Animal Breeding in a nutshell

Where to Go

Breeding objectives

How to get there

Trait measurement
- Which traits
- Which animals
 - Males / females
 - Progeny test
 - Nucleus / commercial
 --Genotypings

Estimation of breeding value
- Phenotypes
- Pedigree
- BLUP
- Genetic Markers

Reproductive technology
- Artificial Insemination
- MOET
- JIVET
- Cloning

Selection, culling & Mating
- Index / EBV’s
- Balancing merit and inbreeding
- Other issues
Issues related to optimal design

- Increase in genetic merit
 - Select as few as possible
 - Select across ages
- Inbreeding
 - …but select not too few
- Crossbreeding
 - Exploit this?
- Breeding objective
- Connections
- Measurement strategies
- Reproduction technology
- Running Cost
Aspects that need to be balanced:

- Selection accuracy versus generation interval
 - Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy

- Selection accuracy versus selection intensity
 - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.

- Selection intensity versus generation interval
 - Selecting fewer animals for breeding each year and keeping those longer (e.g. see exercise with AGES in GENEUP.

- Selection intensity versus inbreeding

- The relative emphasis in selection for multiple traits

- Cost versus benefits
Design examples

- One-tier breeding program

Select and replace

Breeding males

Breeding females

Select and Replace

Male progeny

Female progeny
Optimizing age structure

Accuracy changes with age class

Without genomic selection

<table>
<thead>
<tr>
<th>ageclass</th>
<th>N in group</th>
<th>mean</th>
<th>SD</th>
<th>Nr Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>10.20</td>
<td>0.4</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>10.00</td>
<td>0.8</td>
<td>7.3</td>
</tr>
</tbody>
</table>

With genomic selection

<table>
<thead>
<tr>
<th>ageclass</th>
<th>N in group</th>
<th>mean</th>
<th>SD</th>
<th>Nr Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>10.20</td>
<td>0.7</td>
<td>5.4</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>10.00</td>
<td>0.8</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Genetic Evaluation helps

BLUP EBV Optimizes generation interval

- Dilemma between young and old sires
Closed nucleus breeding schemes

- Start selection in base
- Maintain selection in base
- Stop selection in base
- Genetic merit
- 2 generation lag
More genetic improvement (about 15%)

Data collection (records/pedigree) also needed in base but usually more intensive in nucleus
Reproductive technologies

- Reproductive boosting
 - Artificial insemination, AI
 - Multiple Ovulation and Embryo Transfer, MOET
 - Oocyte Pickup
 - Juvenile In Vitro Embryo Transfer, JIVET

- Sexing of semen and embryos

- Cloning

- Whizzy Genetics - breeding in a test-tube
Juvenile sheep MOET/JIVET

Sheep:

MOET progeny:

Months:

0 1½ 6½ 7 8 13 13½

Birth Get records MOET Birth
Select & MOET MOET Birth Select & MOET Get records

Generation interval 6½ months
Genetic gain versus genetic diversity

- Sustainable breeding programs require optimal selection balancing genetic gain and genetic diversity

- Potential short term benefits from reproductive technologies are inhibited by the need to maintain diversity
 - Because early selection requires family information (parent average)
Why restrict inbreeding

- Avoid loss of genetic variation/genetic diversity
- Inbreeding depression
- Increase of homozygotes with deleterious recessives
- Inbreeding is closely associated with risk (and genetic drift)
How to restrict inbreeding?

• Mating policies mostly affect
 • progeny inbreeding (*short term*)
 • but not *long term* rate of inbreeding ΔF
 • The long term inbreeding rate depends on *effective population size*

• Long term inbreeding is restricted by
 restricting the average co-ancestry among selected parents
Calculating Effective Population Size: \(Ne \)

Accounting for unequal sex ratio

Effective pop’n size (Ne) reduces towards sex with fewer breeding individuals

\[
Ne = \frac{4 \cdot N_m \cdot N_f}{N_m + N_f}
\]

<table>
<thead>
<tr>
<th>Males / generation</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>5</th>
<th>20</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females / generation</td>
<td>2</td>
<td>20</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>99999</td>
</tr>
<tr>
<td>(N)</td>
<td>4</td>
<td>22</td>
<td>202</td>
<td>205</td>
<td>220</td>
<td>100,000</td>
</tr>
<tr>
<td>(Ne)</td>
<td>4</td>
<td>7.3</td>
<td>7.9</td>
<td>19.5</td>
<td>72.7</td>
<td>4</td>
</tr>
</tbody>
</table>
Balancing inbreeding and merit

- Select only the very best bull.
- Select a number of bulls from different families.
Economic evaluation of breeding programs

Benefit: \(dG.N \) accumulates each year

Cost \(C \)

Future returns are discounted: \(1/r^t \)

in year \(t \) \((N.t.dG - C).(1/r^t) \).

<table>
<thead>
<tr>
<th>year</th>
<th>Genetic Mean ($)</th>
<th>Benefit (M)</th>
<th>Cost (M)</th>
<th>discount factor</th>
<th>NPV (M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>1.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20</td>
<td>0.5</td>
<td>0.95</td>
<td>18.57</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>40</td>
<td>0.5</td>
<td>0.91</td>
<td>35.83</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>60</td>
<td>0.5</td>
<td>0.86</td>
<td>51.40</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>80</td>
<td>0.5</td>
<td>0.82</td>
<td>65.40</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>100</td>
<td>0.5</td>
<td>0.78</td>
<td>77.96</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>120</td>
<td>0.5</td>
<td>0.75</td>
<td>89.17</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>140</td>
<td>0.5</td>
<td>0.71</td>
<td>99.14</td>
</tr>
</tbody>
</table>
Commercial producers
20 million ewes

Multipliers
1 million ewes

Nucleus
50,000 ewes

Genetic lag

Genetic improvement

Cost/ewe

<table>
<thead>
<tr>
<th>No GS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>$60</td>
</tr>
</tbody>
</table>

dG/ewe

<table>
<thead>
<tr>
<th>No GS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2</td>
<td>$2.2</td>
</tr>
</tbody>
</table>
Cost-Benefit industry wide

50k Nuc ewes
20M Comm

<table>
<thead>
<tr>
<th></th>
<th>No GS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$0.5 M</td>
<td>$1.65 M</td>
</tr>
<tr>
<td>dG</td>
<td>$40 M</td>
<td>$44 M</td>
</tr>
</tbody>
</table>
Cost-Benefit Study

<table>
<thead>
<tr>
<th>Cost</th>
<th>No GS</th>
<th>GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dG</td>
<td>$5k</td>
<td>$17.5k</td>
</tr>
<tr>
<td>Nuc ewes</td>
<td>$20k</td>
<td>$22k</td>
</tr>
<tr>
<td>10k Comm</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

NPV Study

Graph showing the comparison between No GS and GS cost-benefit analysis.

- X-axis: Time (in units)
- Y-axis: NPV (Benefit-Cost)
- Graphs for No GS and GS showing increasing NPV over time.