. Frequently, 

however, I strongly suspect that the kinship matrix is used directly as input, with diagonal 

elements set to 1.  

 

For both inbreeders and outbreeders, off-diagonal elements are very unlikely to ever be ≤ 

0 with this method. With this simple measure of allele sharing, all individuals usually end 

up explicitly related. The estimate of heritability and genetic variance will apply to some 

Arcadian population in which every individual carried unique alleles. Multiallelic 

markers such as SSRs will generally give lower kinships than biallelic markers and 

therefore also give lower estimates of Vg. 

 

To overcome some of the limitations of simple allele sharing we can take a weighted 

average over markers such that the more informative markers have more influence. An 

SSR with a high number of alleles will be more informative than a SNP as ibs for the 

SSR markers is more likely to arise through relatedness than through random sampling. 

One such weighting scheme is: 

  

Kinship  =  p( ibs) – x ] / (1-x) 

 

where x is the average p(ibs) for two random alleles at that locus drawn from the 

population It  is usually estimated using the average allele frequencies in the dataset. This 

isn‟t strictly correct but is judged good enough. For a biallelic marker with frequencies p 

and q (=1-p), x = 1-2pq giving kinship estimates of of: 

 

  [ 1 - (1-2pq) ]  / (2pq)  =  1 for identical homozygotes 

and  

   1 -1/4pq  with one allele in common 

 

   1- 1/2pq  with no alleles in common 
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Kinship is averaged over all loci as before. This scheme has the effect that the estimated 

inbreeding coefficient of an individual is 1 only if all loci in that individual are 

homozygous. For an inbred species this gives a relationship matrix with all leading 

diagonal values of 1 and off-diagonal elements which can be negative. For a diploid, 

negative estimates of both kinship and F can arise. Diagonal elements of the matrix 

should be replaced with 1 + F and the off diagonals with twice the kinship. 

 

Other methods of increasing sophistication are also in use, all of which attempt to 

translate p(ibs) to p(ibd) which is what we are really after, for example Lynch (1988) and 

Melchinger et al (1991). Several are available within the software SPAGEDi 

 

2. Correlation and excess allele sharing. 

 

This is the preferred method at NIAB 

 

In any particular dataset, all additive traits have the same numerator relationship matrix: 

for a single locus, the contribution to the genetic variance of an individual is (1+F)2pqa
2 

 

and to the covariance 2fpqa
2
. If there was an additive trait, of heritability one, with 

known genetic variance, and controlled by a known large number of loci of known allele 

frequency, distributed uniformly with respect to the genetic map, we could get an 

estimate the numerator relationship matrix from each locus and average over loci for 

greater accuracy. We do not have such an ideal dataset, but we can synthesize something 

quite similar from the marker data. 

 

We‟ll assume our markers are all bi-allelic, though the process could be extended to 

SSRs. We start by giving each marker equal genetic variances. To do this we give 

genotypes scores of 0, 1 and 2 (diploids) or 0,1 (haploids and inbreeders) as usual. We 

then standardize these scores by subtracting the mean number of alleles carried by 

individuals in the dataset (2p for diploids, p for haploids) and dividing by the standard 

deviation of allele numbers. (This is √2(p(1-p) for diploids  and √pq for haploids). Each 

marker score now has a mean of zero and a variance of 1 across all the individuals in the 

dataset.  

 

The average score over markers gives us the synthesized trait for an individual. The 

contribution each marker makes to the genetic variance of that individual is just the 

square of its score. The contribution to the covariance between individuals is the cross 

product. 

We are interested in the mean of these contributions per individual, or per pair of 

individuals, over all loci.  However, first we standardize again, so that each marker 

contributes equally to this average. To do this, we convert the scores over individuals 

within markers to standardised normal deviates by subtraction of the mean and division 

by the standard error (estimated within markers across individuals this time). The mean 

of the square and the mean of the cross product of these new scores will give us the result 

we want. However, it is not necessary to do this last standardisation explicitly as a matrix 

of these mean squares and mean cross products is just the variance / covariance matrix 

for individuals across all the markers. The elements of this matrix are estimates of the 
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coefficients of the numerator relationship matrix multiplied by a constant. The constant is 

the genetic variance, Vm, of the synthesised additive trait. There are now several ways 

we can proceed: 

 

1. If all individuals in the dataset are outbred, we can convert the variance/covariance 

matrix to a correlation matrix. This is equivalent to standardising the marker trait (again) 

to Vm  = 1 and zero mean. The elements of the correlation matrix are therefore the 

desired values for the numerator relationship matrix and the correlation matrix can be 

used directly.  

 

2. If all individuals in the dataset are fully inbred, we can again convert the 

variance/covariance matrix to a correlation matrix. This is equivalent to standardising the 

marker trait to give it unit variance (over unrelated inbreds) and zero mean. The elements 

of the correlation matrix are now all half the desired values for the numerator relationship 

matrix, as discussed previously. We can use this matrix directly, or double it if we wish. 

 

3. The variance covariance matrix can be divided by an estimate of Vm to give the 

numerator relationship matrix.  For example, there may be a set of individuals or lines 

which can be used to define a reference population with known kinships and inbreeding 

coefficients. Vm would be estimated directly from this dataset.  

 

4. As Vm is a constant, we can use the variance covariance matrix directly. The value of 

Vm will make no difference to any test of association, but it will give misleading 

estimates of variance components. 

 

Options 1, 2 and 3 could probably be interpreted in a Bayesian manner as different 

extremes of methods to incorporate prior knowledge of inbreeding into the estimates. 

There will therefore be a Bayesian estimation method which incorporates such prior 

knowledge with the observed data. 

 

This is not the usual way of explaining this estimate of the numerator additive 

relationship matrix, but to my mind relating the procedure to an additive polygenic trait 

based on the markers makes some properties of the estimates more clear. It is more 

commonly described in terms of excess allele sharing. The excess is the deviation from 

the mean. 

 

The concept of treating the markers as if they are component genes of a quantitative trait 

is also easily extended to other ploidy levels. It may not work so well for dominant 

markers. Again simple examples may be telling.  

 

Role of allele frequencies 

 

Markers are first adjusted by the mean and variance of allele frequencies. Inevitable, 

these are estimated from the data. As the individuals in the dataset can be quite inbred / 

related / selected, these estimates are not ideal. Data could first be standardised using 

means and variances estimated from a reference population if one was available. 
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Alternatively, once we have a relationship matrix, marker allele frequencies could be re-

estimated taking these into account and the whole process iterated. For large datasets, 

neither of these processes is likely to make much difference. 

 

 

Relationship of the mixed model with Structured Association (SA). 

 

Structured association corrects for population structure by including covariates to account 

for sub-population membership in a multiple regression of the trait on the marker to be 

tested. As the covariates are fitted first, the association of the marker is with the trait 

residuals after adjustment for variation in population membership.  The covariates to 

account for population membership come from analysis with the program STRUCTURE 

to detect and quantify cryptic population membership using genome-wide marker data. 

However, other covariates can equally be used – known population membership is the 

most obvious choice.  STRUCTURE does not work well on many crop populations: it is 

difficult to decide how many cryptic subpopulations exist, and much of the population 

structure is due to close kinship rather than the more gross subdivisions which 

STRUCTURE can detect. Yu et al (2006), in their initial advocacy of the mixed model in 

association mapping, proposed using both the population membership vectors estimated 

by STRUCTURE (the Q matrix) together with a marker-estimated kinship matrix (the K 

matrix). Q and K are commonly estimated using the same set of markers. Even if 

estimated using different markers, given that both sets ideally sample the whole genome, 

the data are correlated. As a result, there is a concern that use of both Q and K amounts to 

double counting the data. 

 

The documentation for TASSEL suggests that one should set any negative estimates of 

the kinship matrix to zero. These negative relationships are more likely to be between 

pairs from different sub-population: the least related individuals. Replacing negative 

kinships with values of zero in K, but including the Q matrix should therefore have the 

effect of reducing the genetic distance between the most distantly related pairs to the 

population average (0) in K, but then accounting for large genetic distances by the 

allocation of individuals to different subpopulations in Q. This should give much the 

same answer as ignoring Q and analysing the data with K, including negative values. In 

UK wheat and barley association mapping studies this does seem to be the case 

(JonWhite, pers, comm.). 

 

In inbreeding crops, structured association alone leaves a very high rate of false positive 

results, though still substantially less than analysis with no adjustment, There is an 

emerging view that analysing crop data with K alone (without tampering with negative 

values) is as good as anything. 
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Relationship of the mixed model with EIGENSTRAT 
 

EIGENSTRAT (Price et al, 2006) works on an excess allele sharing kinship matrix, 

created in the same manner described above.  The eigenvectors associated with the 

largest eigenvalues are then used as covariates in a regression on phenotype. In principle, 

candidate loci could be included directly in this regression to give a procedure very 

similar to SA; with eigenvectors used as covariates rather than vectors from 

STRUCTURE. For gross population divisions, which are generally detected in the first 

two or three eigenvectors, such an approach should give very similar results to SA. 

However, EIGENSTRAT correlates the residuals from the regression of phenotype on 

eigenvectors with a similar vector of residuals from a regression of the candidate marker 

on the same eigenvectors. The correlation between the two sets of residuals is then the 

tested for statistical significance. It isn‟t clear why both the phenotype and candidate 

marker are adjusted in this manner. In UK wheat and barley EIGENSTRAT behaves 

similarly to SA: less effective in controlling false positives than the mixed model but 

better than nothing (John White, pers. comm.). As with STRUCTURE, EIGENSTRAT is 

not good at controlling for false positives generated by close relationships among 

individuals. 

 

 

A proposed combined approach 

 

This is more speculative. The use of the kinship matrix in EIGENSTRAT suggests the 

following approach. The largest eigenvalues are selected for inclusion as covariates in a 

regression with phenotype, just as for structured association. However, the residual 

eigenvalues and eigenvectors can be used to construct a residual kinship matrix. This 

represents the residual genetic relationships not accounted for by the largest eigenvalues.  

This residual kinship matrix is used instead of the full kinship matrix to account for 

residual genetic variances/covariances in the mixed model. This partitioning ensures that 

data are only used once but that major population subdivisions are adjusted by treating 

them as fixed effects in a regression (which we have seen can be very effective) but 

residual kinship effects are still accounted for as random effects through the relationship 

matrix. 

 

The number of eigenvalues to be included as covariates could be varied. If none are used, 

we have the simple mixed model. As the number increases, the analysis approaches that 

of EIGENSTRAT. The optimum number is likely to be low – most major population 

groups are apparent in the first two or three axes of a PCO plot. Additional eigenvalues 

are unlikely to account for much phenotypic variation in a regression analysis, and are 

better left to account for covariation within the residual kinship matrix. For any fixed 

number of eigenvalues removed, significance of the regression of each eigenvector can 

be tested. Thus it may be possible to remove eigenvectors sequentially, until one is 

removed which does not account for a significant proportion of the phenotypic variation. 

The non-significant eigenvector could then be added back into the kinship matrix to give 

a final model.  One would expect the eigenvectors of the largest eigenvalues to be most 

important in accounting for phenotype, but this needn‟t be so. For example, in a dataset 
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consisting of Spring and Winter barley, the largest eigenvector will be associated with the 

spring-winter partition. However, not all phenotypes are associated with this split, but 

there may be some other gross subpopulation partition which is. Two row versus six row 

barley for example. So it could be that the largest eigenvalue should be left in the residual 

kinship matrix – we still need to account for it contribution to (co)variance -  but the 

second principle component (say) should be included as a covariate. Some form of 

stepwise regression procedure might assist in selection. This is something we would like 

to study in the future. 

 

 

Genomic control 

 

Genomic control (GC) was the first statistical method to be used extensively in 

association mapping. In crops, apart from at NIAB, it is hardly ever used. Although it 

was introduced to account for differences between subpopulations, the assumptions on 

which it is based are more valid for controlling for close relationships between relatives. 

In this respect it is can be regarded as a poor man‟s substitute for the kinship matrix. 

However, it acts as a gross average adjustment – the test statistic for association is 

adjusted downwards by a constant proportion in all cases. There will be a form of the 

mixed model which will give an identical result to GC. It will have an error variance and 

a fixed value for γ to adjust for the inflation in variance due to cryptic population 

structure. For a collection of inbreds, I believe a mixed model equivalent to GC could be 

constructed as follows. The effect of subgroups is defined using the control SNPs. Each 

control SNP partitions variance into a between SNP term and an error term.  Each SNP 

therefore gives an estimate of γ. The mean of these is used in the analysis of the candidate 

SNP as a fixed ratio of γ. With γ  fixed, the relationship matrix in this analysis will have 

elements of 1 down the diagonal, and off-diagonal elements of zero if lines carry 

different alleles and a constant >0 if they carry the same allele. (This needs confirming.)  

 

The mixed model is clearly more flexible as it accounts not just for average relationships, 

but for variation in relationships among pairs of individuals. As a result, depending on the 

distribution of a candidate marker among individuals, the test statistic can, in principle, 

rise as well as fall for the mixed model. Nevertheless, we have found genomic control to 

work well when used in conjunction with EIGENSTRAT or with SA, when it acts to 

mop-up the residual kinship effects not accounted for directly. GC with EIGENSTRAT, 

in particular, is therefore a very quick method of analysing a large dataset and can act as a 

sanity-check for more elaborate analyses. 

 

 

More complex cases 

 

We have only discussed data in which a single measure of a phenotype is analysed. More 

complex analyses which incorporate replicate observations on each line and even on 

multiple correlated phenotypes are possible, but we shall not go into those here. Multiple 

candidate markers may themselves be treated as random effects rather than fixed. As far 

as I‟m aware, bespoke programs for the mixed model in association genetics, such as 
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Tassel and Emma do not provide these options. The mixed model for these more complex 

cases needs to be fitted in standard statistical software such as ASREML, GenStat, or 

SAS. 

 

Currently most analyses tend to be carried out on line means, derived from an initial 

analysis of the data. The big advantage of replicated data is that is can provide an 

independent estimate of error variance. This improves the accuracy of the subsequent 

estimate of genetic variance. Statistical packages which implement the mixed model 

should allow you to fix the values of some variance components (or their ratios) in 

advance of the analysis. (Remember to scale by the number of replicates.) I know 

GenStat allows this very generally, and Tassel allows heritabilities to be fixed. 

 

 

In conclusion. 

 

Use the mixed model. 

 

In our experience, which is largely on inbred cereal crops, this offers the best 

compromise between power to detect loci and control of false positive results. 

 

Estimate your kinship matrix by excess allele sharing. 

 

For more information on software implementation, see Zhang et al (2009), though this is 

somewhat biased towards Tassel, not surprisingly given the authorship. 
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THE ROLE OF MOLECULAR MARKERS IN PRACTICAL PLANT 

BREEDING SCHEMES. MARKER ASSISTED SELECTION IN 

PRACTICE. 
 

Introduction 

 

“QTL analysis has produced great advances in plant breeding” recent review. 

 

This is a quote from a 2007 review of QTL analysis in rice. It is a bit unfair to pick on 

this particular paper: many others would do to illustrate this supremely optimistic 

assessment of the value of QTL mapping to plant breeding. It has been the justification 

for many a grant application too: the deliverables from the proposed research are 

arrogantly stated to be a set of markers suitable for use in marker assisted selection by 

“the breeders.” No wonder this gets up their noses. I‟m a glass-half-empty sort of person, 

so in this presentation I shall go out of my way to point out the problems with application 

of molecular markers to breeding programmes. There is no limit to the amount of freely 

available literature which will point out the advantages. In passing I shall mention some 

of them too. 

 

I should also be explicit that my own experience of applying marker based methods to 

breeding programmes is zero. You must form your own opinion of their merit. The best 

people to talk to would be controllers of breeding programmes in which markers are 

routinely used. Unfortunately, most such individuals are in the private sector and like to 

keep this sector private. 

 

Given these views, what was the point of learning all about markers and QTLs? They do 

have a place and are used successfully in some cases. More importantly, things are 

getting better. In particular the costs of genotyping are getting cheaper and the 

availability of high densities of markers and of sequence data (for which, after all, 

markers are a mere surrogate) is increasing. Meanwhile, phenotyping costs increase. So 

the direct application of molecular markers and marker assisted selection to practical 

breeding programmes will increase.  

 

 

Marker assisted selection and the breeders equation. 

 

     R=ihσg 

 

Like everything else in breeding, the role of marker assisted selection (MAS) must be 

judged by its impact on this equation. If MAS cannot increase response to selection per 

year or per unit of cost, then it should not be part of the breeding programme.  Looking at 

each of the terms in the equation in turn (in reverse order): 
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Genetic variance 
 

MAS can have no effect on σg
2
. Identifying a QTL, however large, does not alter the 

value of σg  value. You haven‟t identified anything new. If phenotypic selection is already 

efficient in burning this fuel to drive genetic gain MAS will do no better. 

 

Heritability 

 

A consideration of the effect of heritability can be framed in the context of indirect 

selection or index selection. If the heritability of the phenotype is low, then selection on 

markers closely linked to a number of QTL can increase response to selection. We can be 

explicit about the conditions in which MAS will be more successful than phenotypic 

selection: 

 

select on phenotype alone R = ihp
2
σp 

 

select on markers alone R = irghmhpσp 

 

where the subscripts m and p stand for marker and phenotype and rg is the genetic 

correlation between the index of a score based on markers and the phenotype. These 

equations are quite general. All inaccuracies in genotyping are accounted for by hm and 

imprecision in prediction of phenotype by rg. 

 

For MAS to give a greater response than phenotypic selection 

 

irghmhpσp > ihp
2
σp 

 

or 

 

rghm > hp 

 

but since hm
2
 = 1 (assuming no genotype errors) 

 

rg > hp 

 

This is better expressed as  

 

rg
2
 > hp

2
 

 

The genetic correlation coefficient squared between marker index and genotype must be 

higher that the heritability of the phenotype. 

 

For a suitably defined marker index, weighting individual markers by the magnitude of 

their  QTL effect, if all QTL are tagged perfectly and if QTL effects are known without 

error, then rg
2
 will be one and MAS will be impossible to beat. However, if only QTL of 

large effect are tagged and these only account for 50% of the genetic variation, say, then 
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MAS will have its work cut out: a heritability of 50% is not difficult to achieve which 

some modest replication. 

 

This simple analysis shows that the argument in favour of MAS is not cut and dried. 

There are additional problems too. Before MAS is considered we need to detect marker-

trait associations through linkage or LD mapping. QTL of large effect can be detected 

easily with little bias in their estimated effect and with high precision in their 

chromosome location. However, for traits of low heritability and/or for QTL of minor 

effect, detection and estimation is harder. Those minor QTL which are fortunate enough 

to be detected will necessarily have estimated effects which are biased upwards: from 

many minor QTL only those which, through sampling variation, appear to have a large 

effect in the mapping experiment will be detected. This is sometimes described as the 

Beavis effect after one of its discoverers. It reduces the efficiency of MAS by reducing rg, 

the genetic correlation between marker score and the trait phenotype.. 

 

Index selection should give an improvement over selection purely on markers or purely 

on phenotype. Unfortunately it can still be let down by the bias and precision with which 

marker-QTL effects are estimated. For example, Bernardo, Crop Sci 2001, 41:1-4  

simulated MAS in hybrid maize breeding in which markers tagging all QTL were 

included in the index but in which QTL effects were estimated from the phenotypic data. 

Because of the bias in the estimation of these effects, index selection frequently 

performed more poorly than phenotypic selection. Increasing the population size from 

which marker effects were estimated and increasing heritability improved the efficiency 

of MAS but in these circumstances phenotypic selection is more effective too. He 

suggested, at least for hybrid crops, that QTL mapping may be better restricted to 

identifying genes for which novel variation could be screened or induced. He also stated 

that MAS may be better suited to animal breeding or to inbred crops. Subsequent work by 

Bernardo and Charcosset has shown that for a trait under the control of 40 or more loci, it 

is often best to ignore minor QTL, even when their location is known exactly. 

 

The idea of a marker index, or “molecular score” to be incorporated with phenotypic 

selection was first developed in a benchmark paper by Lande and Thompson (1990). 

Rather than mapping QTL in an independent experiment, their work assumed that marker 

associations were detected by regression in the population under selection. The prediction 

of genotype by linear regression on marker score is then incorporated into the selection 

process. This approach has the advantage that there is no requirement to map the QTL. 

Index selection gave the greatest improvement over phenotypic selection at low 

heritability, but large population sizes were needed to detect the marker trait associations 

- which partly defeats the point of MAS in the first place. Various ways of addressing the 

problem of bias in assessing QTL effect were considered in this and subsequent work, for 

example using half the population to detect QTL and the other half to estimate their 

effect. A related difficulty is deciding how many makers to include. One could select 

only those which achieve some predetermined level of significance for example, or one 

could choose to include them all. There are also more complicated alternatives. 
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The Lande and Thompson approach, as far as I‟m aware, hasn‟t caught on in crops. The 

most likely use would be in outbreeding species. There is a requirement for the 

population to be closed - no population substructure - otherwise we would most likely 

end up selecting for a particular population type. There is also a requirement for LD to be 

sufficiently extensive for marker-trait correlations to be detected. None the less the 

method has a role, in that it places MAS in a quantitative genetics framework which then 

provides an objective means for its evaluation. 

  

In animal breeding a more recent development following the same approach is “genomic 

selection”  (Meuwissen et al. 2001 Genetics 157:1819-1829). This looks ahead to the use 

of high density markers to cover the whole genome, selecting on a score accumulated 

over marker intervals of roughly 1 cM. This is now being discussed in plant breeding too. 

(Bernardo & Yu 2007 Crop Science 47:514-621,  Zhong et al 2009 Genetics 182:355-

364; Piepho 2009 Crop Sci 49:1165-1176  ). This is an area of active research and shows 

a lot of promise. Genomic selection is now being exploited commercially by some animal 

breeding companies. It is discussed in more detail in the next chapter. 

 

Much of the effectiveness of MAS for quantitative traits depends on the distribution of 

gene effects. The general view is that the distribution will be exponential, with most QTL 

having minor effect but a small number having a large effect. This is difficult to confirm 

experimentally because of the problems of bias in estimating the minor effects but is in 

line with predictions from evolutionary and population genetics theory. There is also the 

related question of the distribution of allele frequencies. This is thought most likely to be 

exponential too, in which case finding marker associations with the rare variants is going 

to be a problem. 

 

Intensity of selection 

 

If markers allow the screening of single plants for traits that would otherwise require 

multiple trial plots to measure, then the use of markers is likely to be cost effective: large 

populations can be screened and intensity of selection can be high. However, if the trait 

itself can be measured directly on single plants, phenotyping may be cheaper. This can 

only be decided on a case by case basis. For traits like yield, the problem again falls back 

on the difficulty of establishing unbiased validated marker trait associations which are 

close enough to use in MAS. If sufficient of these are found, then higher intensities of 

selection are possible because more single plants can be grown than plots. For one or two 

major genes, however, intensity of selection isn‟t a problem: whether selecting in plants 

or plots, you don‟t need to grow many to recover what you want. A two stage process in 

which single plants are first screened followed by selection among replicated plots could 

be advantageous, provided the cycle time of the selection scheme is not increased. This 

could work for crops bred through pedigree breeding, SSD or DH production, with 

optimum allocation of resources between MAS and phenotypic selection established 

using approaches similar to those discussed earlier for multi-stage selection. 

 

In general, increasing intensity of selection is not particularly cost effective provided the 

population available for selection is reasonably large. Selecting the best line from 10,000 
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gives only 1.2 times the response to selecting the best line from 1000 and 1.5 times the 

response to selecting the best from 100. 

 

Breeders equation summary 

 

To summarise so far. For traits under the control of many genes, MAS will not substitute 

for phenotypic selection but can complement it, most usefully if heritabilities are low. 

However, in such circumstances precise location of QTL and accurate estimation of 

effect are hard to establish. Overestimates of effect and poor location can result in MAS 

reducing response rather than increasing it. For MAS to become routine in plant breeding 

for polygenic traits, estimates of QTL location and effect need improving.  

 

 

Major genes, time and money 

 

Major genes are often mapped to small intervals and functional markers within genes are 

sometimes available. Examples in wheat include markers for dwarfing genes, some 

disease resistances, and flowering time response to day length. In such cases there are 

clear opportunities for molecular markers to increase response to selection per unit cost. 

It may be easier to screen markers for resistance than to grow and artificially inoculate 

plants. Clearly in these cases MAS can be beneficial. 

 

MAS can also save time. The area where this is most easily achieved is in speeding up 

backcrossing, and we shall consider this in some detail shortly. Markers can also reduce 

cycle time however, especially for traits in which selection cannot take place until after 

sexual maturity. Examples of these are yield in most perennial species or, for that matter, 

any trait which cannot be effectively measured on a single plant (because we need 

additional generations to bulk up seed for testing). We have already seen in the tutorials 

that reducing cycle time is hugely effective in increasing response to selection compared 

to increasing population size. Any prediction of performance before sexual maturity will 

therefore allow crosses for the next cycle of selection to be made early and increase 

response per year. Selection schemes based purely on phenotypic selection can also be 

devised to reduce cycle time, but usually at considerable expense. An extreme case is to 

produce the next generation without any selection but then to apply selection 

retrospectively. For example, a simple recurrent selection scheme might select 10 

individuals from 45, then intermate those 10 in a ½ diallel (45 crosses) to form the next 

generation. Suppose crosses can be made after one year, but phenotype information is not 

available for two years. If crossing is delayed until after selection, this scheme takes two 

years per cycle of selection. However, if all 45 individuals are mated in a ½ diallel (990 

crosses) at the end of the first year and grown on, then once phenotype information is 

available in the parental generation, the crosses among the 10 selected parents are already 

available too, as a subset, size 45, of the 990. This is hugely extravagant in seed 

production, but for a halving of cycle time it may be worthwhile. In schemes like this, 

MAS could be used to reduce the number of  crosses to be made, but final selection could 

be postponed until phenotype information was available. Once again, the optimum 

approach is a combination of MAS and phenotyping.  
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Marker assisted backcrossing 

 

A good review from the guru of MAB: HOSPITAL, F. (2003) Marker-assisted breeding. 

In H.J. Newbury (ed.) Plant Molecular Breeding. Blackwell Scientific Publishers, 

London, UK, pp30-56  http://fhospital.free.fr/fred/work/publications.html  

 

The objective of most backcrossing programmes is to introgress one or more loci from 

the recurrent to the non-recurrent parent, but otherwise to recover the genome of the non-

recurrent parent.  Selection on markers can help in two ways. 

 

1) Select for markers linked to the trait to be introgressed rather than for the 

trait itself. This is termed foreground selection. It can be cheaper, and in 

addition individuals heterozygous for the introgressed locus can be 

identified for the next cycle of backcrossing. For recessive traits, there is a 

50% chance that any backcross plant will not be carrying the desired 

locus. Without markers, several crosses with different individuals must be 

made to ensure that at least one is carrying the locus. With markers, 

probable heterozygotes at the trait locus can be selected. 

 

2) Aside from the chromosome region around the trait locus, we can select 

for homozygosity of marker alleles from the recurrent parent to speed up 

recovery of the recurrent parent genome. This is termed background 

selection. 

 

Foreground selection 

 

Selecting on a single marker rather than the phenotype, in each backcross generation we 

want to know the probability that the locus to be introgressed is still present. Hospital 

defines this probability as the “target control rate.”  For a single generation, it is just (1-θ) 

where θ is the recombination fraction between marker and trait locus. Over n generations 

of backcrossing it is: 

 

   TCR =  (1-θ)
 n

  

 

Of course, this probability is 1 if the marker is completely linked to the trait but is only 

0.81 after four generations of backcrossing for a marker at θ = 0.05. Not unexpectedly 

then, for MAB with a single marker, we require quite close linkage. To increase the TCR, 

we can use flanking markers, one on each side of the trait locus, and select for 

heterozygotes at both flanking markers. 

 

With recombination fractions θ1 and θ2 between each marker and the QTL and θ between 

the markers themselves, we select the carriers of both markers. These occur at frequency 

(1-θ). But these individuals include a proportion which are non recombinant (1-θ1)(1-θ2)  

http://fhospital.free.fr/fred/work/publications.html
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(assuming no interference) and a proportion of double recombinants which no longer 

carry the QTL. So the probability of carrying the QTL when we select on both markers is  

 

TCR = [(1-θ1)(1-θ2) /(1- θ) ]
 n
 

 

For example, with θ1 = θ2  = 0.05, then θ  = 0.095 and TCR  = 0.99  after four generations, 

a considerable improvement. However, if your flanking markers are some distance apart, 

you will be forcing the introgression of quite a length of chromosome around the trait 

locus. 

 

These probabilities can also be used to calculate the sample size required at each stage of 

backcrossing to reach a specified probability of the trait locus still being present at any 

generation of backcrossing. If the non-recurrent parent carries the desired haplotype 

M1QM2 , then the probability that an individual in the next generation of backcrossing 

also carries it is 

 

½(1-θ1)(1-θ2) 

 

(the ½ is because the individual might have inherited the recurrent parent haplotype. 

 

So in a sample of size n, the probability that there is no individual carrying the desired 

haplotype is  

 

  r = [1-½(1-θ1)(1-θ2)]
n
 

 

The sample sizes are quite small for quite high probabilities that at least one individual 

does carry the desired haplotype, even with quite loose linkage. 

 

On taking logs, this equation can be solved to calculate n for a given risk, r. We need to 

be confident that the QTL really is where we think it is. The formulae above assumes that 

the location of the QTL is known exactly. If we have a pdf for the location, the simple 

approach above can be extended by integrating over the whole interval, or even over the 

whole chromosome. This can be useful for considering introgression of a locus identified 

in a mapping experiment, where locations are typically not known precisely and there is a 

chance that the locus lies outside the selected flanking markers.  

 

Background selection 

 

In the absence of selection, or for chromosomes not carrying loci for selection, the 

proportion of the non-recurrent parent is ½ 
n 

 where n is the number of generations of 

backcrossing plus 1 (the F1 is already 50% non-recurrent parent). This is an average of 

course. In practice, the introgressed genome will consist of segments of chromosome of 

variable length which decrease over successive generations of backcrossing.  

 

Background selection is harder to evaluate, and computer simulations are often used. I 

can give some general conclusions. For the typical (100cM) chromosome, 2-4 markers 
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are sufficient. They should be evenly spaced but the first and last markers are not 

optimally placed at the ends of the chromosomes. No chromosome should be left 

unmarked. Background selection saves about two generations compared to backcrossing 

with no selection. So the BC4 generation with markers is equivalent to BC6 without. 

Sample sizes required for this are quite small.  If resources are limiting, it is better to save 

MAB until the final generation. 

 

On the chromosome carrying the trait to be introgressed, background selection is more 

complicated. The background selection is to reduce “linkage drag.”  That is it aims to 

reduce the length of the introgressed chromosome segment which contains the trait. A 

simple and crude treatment of selection against linkage drag is to reverse the argument 

for foreground selection given earlier. Suppose we have a marker within the QTL, or 

equivalently that we are screening for the QTL by phenotype. We have the same two 

flanking markers as before, but now we want to select for carriers of the haplotype, 

namely m1Qm2 . 

 

Among backcrossed individuals homozygous for m1 and m2 , a proportion  

 

θ1θ2 /(1- θ)  

 

 

will be carrying the QTL. 

 

The probability of not finding such an individual in a population of size n is  

 

 [1-θ1θ2) /(1- θ)]
 n
 

 

which can again be solved for n on taking logs. 

 

This is exactly the case for introgression of a transgene where we ought to have a marker 

for the transgene itself. 

 

If we do not have a perfect marker for the trait, we can work with four flanking markers, 

two on each side of the trait locus. At the outer pair we select for the recurrent parent and 

at the inner pair for the non-recurrent parent. The free software, popmin is specifically 

written for this task. It searches for the minimum population size at each stage of the 

backcrossing crosses to achieve a desired probability of success. We shall have a look at 

it in the tutorial. 

 

HOSPITAL, F., DECOUX, G. (2002) Popmin: a program for the numerical optimization 

of population sizes in marker-assisted backcross programs. J. Hered, 93: 383-384. 

 

Note again, that background selection also requires the location of the QTL to be known 

with some precision. In the worst case, if flanking markers were selected around a 

linkage peak which was actually a ghost resulting from two adjacent QTL linked in 
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coupling, then attempts at introgression, with accompanying selection for background 

makers could end up selecting against the QTL. 

 

 

Some miscellaneous uses of MAS 

 

Pyramiding genes 

 

If there are several major loci conferring resistance to the same disease, it can be very 

difficult (but not impossible) to fix all genes in a single line using phenotypic selection 

alone. Selection using markers makes this process much easier. The expectation is that 

once fixed, the resistance is less likely to break down since the pathogen must mutate at 

multiple loci to overcome it.  

 

Non-random mating 

 

The statement made earlier that the availability of markers cannot alter the genetic 

variance is strictly only true for a random mating population in the absence of selection. 

We have already seen that genetic variance is altered by selection and by inbreeding. 

Assortative mating also affects genetic variation. If individuals are not mated at random, 

but are paired like with like, then the genetic variance in the next generation is increased. 

The increase is not great however. Details are in F&M  (beware there is a misprint in 

table 10.6). For example, with an initial heritability of 0.5, and perfect correlation 

between the male and female phenotype, the heritability is 0.56 in the next generation.  

 

Molecular markers provide an opportunity to exploit non-random mating in selecting 

parents. There are two alternatives. One is to select parents which are as diverse as 

possible, where diversity is measured by the markers. No direct correlation between 

markers and trait is assumed. In this case, phenotypic selection must still take place, since 

otherwise you end up crossing the best with the worst, with a predictably disappointing 

outcome. The second is to use known associations of markers with phenotype to build a 

genotype in the absence of any phenotype data.  

 

The second strategy is the more interesting, and has been employed successfully in wheat 

breeding programmes in Australia. The process will take several generations. For n QTLs 

segregating in an F2, the probability of finding a single individual homozygous at all loci 

is  ½
n
 which is less than one in a thousand for only ten loci. To guarantee that all 10 loci 

were fixed would require an even larger population size. Also it is unlikely that all ten 

loci would be segregating in the desired cross. So although single QTL can be very easily 

or rapidly fixed in a population, larger numbers require impossibly large population sizes. 

If QTL are linked in dispersion, then the numbers go up even more.  

 

The first strategy is problematic. There is an assumption that marker diversity correlates 

with diversity for loci determining the traits of interest. This is plausible, but not 

necessarily correct. Marker diversity arises predominantly from drift and founder effects 

but variation at trait loci will be more influenced by selection. There need not be any 
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great correlation between the two. Even if exactly the same forces of drift and selection 

have acted on all loci, it is possible that the correlation between the 50 (say) loci 

determining most of the trait variation and a sample of 200 (say) markers with a genome 

wide distribution will still not be high. Moreover, even if the premise is true, as stated 

earlier, maximum diversity is likely to be between very divergent parents which are not 

adapted : Vg would rise but the mean could tumble down. Phenotypic data must still be 

included and the correct weighting of the two sources of information is required. 

 

This approach has been pursued with more success in predicting which parents to cross to 

produce hybrid varieties. In this case, the problem of how to include phenotype 

information is reduced, since one is relying on dominance variation to cover the sins of 

the parents. In maize and some other hybrid crops, the best hybrids generally come from 

crosses between lines drawn from known, different, subpopulations (heterotic groups). 

Molecular markers are very successful in assigning lines to populations and markers can 

be used to select lines from different subpopulations as hybrid parents. But if we already 

know the origins of the lines this has achieved nothing. As far as I‟m aware, markers 

have had little success in routinely predicting good parental combinations within 

populations. Research continues. There is now some interest in using linkage analysis to 

detect heterotic QTL, which seems to me to be something of an admission of failure. 

 

The advantage and promise of association genetics 

 

Bias and precision are the two big problems in moving from QTL mapping experiments 

in experimental populations to MAS in breeders‟ germplasm. Association genetics has 

the potential to reduce both these. A population of cultivars offers a readily available 

replication set in which to get an unbiased assessment of a QTL effect and in which to 

improve the precision of its chromosome location. Moreover, by working in elite 

cultivars, results are more likely to be of immediate relevance to breeders since the 

collection should contain lines which are already present in their crossing schemes.  

 

It must be remembered however, that association genetics panels require LD to decay 

sufficiently slowly for mapping to be possible with the available marker density. As a 

consequence, precision may not be as high as hoped for, or if the precision is available 

power may be lost because marker density is too low. The population of elite lines 

available, at least in the public domain, is restricted also, especially in minor crops. For 

example, in UK winter wheat we have only managed to collect 175 modern cultivars, 

about the same as for a typical biparental mapping population, though over France, 

Germany and the UK we have collected about 700.  

 

For these reasons, I think it is an error to place too heavy a reliance on association 

genetics. My view is that the development of diverse mapping populations, specifically 

for fine mapping and replication of linkages established elsewhere, has a major role to 

play here and will be even more important in the future. Approaches such as the 

advanced intercross and nested association mapping will become more important too. 
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A further advantage of these fine mapping techniques (including association genetics) is 

that they should also allow better resolution of closely linked QTL. In most mapping 

experiments QTL linked in repulsion can cancel each other out while linkages in 

association can  result in an apparent single QTL of  large effect. At best these scenarios 

will merely reduce response to selection but they could result in MAS doing more harm 

that good. In addition, a region tagged by a maker or flanking markers may contain 

variants affecting other traits and the locus itself may be pleiotropic. Fine mapping in 

diverse populations will increase the chance that these problems are avoided or detected. 

I suspect they have been underestimated as risks in the application of MAS; they don‟t 

seem to get talked about much. Perhaps as new technologies for mapping are applied the 

extent of these problems will become apparent. 

 

An example of the potential for these problems to arise is given by the study of the effect 

of gene density in Drosophila on mapping. Because the DNA sequence is known, 

simulations of mapping experiments can randomly allocate QTL in proportion to gene 

density; a more realistic approach than allocating QTL at random over the genetic map. 

Regions of low recombination are likely to carry the strongest apparent QTL as a result 

of multiple independent QTL clustering in these regions. Simulations show that as a 

result of clustering of genes and known variation in recombination frequency, one detects 

apparently few QTL of large effect. I am not aware of similar studies in crops yet they 

would be possible in rice now. The effect will be more important in species with low 

chromosome numbers. It will also be most prevalent in studies between extreme crosses. 

These are more likely to be segregating for multiple QTL so the opportunity for 

clustering and the emergence of QTL of apparent large effect is greater.  A way to avoid 

these problems may be to use sequence information to provide gene density estimates, 

take these into account when testing, and to map in populations with rapid decay of LD. 

 

Novel crops and the importance of maintaining phenotyping 

 

The enthusiasm for MAS in minor and novel crops is no lower than in the major crops 

although one often finds that basic genetic questions remain unanswered: does the trait 

show any genetic variation? What is the mating system? It is important to master the 

basic game before attempting drop shots. Investment in molecular methods should not 

come until an effective system of phenotypic selection has been put in place and there is 

some idea about how best to breed the crop. 

 

Revision of estimates 
 

The Lande and Thompson approach was explicit about the requirement to regularly re-

evaluate marker trait correlations. Other approaches have followed this lead. That this is 

required for single marker-trait combinations identified in the population being selected 

is no surprise. However, there is also concern that QTL tagged through mapping 

experiments, even with flanking markers, can seemingly lose their effect quite quickly; 

before the QTL or flanking markers are fixed. This effect has been seen in some recurrent 

selection experiments. Explanations include inaccurate mapping (the QTL could lie 

outside the flanking markers), ghost QTL (same effect), the Beavis effect, GxE, epistasis 
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(changing the genetic background as a result of selection alters the effect of the QTL) and 

changing allele frequencies. Whatever the causes, the effect demonstrates further 

practical difficulties of implementing  MAS for complex traits in practice.  
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GENOMIC SELECTION 

 

The lecture notes of Dr Ben Hayes provide an excellent source of free information.  

Search on the web for the latest version. 

 

The basic idea is that all markers or marker intervals are included simultaneously in a 

model to predict genetic merit or breeding value, commonly referred to as  GEBV; 

genomic estimated breeding value. Because there is no selection of a subset of markers 

which are significant, there is no bias: no Beavis effect. However, there are generally 

more markers than genotyped individuals available on which to estimate the marker 

effects. As a result there are too fewer degrees of freedom available to fit the full model 

using standard regression methods. Below I outline two approaches (the easiest) to 

estimating breeding value for genomic selection. We shall also study these in the tutorial. 

I then describe some of the factors which I feel are important in considering if GS is right 

for your crop. As usual, I‟ll be miserable. 

 

 

Ridge Regression 

 

This was first proposed as a method by Whittaker et al (2000, Genet. Res. 75249-252), in 

the context of the Lande and Thomson approach to marker assisted selection, as a means 

of avoiding the problem of marker selection. In effect this proposed genomic selection in 

all but name, prior to Meuwissen et al. in 2001.  

 

In matrix form, to assess marker effects, ordinary least squares regression solves the 

equation 

 

Y = Xb 

as 

 

b = (X‟X)
-1

X‟Y 

 

b = [ b0 b1 b2…bn ] is a vector of fixed marker effects with b0 the mean and b1…bn the 

effects for each marker. 

Y is a vector of phenotypes. 

X is the design matrix for markers and assigns alleles at each locus to the individual 

phenotypes in Y. 

 

Once the marker regression coefficients, b, are estimated in the initial generation, on a set 

of phenotyped and genotyped individuals, these can be used to predict the breeding value 

of any genotyped individual in successive generations. Selection than then proceed over 

several generations solely on these marker based predictions.  

 

However, as there are usually more columns in X than there are rows in Y, there are 

insufficient degrees of freedom to fit all markers simultaneously. 
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Ridge regression modifies the ordinary least squares estimates as 

 

b = (X‟X+Iλ)
-1

X‟Y 

 

I is a unit matrix (all 1‟s down the leading diagonal) with the same dimensions as X. 

 

λ is a positive number which acts to shrink the estimates of elements of b back 

towards zero. If λ is zero, the ridge regression elements reduce to the ordinary least 

squares solution (which will fail if there are too few df). As λ gets larger, the estimates of 

b move towards zero. The addition of the penalty term Iλ to X’X allows estimates of b to 

be made for all markers simultaneously. It is necessary to find a suitable value for λ. One 

suggestion is to use Ve/Vm where Ve is the error variation of the trait and Vm is genetic 

variation associated with each marker in b. With a total trait heritability of 50%, and 

markers assumed to account equally for the total genetic variation, this gives λ = number 

of markers. This seems a reasonable place to start. In practice, accuracy changes very 

little with λ (see the tutorial). 

 

With λ set to Ve/Vm, ridge regression is equivalent to BLUP of the marker effects 

themselves (as opposed to BLUP of the breeding values of the individuals). The markers 

are in effect treated as random effects, drawn from a normal distribution with a variance 

of Vm.  

 

Because of the shrinkage towards zero, ridge regression is usually carried out after Y 

is first adjusted to a mean of zero: it doesn‟t usually make sense to want to shrink the 

mean towards zero too. Also, the columns of X are often standardized to zero mean 

and unit variance, though in my hands this seems to have little effect. A suitable 

standardisation, which also substitutes appropriate values for missing data, is to 

standardise the marker data exactly as for excess allele sharing estimation of the 

relationship matrix, as described in the preceding chapter. This approach has the 

advantage of “filling in” missing marker genotypes which otherwise cause problems. 

 

This regression procedure is easy to code in R and can give good predictions within 

generations on experimental data (see class exercise). 

  

 

BLUP 

 

Best linear unbiased prediction of breeding values has been the bread and butter of 

animal breeding for decades; relying on the known pedigree relationships among animals 

to form the numerator relationship matrix. As discussed in the previous chapter, marker 

based estimates of kinship can be more accurate than those from pedigree and these may 

therefore improve the accuracy of breeding value estimation. In plants, there has been 

little use of BLUP to estimate breeding values and hardly any in inbreeding crops like 

wheat. This is partly because the pedigrees are unknown or inaccurate, and partly because 

direct phenotypic assessment of breeding value is sufficiently accurate that little 

improvement is possible though inclusion of information from relatives. Genomic 
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selection could change this, since if will give a more rapid cycle of selection for traits like 

yield than is possible through phenotyping. In addition, the marker based assessment of 

kinship opens up opportunities for the incorporation of genetic relationships in estimating 

breeding value which are not possible from pedigree alone. For example, marker based 

estimates among lines within a cross can be used to select between those lines. This is not 

possible with pedigree based estimates; within a cross all lines would be are treated as 

equally related. 

 

In practice, estimation of BLUPs using marker data follows the same procedure outlined 

in the last chapter for association mapping under the mixed model. Here, however, we are 

no longer interested in the estimation of the fixed effects for one or a few markers, but of 

the breeding values of the individuals or lines. These are random effects.  With standard 

software such as GenStat, we include the additive relationship matrix in the model 

exactly as for association mapping, but request that random effects are reported. We shall 

have a go in the tutorial. The model we are fitting is: 

 

Y = Xβ + Zg + e 

 

Y  = phenotype data 

β  =  the fixed effects. These could just be the mean or could include known major genes, 

reps etc.             

X  = design matrix for fixed effects    

Z  = design matrix for random effects           

e  =  residual error term with (co)variance/ R  

R =  the variance covariance matrix of error term: often just I σ
2

e  

g  =  the breeding values: random effects with (co)variance Z  

Z  =  variance covariance matrix of the random effects, generally the numerator additive 

relationship matrix, σ
2

g A, estimated here from the marker data. 

 

The BLUEs of the fixed effects and the BLUPs of the breeding values are given by the 

solution to Henderson‟s mixed model equations: 
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Obviously these are solved using specialised statistical software. Again, we‟ll have a go 

in GenStat. (They are not easily solved in R, unless one uses the commercial software 

ASREML, which is expensive. The solution will provide estimates of breeding value 

both for individuals with phenotype information (a value in Y) and also for individuals 

with no phenotype – the predictions we are interested in. 
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Other methods 

 

More complex, generally Bayesian methods, have been developed for genomic selection, 

and research in this area is continuing. (The most commonly referred to methods are 

informatively called “Bayes A” and Bayes “B.”) Ridge regression treats the variance 

associated with each marker as constant. This isn‟t true; a very small number of markers 

will be associated with large effects (and variances) but the bulk of markers should have 

little or no effect. More complex methods model the expected distribution of gene effects 

more realistically. However, the current view seems to be that BLUP works acceptably 

well in comparison to these other methods. However, this view is largely based on the 

results of simulation studies – where the answer you get depends very much on the model 

you simulate in the first place. There are no empirical, across generation, studies 

published that I am aware of. 

 

In my hands, with wheat data, I get the very similar results from BLUP as from ridge 

regression. However, I have no experience of cross-generation studies either. 

 

 

The problem of kinship 

 

BLUP uses kinship explicitly to make predictions and works well. However, a potential 

problem is that no individual can be predicted to have a higher breeding value than any 

which has already been phenotyped. The closer the kinship of two individuals, the closer 

their breeding values will be. Suppose that the breeding values of one set of lines are 

known perfectly.  The prediction of breeding value for other lines will be on the basis of 

their genetic similarity to members of this set. A line which is similar to the most elite 

line with a known breeding value will be predicted to have a similar breeding value itself. 

If the lines are not identical, however, its breeding value will be shrunk back towards the 

breeding values of the other lines (to an extent way which depends on its genetic 

relationship to them). As a result, the estimated breeding value can never exceed that of 

the best known breeding value. 

 

This is a potential problem for genomic selection as we need to predict several 

generations ahead.  Consider simple pedigree based prediction for an additive trait with a 

heritability of 100%. Offspring are predicted to have the same breeding value as the mid-

parental value. The variance of mid-parent values is Vg/2. The remaining Vg/2 of genetic 

variation comes from segregation within families. However, the prediction accounts for 

half the genetic variation among the progeny, which is clearly worthwhile exploiting. (In 

fact most breeders do this already – they don‟t make crosses at random but cross the best 

with the best etc.etc. In this, they implicitly make a prediction of progeny performance.) 

If we predict two generations ahead on the basis of the average breeding value of the 

grandparents, the prediction will account for ¼ of the genetic variance among the grand-

progeny. Great-grandparent prediction accounts for 1/8
th

 and so on. Such pedigree based 

predictions are thus of decreasing worth over generations and are unlikely to have any 

merit over more than three generations. The substitution of marker based relationships for 

pedigree relationships will improve accuracy, but not by much. 
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What we require are methods which transcend kinship relationships and allow prediction 

of breeding value which exceed those seen in the current generation.  Methods other than 

BLUP can provide this, but they are not necessarily free from the gravitational pull of 

kinship. For example, in my hands ridge regression appears to work, at least in part, 

because the markers predict breeding value on the basis of kinship rather than by directly 

tagging multiple minor QTL (see the class exercise). This is, I suspect, particularly so 

when marker numbers are low and the variability in kinship among lines is large. In such 

cases, there may be too few markers to tag multiple trait loci directly, while the number is 

adequate to estimate kinship. There is a risk therefore than prediction forward over 

several generations of selection is reduced in accuracy because marker-trait regression 

coefficients are too influenced by kinship rather than by the direct effects of trait loci. 

 

 

Recalibration of markers against phenotype 

 

As selection on GEBV proceeds over generations, allele frequencies and markers and 

trait loci will change. In addition, recombination will act to reduce linkage disequilibrium 

among some pairs of markers, while selection (and drift) will act to increase it among 

others. As a result, over generations, the estimates of GEBV will reduce in accuracy as 

the calibration of markers against phenotypes becomes outmoded. This calibration must 

therefore be repeated regularly. This has been simulated, but mainly in the context of 

animal breeding. It seems likely that recalibration will be required every three or four 

generations at least. If it were required more frequently than this, the merit of GS would 

fade. 

 

The accuracy of the GEBV will only be as good as the accuracy of the phenotypes used 

in the calibration set. This not only relies on the quality of yield trials, but also on the 

relevance of the population used in this exercise to breeders‟ germplasm. To take an 

extreme example, calibration among lines from one cross is unlikely to be of much use 

for GEBV in an unrelated cross. If the two crosses come from the same population, there 

is a maximum probability of 0.25 that both will be segregating at any specified bi-allelic 

locus. This probability reduces if allele frequencies are not equal. There are therefore 

likely to be few segregating loci for whom predictions from one cross can be transferred 

to the other. In addition, if the dataset used for calibration has large population structure 

effects or great variability in kinship, the calibration exercise is likely to be strongly 

influenced by this. Predictions of GEBV may therefore be very accurate within one or 

two generations but may fade quickly. 

 

 

Numbers of markers and size of calibration set. 

 

The number of markers will depend on the rate at which linkage disequilibrium decays 

within the population used to calibrate the markers and the breeders germplasm (not 

necessarily the same thing., and the extend to  which one is willing to accept predictions 

which are strongly influenced by kinship. In a population in which LD decays very 
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rapidly, a large number of markers, >1000, are likely to be required to capture a 

substantial proportion of Vg by tagging trait loci. However, within the same population, a 

number of the order of 100 or so, could give accurate predictions based on kinship. In the 

context of animal breeding, where most research to date has concentrated, numbers of the 

order of ~10,000 markers are talked about. (This is still better than in humans where one 

might expect to need 500,000 – as used in the typical genome wide association study.)  

 

 

The size of the calibration set 

 

One hears discussion of very small numbers of markers and of individuals, <100 of both, 

being all that is required for genomic selection. To my mind this can only be correct if 

there is substantial LD within the population and if one is happy that predictions are 

dominated by kinship relationships. I could believe that these numbers might be 

acceptable for selecting within an F2 population, or among lines derived from it, but that 

is all. Again, animal breeding studies seem to indicate that very large numbers of animals 

are required, though they do not have the luxury of replication as a means of raising 

heritability. 

 

 

Genomic selection in inbreeding species 

 

In crops such as wheat and barley, Selection for yield is usually among inbred lines.  

Selection on GEBV is most effective if the breeding cycle is much quicker that through 

phenotypic selection. This requires that selection occurs among outbred individuals who 

are immediately intermated to create the next outbred generation for selection. However, 

the genetic variance among inbreds is twice that among outbreed individuals from the 

same population. For equivalent heritabilities (which is probably reasonable as a first 

approximation, since the markers must be calibrated against the phenotype, response to 

selection per cycle will be √2 or about 1.4 times greater for phenotypic than for genomic 

selection. Response to selection per year may still be greater, however. However,  in 

addition, new lines must be derived from the outbred selection to sell and to recalibrate 

the markers against the phenotype. This divorcing of the unit of selection (the outcrossed 

individual) from the genotypes used to establish the marker index (the inbreds) will 

increase the gap between the generation of selection and the generation of calibration, 

which will also act to reduce the efficiency of genomic selection.  An extreme alternative 

would be to carry out GS among inbred lines only, but this could increase cycle time to 

the extent that the gains from GS are not worth the effort. Another possibility is to use GS 

within crosses only – to increase the efficiency of within family selection. This may not 

require much additional time and may be worth the effort. There are thus a number of 

additional considerations to have to do when thinking about applying GS to inbreeding 

species.  
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The breeders’ equation and genomic selection 

 

Selection on GEBV does not change the genetic variation available for selection.  It 

might increase heritability, but this depends on the quality of phenotypic data used in 

calibrating markers. Intensity of selection could increase – it may be practical to screen 

>10,000 individuals for genomic selection but it would be very expensive to screen 

10,000 new lines in a yield trial.  However, as we have discussed, increasing intensity of 

selection is not a very efficient way of increasing response to selection. 

 

The great advantage that genomic selection offers is to reduce cycle time. In some crops, 

it will be possible to get through one or two generations of selection per year, whereas a 

selection scheme based on phenotype may require several years. In perennial species, 

trees for example, sexual maturity may occur many years before phenotyping is 

complete, so the increase in response to selection per year could be very large.  

 

 

Summary  

 

For the first time since the advent of QTL mapping with molecular markers, around 35 

years ago, there is a realistic chance that we can select for polygenic traits like yield using 

markers. This may greatly increase the rate of response to selection per year. However, 

we must not get carried away by hype and enthusiasm. There are many issues, probably 

crop specific, which must be considered before deciding that GC is worth attempting. 

The best way to evaluate the merit of GS is through basic quantitative genetics principles. 

There will be many publications in this area in the coming year. 
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CONCLUSION 

 

 

“The merging of quantitative and population genetics, driven by data generated by large-

scale high-throughput genomics platforms, offers new approaches to classical problems 

in quantitative genetics.” 

 

Whole genome approaches to quantitative genetics 
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One must learn by doing the thing; for though you think you know it, you have no 

certainty until you try.      

 

     Sophocles ca.450 BC 

 

 

 

 

GOODBYE 

If you are still alive when you read this, 

close your eyes. I am 

under their lids, growing black. 

 

     Bill Knott 

 

 


