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Selection indices for a single trait
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Selection indices for a single trait

EXAMPLE

Index for litter size based on data from
the female (I), two half-sisters (HS) and the mother (M) 
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With individual selection
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3.1. Selection indices for a single trait 

3.2. Selection indices for multiple traits
3.2.1. Economic weights 

             3.2.2. The selection index
             3.2.3. Indices for multiple traits with family information 

3.3.  Observations on selection indices

Selection indices



Selection indices for multiple traits

ECONOMIC WEIGHTS
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n: total number of kits per female 
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CH: maintenance costs of the female = 64€ 
CI: fixed cost of maintaining an individual
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ECONOMIC WEIGHTS
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ECONOMIC WEIGHTS
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The data are centred

Selection indices for multiple traits
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INDEX WITH INDIVIDUAL INFORMATION

The data are centred

Selection indices for multiple traits
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Selection indices for multiple traits

SELECTION objectives: Feed conversion ratio FCR and Backfat thickness BF
SELECTION criteria: Growth rate GR and Backfat thickness BF

EXAMPLE
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0.1 FCR → €3 per animal
1mm BF → 1€ per animal

Heritabilities on the diagonal, 
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phenotypic correlations below the diagonal. 
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EXAMPLE
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Selection indices for multiple traits
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EXAMPLE
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Interlude: 

Changes in genetic parameters with selection.

The Bulmer effect



Changes due to selection
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INDEX WITH FAMILY INFORMATION

Selection indices for multiple traits
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Selection indices for multiple traits
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Selection indices

• It is possible to improve a trait (target) using other traits as selection criteria.

• It is possible to select indices with restrictions on a trait (which is not to be altered).

• It is possible to select indices with desired gains in certain traits.

• It is possible that some individuals may have missing data, either wholly or partially.

• Some traits may have repeated measurements, differing between individuals.

• Some individuals may have data from more relatives than others.

• Indices do not improve all traits; they enhance overall genetic gain.

• Indices are the optimal selection method if the genetic parameters are the true 
values. Economic weights are more robust to estimation errors.

• Indices do not usually comprise many objectives or many selection criteria.
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