Practical Selection Index
(UNE)

Multiple choice questions

1.

Information from relatives is most useful when

2.

a. The heritability is high

b. The heritability is low

c. There is a lot of information known on each individual
d. One aims to avoid inbreeding

e. The environmental correlations among full sibs is high

In the notes, the meaning of cov(X;,A) relates to

3.

a. The degree of similarity of different selection candidates

b. The difference between family members

c. The similarity between a criterion and the breeding value to be estimated
d. The correlation between different traits

Adding information from an extra selection criterion (Xj) to an existing criterion (X;) will
increase the accuracy of an EBV more when

4.

a. This criterion is more similar to the other criterion: cov(Xi, Xj) is high

b. This criterion is more different to the other criterion: cov(Xj, Xj) is low

c. This criterion is more different from the breeding value (A): cov(Xj, A) is low
d. The criterion is a measurement for a trait having a low correlation with A

For an information sources that is a mean, the index weight is higher if

5

a. The additive genetic relationship of the criterion with the breeding value is lower
b. The criterion is based on a mean of many individuals

c. The criterion is a correlated trait

d. The heritability is lower

The weighting for the progeny testing information (2n/(n+a))

a. Is larger when heritability is larger
b. Is smaller when heritability is larger

¢. Has a maximum value of 1
d. Has a maximum value of 0.5

6.
The EBV of an animal is very high, but based on only very few progeny. It is

a. likely to drop as it gets more records on offspring
b. likely to increase as it gets more records on offspring
c. equally likely to drop than it is to increase

Using relatives’ information and selection index

Exercise 1 Effect of using relatives’ information on selection accuracy

Use the spreadsheet STEBVaccuracy.XLS (using the STSELIND tab) that is on Moodle.
When open, click on ‘enable content’.

Alternatively, use this app https://une-ers.shinyapps.io/MEBVaccuracy/

Use the following base parameters:

e heritability = 0.25

e repeatability = 0.25 (equal to heritability)

e common environmental correlation among full sibs (“c-squared”) = 0.
In the app, (put the “accuracy of the genomic test” to zero)

Note that with the spreadsheet, to obtain the answers to a set of new parameters, you’ll

have to press RUN.

Check the accuracy of the estimated breeding value for the following cases:

1) own performance record only

2) 10 own performance records. In which case would testing 10 records on the same
genotype be a realistic option?

3) Increase the repeatability to 0.50. Explain the change in accuracy.

Now put the number of own performance records to 0, and put repeatability back to 0.25.

4) One performance record on dam (explain index weights and accuracy)
5) One performance record on both dam and sire (explain index weights and accuracy)

https://une-ers.shinyapps.io/MEBVaccuracy/

6) Give only the sire a large number of records (say 1000). This may seem unrealistic,
but mimics the hypothetical situation that the EBV of the sire has a near perfect
accuracy (How can the sire get a very large accuracy for his EBV?)

7) Give now also 1000 half sibs a record. How does the accuracy change? What is the
maximum accuracy for having full information on sire and/or paternal halfsibs?

8) Explore the same situation with maximum information on both sire and dam, and ad
many full sibs as well as half sibs. What is the maximum accuracy?

9) Add now information on 100 progeny. Does it help to have also information on
collateral relives (=sibs) and/or parents?

10) Explain why information on 100 progeny could give a better estimate of an animals’
breeding value than 100 own performance records.

Matrix Commands in R

Entering a vector X=¢(1,6,2)
Checking number of elements (length) length (x)

Entering a matrix A=matrix (data=c(1,2,3,4) , nrow=2, ncol =2)
Note that we could omit typing “data=, nrow=, and ncol=" in the matrix() command above:

that is, we could just type
A=matrix (¢(1,2,3,4) ,2,2)

checking by just typing A

Or dim(A)

Adding matrices: A+B
Transpose: At = t(A)
Multiplying matrices A %*% B

Note that A * B is NOT a matrix multiplication

Inverse of A: AINV = solve(A)
Subsets of matrices. Suppose we have
A=matrix (1:16 ,4 ,4)

one element d= A[2,3]
two columns and two rows adjacent A1 =A[2:3 ,3:4]
take 4 elements (2x2) not adjacent A2 = Alc(1,3) ,¢(2,4)]
Combining matrices by columns C = cbind(A,At)
By rows D = rbind(A,At)

The document summarizes R and R-Studio

the basics

reading data and checking it,
plotting

simple statistical analysis
simulate data

This will give you some great tools for data analysis, data simulation and ‘looking at
data’. You should install R-Studio. This allows you to save instructions in a file, so you
don’t have to remember them all. Many of these instructions can be copied from this
practical. If you do a serious analysis, you should always work from a file, as that also
gives you a record for later what you were doing.

So open a New File (working from R-Studio), and copy or type these instructions in that
file. You can also try other instructions not listed here. A lot of things are possible in R
and much can be worked out from either trial and error, or from suggestions from
Google, or more specialized websites I have found this site very useful and easy to
follow: http://www.countbio.com/index.html

But there are many more, e.g. https://bookdown.org/ndphillips/YaRrt/ (if you like pirates)

Once something works the way you want it, it is good to have a record, hence the use of
programs. Initially it can be frustrating to make things work, but hopefully this practical
will set you on course.

You will need the data set “Task1Data.txt” which can be downloaded from Moodle.

http://www.countbio.com/index.html
https://bookdown.org/ndphillips/YaRrr/

Intro to R and R-Studio

It is easiest to work in R by setting up and interface program (integrated development
environment - IDE) called R-studio.

In R-studio you can put your instructions in one window, and run these, with the output in
another window. This is a good way to develop code as you don’t want to each time type in a
whole string of instructions. An example is given below. In the left-top (LT) window you write your
instructions and you can write a whole program (i.e. a whole string of instructions). If you
highlight one or a number of lines, you can run these by clicking on the run button (see arrow), or
use <Ctrl + Enter>. The left bottom (LB) window shows the results of these instructions. The LB
window can be used to type in individual instructions, one by one. | often use this to try which
instructions will work for a next step, once they work you can add them to your program. You
can also copy a number of lines from the LT window, paste them in LB and press <Enter> to
execute them in the LB.

The right top (RT) window show the arrays that you have in memory, and if you click on them you
can see detail appear in the LT window, the right bottom (RB) window is used for graphs and also
for help. For example, if you type ?class in the LB window, the RB window will show you
information on the topic “class”. For a YouTube video, see
https://youtu.be/EfzDGpmwagA?list=PLztamBUaOlaUzckPruc3NPizcKn-yKzow

Fla ot Pakages Help | Viewss

blue” main="Weight density plot

Weight density plot

" Bevice=pdf width=8, height=3

0.005
L

weight boxplot"

I
1
0004

Density
0002 0003
L

0001

0,000
I

T T T T T
300 400 500 600 700 800

ity plat”) N=100 Bandwidth =26 31

https://youtu.be/EfzDGpmwagA?list=PLztamBUaO1aUzckPruc3NPizcKn-yKzow

Coding in R

In the following, the actual instructions are highlighted in yellow, the rest is just commenting on
what you do. Commenting makes things a lot easier, for yourself later and for others, to
understand. Comments are preceded by a hash “ #” sign. You can comment in a separate line but
also on the same line after the instruction

In the text below, all comments in the R-code are highlighted in yellow and all instructions are in
blue. Normal text is just giving further explanation.

Instruction File and Working Directory

You can type instructions in R but usually you want a whole bunch of instructions in a sequel (i.e.
code, as in a program) so you want to save that in a file, You also may want to read data or write
files, so you need to work in a certain directory, Once you start a New File (and save it under a
name), then start with giving a name (title) to your R-code (LT window). Since this is a comment,
and not an executable instruction, you put a hash before it, e.g.

This is my program for Practical GENE422

first go to the right directory
setwd("C:/Users/jsmith33/Documents/UNITS /GENE422/Tasks")

Note that you can copy an address from windows File Explorer, except all slashes will have to be
forward (they are backward slashes in windows File Explorer)

get (or check) the address of the working directory
getwd()

Reading and writing data

#read data using read.table and give the data set a name, usually this is called a data frame in R
mydata=read.table("Task1Data.txt",header=T,sep="")

read.table

some options are:
header=TRUE (or just T) #ensure it reads first lines as header

sep="," #columns are separated by a comma (as in CSV files)
sep="\t" #columns are separated by a tab
sep="" #columns are separated by a space

o To make sure you have used the correct separation symbol, check the data, e.g. by using
dim(mydata), and you should have the right number of rows and columns (100 and 4
here)

Checking and exploring the data

#explore the data

dim (mydata) #gives number of rows and columns of data set
nrow(mydata) #gives number of rows of data set

ncol(mydata) # gives number of columns of data set

mydata #shows everything (so use only for small datasets)
head(mydata) #shows the first 6 rows (plus heading)
head(mydata,8) #shows the first 8 rows

tail(mydata,12) #shows the last 12 rows

mydata[1:4,] #shows the first four rows

mydata[,1] #shows the first column

mydata[1:2,2:3] #shows columns 2 to 3 from rows 1 to 2

For example

> mydata[1:6,]
breed feed age weight

1 angus high 19 549.2625
2 wagyu high 17 468.1380
3 wagyu low 25603.8947
4 hereford low 18 424.4124
5 hereford low 18 442.2171
6 hereford low 18 459.9860

> names(mydata)
[1] "breed" "feed" "age" "weight"

You can refer to each variable by combining data -and column name.

For example, if the first column is called “breed” then you can refer to it as mydataSbreed
mydataSbreed[1:5] would give the levels of the first five rows in the column “breed”, i.e. the
breeds of the animals in the first five records.

You will note here that some variables are read as continuous (age, weight) and some as factors
or characters (breed, feed). We can confirm the class of each variable by using the class function

class(mydataSbreed)
[1] "character"
class(mydataSage)
[1] "integer”

The lapply function apply the class function on each column of at the data frame.

lapply(mydata,class) #getting the class of all columns in one line

A factor is a variable with a finite number of classes. In a statistical analysis these are usually fitted
as class variables (or indeed as factors, taking up k-1 degrees of freedom if there are k levels for
the effect) whereas continuous variables are fitted as covariates, each taking up only one degree
of freedom.

Sometimes you might want to change a variable class. For example, if you have four feeding
treatments coded as 1,2,3 and 4, the R program R would read it as an integer, and if you fititin a
model it will see it as a covariate. If you want to consider it as a factor you can do

mydataSfeed = as.factor(mydataSfeed)

Also names could be read as strings, whereas to summarize or plot data, you want these
variables as factors, see next.

Understanding the data

get some summary statistics from the data:
summary(mydata) #gives a summary of the data

If the variables ‘feed’ and ‘breed’ as still characters, this won’t work well. So define them as
factors

mydataSbreed=as.factor(mydataSbreed)
mydataSfeed=as.factor(mydataSfeed)

summary(mydata) #gives a summary of the data
> summary(mydata)
breed feed age weight
angus 128 Tow :52 Min. :16.00 Min. :366.1
hereford:42 high:48 1st Qu.:18.00 1st Qu.:471.7
wagyu :30 Median :19.00 Median :522.1
Mean :19.38 Mean :526.2
3rd Qu.:20.25 3rd Qu.:575.2
Max. :25.00 Max. 1678.4
levels(mydataSbreed) #e.g. useful if you expect very many levels
table(mydataSbreed) #giving nr of records for each level
tapply(mydataSweight, mydataSbreed, mean) #giving mean for each level
tapply(mydataSweight, mydataSbreed, sd) #giving SD for each level

tapply(mydataSweight, mydataSbreed, summary) #giving everything

> tapply(mydata$weight, mydata$breed, summary) #giving everything

$angus
Min. 1st Qu. Median Mean 3rd Qu. Max .
436.0 487.7 532.5 538.3 588.5 678.4
$hereford
Min. 1st Qu. Median Mean 3rd Qu. Max .
366.1 474.9 526.9 525.0 570.6 677.7
$wagyu
Min. 1st Qu. Median Mean 3rd Qu. Max .

372.3 469.6 509.0 516.6 560.4 677.7

Visualizing the data

A powerful way to explore data is to visualize aspects of the data.

You can look at the distribution (only for numeric variables) via histograms or density plots, and
the association between variables via plots and boxplots.

R gives nice graphs in the RB window. For example

hist(mydataSweight)
plot(density(mydataSweight))

or plot both in the same graph and a bit more sophisticated with colour and labels
hist(mydataSweight,prob=TRUE,breaks=40,col="blue",main="Weight histogram", xlab="weight
(kg)", ylab="frequency")

lines(density(mydataSweight,na.rm=T),col="red"

For colours, you can use the actual colour (col="blue”), or you can use a number (col=4), for
colour codes type “palette() ”

You can look at associations between numerical variables by the plot function
plot(mydataSage, mydataSweight)
plot(mydataSage,mydataSweight,col=mydataSbreed) #colour dots according to breed code

To explore factors you can use

barplot(table(mydataSbreed),col=c(1,2,3)) # to look at the number of observations per breed
boxplot(mydataSweight~mydataSbreed,na.rm=T,col=c(1,2,3),main="Weight boxplot") #to look at
distribution of weight for each breed

Those nice pictures can be saved as a file, so you can use them in reports

boxplot(mydataSweight~™mydataSbreed,na.rm=T,col=c(1,2,3),main="Weight boxplot")
dev.print(file="WeightdatabybreedBoxplot.pdf",device=pdf,width=8,height=8)

or

pdf(file="WeightdatabybreedBoxplot.pdf", ,width=8,height=8)
boxplot(mydataSweight~™mydataSbreed,na.rm=T,col=c(1,2,3),main="Weight boxplot")
dev.off()

Often it is useful to have several graphs in that window. You can arrange that by the command
par.

If you first type

par(mfrow =c(2,1), mar =c(4,4,1,1)) #two graphs horizontally aligned
par(mfrow = c(1,2), mar =c(4,4,1,1)) #two graphs vertically aligned

par(mfrow = c(2,2), mar =c(4,4,1,1)) #four graphs aligned in the window (2x2).

You can play around with the margins as well.

For example:

par(mfrow =c(2,2), mar =c(4,4,1,1))

hist(mydataSweight,breaks=20)
plot(density(mydataSweight,na.rm=T),col="blue",main="Weight density plot")
boxplot(mydataSweight~mydataSbreed,na.rm=T,col=c(1,2,3),main="Weight boxplot")
plot(mydataSage,mydataSweight,col=as.numeric(as.factor(mydataSbreed)))

~ Histogram of mydata$weight Weight density plot
o 4 (] =+
- [=]
S
I w <
o I
c E |
g w g
g g g
[8 n
o |
[=]
[=T S |
I T T T T T 1 o T T T T T
350 400 450 500 550 600 650 300 400 500 600 700
mydatabweight M=100 Bandwidth = 2525
Weight boxplot
: : : ¢ ?
N i i i B g ¢ . @
_ 24 i i i _ 24 ¢ 8 o 3 o
E @ ! E @ o o @ @
= = 2 g § o
2 B £ 1 @ g g
2 o 2 o g @ § o °
m [=T = = - & < o
2 & 2 & 2 § o b
= =
E _ ; | i E _ g 3 g ¢
I ! o °
1 | 8 k=]
()] 1 o
g ' | g
i —_—t “ & <
T T T T T T T T
angus hereford wagyu 16 18 20 22 24

mydata$breed mydatafage

Data simulation

R is also a good platform to simulate data. Data simulation is a good tool for research, and it is
also useful for exploring in small examples how things work.

We can simulate data on breeding values and phenotypes, similar (but with larger numbers) as in
Chapter 2.

See here an example:
simulate simple phenotypes

varP=1 # Phenotypic variance

h2=0.1 # heritability

N=100 # number of individuals simulated
varA=varP*h2 # additive genetic variance
varE=varP-varA # residual variance

sdA = sqgrt(varA) # additive genetic standard deviation
sdE = sqrt(varE) # residual standard deviation

gasdev = matrix(rnorm(N), nrow=N) #Gaussian (= normally distributed) random numbers (set 1)

BV=gasdev * sdA # make breeding values

gasdev = matrix(rnorm(N), nrow=N) #Gaussian (= normally distributed) random numbers (set 2)
E=gasdev *SDE # make residuals

Pheno=BV+E # make phenotypes

r=cor(Pheno,BV) # correlation

plot(BV,Pheno)

EBV =h2*P
r=cor(EBV,BV)
plot(EBV,BV)

Task:

Run this simulation and write the correlation between phenotype and BV, as well as between EBV
and BV for heritability values of 0.1, 0.3, 0.5 and 0.7

Matrix calculations using Excel
You can do some basic matrix calculations with MS Excel.
First put in the values of your matrices

To multiply two matrices:
- select an area of the size of the resulting matrix
- type: =MMULT(
- select the area of the first matrix
- type a comma (,)
- select area of the second matrix
- type a close bracket)
- press: Ctrl_Shift Enter

To add or subtract a matrix (vector):
- select an area of the size of the resulting matrix
- type: = (
- select the area of the first matrix
-typea + or -
- select area of the second matrix
- type a close bracket)
- press: Ctrl_Shift Enter

To invert a matrix:
- select an area of the size of the resulting matrix
- type: =MINVERSE(
- select the area of the first matrix
- type a close bracket)
- press: Ctrl_Shift Enter

To transpose a matrix (vector):
- select an area of the size of the resulting matrix
- type: =TRANSPOSE(
- select the area of the first matrix
- type a close bracket)
- press: Ctrl_Shift Enter

