

Estimating breeding value

Key terms

- Estimated breeding value (EBV)
- Heritability
- Contemporary groups
- Using information from relatives
- Accuracy

Which animal to select ?

	P1	P2	EBV
	own	sire's	
Animal	perform.	perform.	Index
1	3.6	9.2	?
2	-8.3	3.2	?
3	3.5	-15.4	?
4	16.7	7.1	?
5	-14.4	-4.9	?
6	6.6	16.1	?
7	-1.4	-12.2	?
8	-6.2	8.7	?
9	6.2	7.4	?
10	15.0	-4.0	?

$EBV = 0.284 P_{own} + 0.107 P_{sire}$

	P1	P2	EBV
	own	sire's	
Animal	perform.	perform.	Index
1	3.6	9.2	2.00
2	-8.3	3.2	-2.01
3	3.5	-15.4	-0.67
4	16.7	7.1	5.50
5	-14.4	-4.9	-4.63
6	6.6	16.1	3.60
7	-1.4	-12.2	-1.72
8	-6.2	8.7	-0.82
9	6.2	7.4	2.54
10	15.0	-4.0	3.83

Information sources

- There can be many information sources
 - own performance
 - mean performance of full sibs
 - mean performance of half sibs
 - performance of sire and / or dam
 - performance of progeny

 $EBV = b_1P + b_2P_2 + b_3P_3 + \dots + b_nP_n$

These weights are derived from selection index theory, they are applied in BLUP

une

Note that

• Index weights are higher with higher heritability

- More of what we see is 'counted'

- Higher heritability \rightarrow more weight on own information
- Low $h^2 \rightarrow$ more weight on family information

And note that ...

- Under high heritability selection on such an index is similar to phenotypic selection
- Under low heritability selection on such an index is more like family selection, which leads to higher inbreeding
- The best estimate is based on many progeny

Accuracy of predicting a breeding value

Info used.	h2 = 0.25	Accuracy of EBV
Sire + Dam		0.35
Prog Tested Sire +	Dam	0.49
	+ Own Record	0.63
	+ DNA markers	0.71
	+ 30 progeny	0.85
	+ 1000 progeny	0.99

Features of EBVs

High accuracy, for high response 'best'

- highest correlation between true and estimated breeding value

Lack of any bias, for fair comparison 'unbiased'

- Comparisons between animals should not be affected by nongenetic effects \rightarrow correct for <u>contemporary groups</u>, age etc

Example of contemporary groups

Bull	YW	Herd Ave	Ρ	EBV h ² =40%
Bert	330	300	+30	+12
Flossy	300	260	+40	+16

Note that this assumes that herds have the same genetic mean

Correcting for age differences

These are cows!	<u>Age (mo)</u>	Weaning Weight Kg.	
Aelfy	11	280	
Betty	13	295	Population mean at 12 mo = 285kg

Correcting for age differences

Can not always take simple deviation from herd averages

	Herd A	Herd B
Progeny of Sire 1	320	
Progeny of Sire 2	300	
Progeny of Sire 3	-	310
Progeny of Sire 4	-	330

Can not always take simple deviation from herd averages

	Herd A	Herd B					
Progeny of Sire 1	320						
Progeny of Sire 2	300						
Progeny of Sire 3	-	310					
Progeny of Sire 4	-	330					
Progeny of Sire 5	290	340					
L ink sire							

A linear model is used to correct for unbalanced data

In most genetic evaluation programs:

- Linkage between flocks/herd is now substantial
- This allows across-flock and even across-breed analysis

Possible causes of bias 'unequal merit of mates'

Problem: Some sires have better mates

Sire 1: +300Dam 1: +200Progeny: +250Sire 2: +300Dam 2: +300Progeny: +300

Without information on the dams, sire 2 would 'look better' due to a higher progeny mean

Solution: Account for mates by evaluating all animals jointly

A feature of BLUP

Possible causes of bias 'selection bias'

- Problem: There is culling and selection
 - worst sires have more progeny culled 'culling bias'
 - animals are from selected parents

Culling bias

ID	Sire	Weaning Weight	Progeny mean	Yearling Weight	Progeny mean
101	1	160		300	
102	1	140	140	280	280
103	1	120		260	
104	2	140		280	
105	2	120	120	260	270
106	2	100		no record as culled	

Sire 2 gets an unfair 'lift' in progeny mean of yearling weight, due to culling at weaning.

Animals are from selected parents

Estimating genetic trend

A feature of BLUP

une

une

BLUP helps selecting between old and young bulls

- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval

Example of BLUP selection (truncation)

Terminals - Top :	150		Analy	ysis l	Date 1	Friday	, 15 June	2001				LAMRPLAN	
Sires								_	Inbreeding	g & Acc	uracies	Rawlinne in Rowelling and Se shattan	
D	Stud of breeding	What	Pwwt	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff We	eight C	arcase	Sire Sire of Dam	
161972 <mark>-1999-9</mark> 90196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093 1630001993930134	
162368 <mark>-1998-9</mark> 80211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260 8600401992920175	
162204 <mark>-1999-1</mark> 90453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205 1619721995950289	
161972 <mark>-1998-9</mark> 80093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134 1603361992920349	
161972 <mark>-1998-9</mark> 80527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091 1630001993930134 Cor	sider top 15
860122 <mark>-1993-9</mark> 30205	OHIO	6.95		13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200 8601221987870073	s truncation
161143 <mark>-1999-9</mark> 90204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	76	1623681998980211 1640001993930411 Sire	s, truncation
160060 <mark>-1996-9</mark> 60004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016 1623541990900584 poi	nt = 195
161143 <mark>-1999-9</mark> 90201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	77	1623681998980211 1613151995950042	
230034 <mark>-1997-9</mark> 70904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.083	96	92	2300091994940171 2300341994940314	
163677 <mark>-2000-0</mark> 00140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289 1600341994940020	
160060 <mark>-1997-9</mark> 70115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004 1600601992920057	
162204 <mark>-1999-9</mark> 90394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205 1622041996960579	
161143 <mark>-1999-9</mark> 90064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211 1640001994940 317	
161972 <mark>-1996-9</mark> 60020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134 1613151991910870	
161235-1997-970830	POLLAMBI	1.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002 1612351991910691 Sires	s in top are from
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205 1636771994940008 vario	ous age classes
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211 1630001993930160	0
860074-1995-950044	ADELONG	- 1.11	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260 8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411 8600401992920175	
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130 1600341994940171	
161437-1999-990006	WARBURN	5 41	10.97	10.93	-1 71	0.37	190 26	14		73	65 I	11604621994940012 1640001993930411	

Another feature of **BLUP**

- BLUP uses family information (and more so at lower heritabilities)
- Selection on BLUP EBVs can thus results in higher inbreeding than selection on phenotypes alone
- Best strategy: Balance merit and genetic diversity
 - Start selecting from top, but leave an animal out if sibs have been selected already

Example of BLUP selection

Terminals - Top 1	150		Analy	rsis I)ate (Friday	, 15 June	2001				Ι.A Μ	RPLAN [®]	
Sires									Inbreedi	ing & A	ccuracies	LACELV. Exerciser in the	un Roualing and Section	
D	Stud of breeding	Wort	Pount	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff l	Weight	Carcase	Sire	Sire of Dam	
161972 <mark>-1999-1</mark> 90196	HILLCROFT FARMS	5.46	14.95	14.94	-1,19	1.62	226.64	38	0.133	83	70	1619721998980093	1630001993930134	
162368 <mark>-1998-9</mark> 80211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260	8600401992920175	
162204 <mark>-1999-9</mark> 90453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205	1619721995950289	
161972 <mark>-1998-9</mark> 80093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134	1603361992920349	
161972 <mark>-1998-9</mark> 80527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091	1630001993930134	
860122 <mark>-1993-9</mark> 30205	OHIO	6.95	11.94	13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200	8601221987870073	
161143 <mark>-1999-9</mark> 90204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	7	1623681998980211	▶640001993930411	
160060 <mark>-1996-9</mark> 60004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016	1623541990900584	
161143 <mark>-1999-9</mark> 90201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	7	1623681998980211	613151995950042	
230034 <mark>-1997-9</mark> 70904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.003	96	92	2300091994940171	2300341994940314	11
163677 <mark>-2000-0</mark> 00140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289	1600341994940020	 m
160060 <mark>-1997-9</mark> 70115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004	1600601992920057	, al
162204 <mark>-1999-9</mark> 90394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205	1622041996960579	fle
161143 <mark>-1999-9</mark> 90064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211	1040001994940317	пс
161972 <mark>-1996-9</mark> 60020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134		
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134	1613151991910870	
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002	1612351991910691	
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205	1636771994940008	
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211	1630001993930160	
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189		
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260	8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411	8600401992920175	
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130	1600341994940171	
161437-1999-990006	MARBURN	5 41	10.97	10.93	-1 21	0.37	L 190.26	14		73	65	1604621994940012	1640001993930411	

These are sibs so might not select all of them as flock sire

Good methods need good data

- Accuracy of BLUP EBVs depends on amount and the quality of the data (as well as the trait heritability)
 - Accurate phenotypic measurements
 - Correct pedigree
 - Correct recording of fixed effects & contemporary groups
 - Appropriate data structure (e.g. information on mates, culls)
- Remember, if BLUP doesn't know a piece of information, it cannot account for it

BLUP summary

- Uses information on all relatives optimally
- Accounts for fixed effects such as herd, birth type, age
- Accounts for unequal usage of sires in different herds
- Can compare across herd or flocks but need links to exist
- Accounts for culling and selection, non-random mating
 but non selected animals and mates need to be included in analysis!
- Allows selection across age classes
- Provides an estimate of genetic trend

Why is selection on BLUP EBVs better than selecting on an animals' phenotype?

Observed Phenotype	Р	٨	Е		PE	
(Fleece Weight)	F	A	E	EDV		
4.6	0.6	0.20	0.40	0.13	-0.07	
4.5	0.5	-0.10	0.60	0.11	0.21	
3.85	-0.15	0.25	-0.40	-0.03	-0.28	
3.55	-0.45	-0.05	-0.40	-0.09	-0.04	
3.6	-0.4	-0.3	-0.20	-0.08	0.22	
Standard Deviation	0.498	0.226	0.469	0.105	0.209	
Variance	0.248	0.051	0.220	0.011	0.044	
Mean	0.020	0.000	0.000	0.004	0.004	

Selection on EBV

Expected Value of progeny = $1/2 EBV_{sire} + 1/2 EBV_{dam}$

une

Some things to note

- EBV's on parents are additive
- Predicted performance of offspring does <u>not</u> depend on <u>accuracy</u> of the parents' EBVs
- Suppose EBV_A +56 r = 0.50
 EBV_B +56 r = 0.95

select A or B?

Answer: should not matter (if one is risk neutral) une

EBV properties:

- how much they still may change

• SEP =
$$\sqrt{(1 - accurcy^2)\sigma_A}$$

Standard Error of Prediction

Conf. Interval: EBV± 2.SEP

une