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Estimation of genetic variance in Ve 

Han Mulder 

Contents 

 Data structures to estimate genetic variance in Ve 

 Double hierarchical generalized linear model (DHGLM) 

 Practical  

● Se of varav 

● DHGLM in asreml 
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Learning outcomes 

 To understand required data structures to estimate 
genetic variance in Ve 

 

 To apply and interpret results of the double hierarchical 
generalized linear model 

3 

Required data and data structures 

 Aim: estimate genetic differences in Ve 

 

 Available data 

● Variance/standard deviation per animal 

● E.g. within-individual variance of repeated 
observation 

● Within-litter variance of piglet birth weight 
considered as trait of the sow 

● Variance/standard deviation per family 

● Half-sib families 

● Full-sib families 

● Clones 

 

 

4 



29-1-2017 

3 

Standard error genetic variance in Ve 

 Differences in within-family variance assuming additive 
model, e.g. paternal half-sibs 

 

 

 𝑠𝑒 𝜎𝑎𝑣,𝑎𝑑𝑑
2 =

2/𝑎2 2𝑣𝑎𝑟𝑊2

𝑁+1
+𝑎𝜎𝑎𝑣,𝑎𝑑𝑑

2
2

+48
𝑣𝑎𝑟𝑊2

(𝑛−1)(𝑛+1)2

𝑁−1
 

 

 𝑣𝑎𝑟𝑊 = 1 − 𝑡 𝜎𝑃
2 = 1 − 𝑎ℎ2 𝜎𝑃

2 

 

 

5 Hill, 2004; J. Ind. Soc. Agric. Stat. 57:49-63. 

Standard error genetic variance in Ve 

 Exponential model 

 𝑧𝑖 = log⁡( (𝑋𝑖𝑗−𝑋𝑖
 )2 /(𝑛 − 1) 

 𝑧𝑖 has approximately a normal distribution with: 

 𝑣𝑎𝑟 𝑧𝑖 =
2

n−1
+ 𝛾2 

 

 𝛾2 = 𝐶𝑉2 = 𝑎𝜎𝑎𝑣,𝑒𝑥𝑝
2 𝜎𝐸

2

(1−𝑡)𝜎𝑃
2

2

 

 𝑠𝑒(𝛾2) ≅
8/𝑚

𝑛
 

 

 𝑠𝑒 𝜎𝑎𝑣,𝑒𝑥𝑝
2 ≅ 𝑠𝑒 𝛾2 ∗

1

a
∗

(1−𝑡)𝜎𝑃
2

𝜎𝐸
2

2

 

 

6 
Hill and Mulder, 2010. Genet. Res. 92:381-395.  

t=intraclass correlation=𝑎ℎ2 

m=number of families 

n=family size 
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Standard error genetic variance in Ve 

7 

100 Half-sib families 

Heritability=0.3 

Varav,exp=0.05 

Key message: 
- Hill and Mulder approximation gives underestimation compared 

to Hill 2004 and simulations, but is in essence a bit simpler 

Standard error genetic variance in Ve 
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Key message: 
- You need at least 100 offspring per family 
- Large data sets needed 
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Optimum family size 

 Given a fixed number of records 

 Optimum family size: 2/𝛾2 

9 

Heritability is 0.3 

𝜎𝑎𝑣
2 =0.05 𝜎𝑎𝑣

2 =0.10 

Half-sibs 279 140 

Full-sibs 118 59 

Clones 40 20 

Clones are ideal! 

Optimum family size: effect of heritability 

10 

Key message 
• Large family size needed 100-200 half-sib offspring 
• For traits with low heritability, smaller family sizes are 

required 
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Estimating QTL/marker effects for Ve 

 If marker affects the whole phenotypic variance 

 𝑅2 ≅ 𝑝(1 − 𝑝)(𝜆 − 1)2 

 

 𝑅2: amount of phenotypic variance explained by marker 

 𝜆𝑥 = multiplication factor phenotypic variance of 
genotype x=0, 1 or 2 

 

 If marker affects only environmental variance: 

 𝑅2 ≅ 𝑝(1 − 𝑝)(𝜆 − 1)2
𝜎𝐸

2

𝜎𝑃
2

2

 

 

 
11 Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733 

Sample size unrelated individuals 

12 Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733. 

Allele frequency=0.5 
Type I error = 10-6 

Power=80% 

Designs with 10,000 – 20,000 individuals needed to pick 
up QTL for variance 
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Different models to estimate genetic 

variance in Ve 

 Analysis of variance estimates per animal/family 

● Relatively simple 

● Rowe et al. (2006; Genet. Sel. Evol. 38:617-635) 

● Sell-Kubiak et al. (2015; J. Anim Sci. 93:900-911) 

 Using squared residuals as response variables 

● Iterative REML method (Mulder et al., 2009; Animal 
3:1673-1680) 

● Double hierarchical generalized linear model 
(Ronnegard et al., 2010; Genet. Sel. Evol. 42:8) 

 Bayesian analysis 

● Sorensen and Waagepetersen (2003; Genet. Res. 
82:207-222) 
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Analysis of variance estimates per 

animal/family 

 Let’s look at analysis of log(variance) of within-litter 
birth weight in pigs 

● Use of log(variance) gives estimates at level of 
exponential model 

● Estimates are comparable to DHGLM results 

 Complexity 

● Need to account for heterogeneity of residual 
variance due to sample size 

 

● 𝑣𝑎𝑟 𝑣𝑎𝑟(𝑥) =
2𝑣𝑎𝑟2(𝑥)

𝑛+2
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Analysis of variance estimates per 

animal/family 

 Advantage 

● Simple 

● Intuitive  

● Use of standard packages 

 

 Drawbacks 

● No feedback to correct for heterogeneity of residual 
variance in model for phenotype 

● Different number of observations for phenotype and 
variance 
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Bayesian analysis of Ve 

 Prior distributions for Av and other effects on Ve 

 

 MCMC implementation  

 

 Special software needed GSEVM v2 (Ibanez-Eschriche et 
al. 2010, Journal of Animal Breeding and Genetics 
127(3):249-251) 

 Drawback: large computing time e.g. for large datasets 

 

 

16 
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Comparison DHGLM and Bayesian method 

17 

Parameters in the same direction, but not equal 
Relative small data set ~10,000 litter size observations from 
~4100 sows 

Felleki et al. 2012; Genet. Res. 94:307-317. 

Summary 

 In general large experiments/datasets required to 
estimate genetic variance in Ve 

 

 Simple methods can be appropriate, but have some 
drawbacks 

 

 Bayesian hierarchical models and DHGLM models are 
more complex, but have more flexibility 

18 
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DHGLM 

19 

DHGLM model in detail 

 The model as used in Ronnegard et al. 2010 

 

 The extension in Felleki et al. 2012 

 

 Some background 

 

 Effect of transformations 

 

 Extensions of DHGLM 

20 
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The DHGLM model 

21 

 Fixed effects on phenotype and residual variance; random 

genetic effects on phenotype and residual variance 

 


𝐲
𝐲𝐯

=
𝐗 𝟎
𝟎 𝐗𝐯

𝐛
𝐛𝐯

+
𝐙 𝟎
𝟎 𝐙𝐯

𝐮
𝐮𝐯

+
𝐞
𝐞𝐯

 

 

 𝑣𝑎𝑟(𝑒) = 𝜙 

 log 𝜙 = 𝐗𝐯𝐛𝐯+𝐙𝐯𝐮𝐯 

 

 

Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 

The DHGLM model – only fixed effects 

 Maximum likelihood estimates for variance can be 
obtained by using Gamma GLM with squared residuals as 
response variable 

 If fixed effects on mean are known without uncertainty 

 𝑒𝑖
2~𝜙𝑖𝜒1

2 

 𝐸(𝑒𝑖
2) = 𝜙𝑖 

 𝑉𝑎𝑟(𝑒𝑖
2) = 2𝜙𝑖

2 

 Therefore: squared residual can be fitted using GLM with 
log link function together with gamma distribution for 
residual variance 

 Note: Chi-square distribution is special case of gamma 
distribution 

 

 

22 Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 
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The DHGLM model – only fixed effects 

 Fixed effects are estimated and we have only predicted 
residuals 

 𝐸(𝑒𝑖
2) ≠ 𝜙𝑖:  

 variance of predicted residuals is smaller than the true 
variance, see example later. 

 

 Therefore REML adjustment needed: 

 𝐸(𝑒𝑖
2/(1 − ℎ𝑖)) = 𝜙𝑖 

 And use weights for residual variance: 

 𝑉𝑎𝑟(𝑒𝑖
2/(1 − ℎ𝑖)) = 2𝜙𝑖

2/(1 − ℎ𝑖) 

 ℎ𝑖 = leverage of observation i 

 
23 Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 

What is a leverage? 

 Leverage: how much influence each data value y has on 
each predicted y (𝑦 ) 

 𝐗′𝐗𝐛 = 𝐗′𝐲 

 𝐛 = (𝐗′𝐗)−𝟏𝐗′𝐲 

 

 𝐲 = 𝐗𝐛 = 𝐗(𝐗′𝐗)−𝟏𝐗′𝐲 = 𝐇𝐲 

 𝐇 = 𝐗(𝐗′𝐗)−𝟏𝐗′ = The hat matrix 

 

24 Hoaglin, D. C. and R. E. Welsh. 1978. Am. Stat. 32:17-22. 
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A simple genetic example 

 Suppose we estimate a breeding value based on a single 
phenotype 

 𝐸𝐵𝑉 = ℎ2 𝑃 − 𝑃  

 The residual: 𝑒 = 𝑃 − 𝑃 − 𝐸𝐵𝑉 = (1 − ℎ2) 𝑃 − 𝑃  

 𝑣𝑎𝑟 𝑒 = 𝑣𝑎𝑟 1 − ℎ2 𝑃 − 𝑃 = 1 − ℎ2 2𝜎𝑃
2 

 

 Suppose 𝜎𝑃
2 = 1, ℎ2 = 0.3, 𝜎𝐸

2 

 𝑣𝑎𝑟 𝑒 = 0.72 = 0.49 

 

 𝑣𝑎𝑟(𝑒 )/(1 − ℎ) = 𝜎𝐸
2 = 0.7 : ℎ = leverage=heritability in 

this case; not in others 

 Warning: h is not square root of heritability 
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DHGLM - Ronnegard 

 Two univariate models implemented in ASREML 

● Updating of both models 

● Penalized quasi likelihood – approximation for h-
likelihood method 

● No genetic correlation between phenotype and Ve 

 Algorithm in ASREML 

1. Initialize W=I 

2. Estimate parameters of model y 

3. Calculate 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
 and 𝐖𝐯 = 𝑑𝑖𝑎𝑔(

1−ℎ

2
) 

4. Estimate parameters for 𝑦𝑣,𝑖 

5. Update 𝐖 = 𝑑𝑖𝑎𝑔(𝑦 𝑣,𝑖)
−1 based on step 4 

6. Iterate steps 2-5 until convergence of parameters 

 

 

26 
Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 
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Felleki adjustment 

 Bivariate linear mixed model  

● Estimate correlations between random effects on 
phenotype and its Ve 

 

 Linearization of 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
; no need to use log-link 

function 

 

 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
≅ log𝜙𝑖 +

𝑒𝑖
2

1−ℎ𝑖
−𝜙𝑖

𝜙𝑖
 

 

 First-order Taylor series approximation; equivalent to 
use of log-link function 

 27 Felleki et al., 2012; Genet. Res. 94:307-317. 

DHGLM – IRWLS algorithm 

 Implementation in ASREML 

● Iterative reweighted least squares approximation of 
h-likelihood 

 

 Algorithm in ASREML 

1. Run model on 𝐲 with homogeneous residual 
variance 

2. Calculate 𝐲𝐯, 𝐖, 𝐖𝐯, where 𝐖 = 1/𝜎𝑒
2 in iteration 1 

3. Run bivariate model on 𝐲 and 𝐲𝐯. 

4. Update 𝐲𝐯, 𝐖, 𝐖𝐯 based on output in 3 

5. Iterate steps 3-4 until convergence of parameters 

 
28 Felleki et al., 2012; Genet. Res. 94:307-317. 
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 !WORKSPACE 1800 !NOGRAPHICS !DEBUG !LOGFILE !RENAME !ARGS  1 2  // !DOPART  $1 
 DHGLM model of birth weight 
     animal 32450 !I 
     litter 2129  !I 
     parity 10    !I 
     sex 2        !I 
     farm 15      !I 
     ys 22        !I 
     sow         !P 
     bw            !M -99 
     surv          !M -99 
     Gval !=bw !-1.19 !*V10 
     Ywt !=1. Gwt !=1. 
 Ped.txt 
 phenotype3.txt !maxit 1000 !skip 1 !DOPART $1 

 
 !PART 1 # normal model 
 bw ~ mu parity sex farm.ys !r sow litter 
 residual units 

 
 !Part 2 
 !ASUV !EXTRA 100 !SLOW 
 # in odd iterations, we use the predicted weights for the primary response 
 !IF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1 
 !IF EVEN !CALC S1=1./W1; H0=MIN(H1/S1, .9999); Z2=MAX(R1*R1,.0001)/(1-H0) 
 !IF EVEN !CALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2 
 !IF EVEN !CALC W2=(1-H0)/2 #redefine weights for Y2 

 
 !ASSIGN gen 0.016 0.005 0.05 
 !ASSIGN lit 0.015 0.0 0.08 

 
 bw Gval !Weight Ywt !WT Gwt  ~ Trait Trait.parity Trait.sex Trait.farm.ys !r us(Trait,$gen).sow 

us(Trait,$lit).litter !f mv 
 residual units.us(Trait) !VARIANCESCALE 

29 

 !Part 2 
 !ASUV !EXTRA 100 !SLOW 
 !IF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1 

● W1: weight for residual variance trait 1 = phenotype 
● 𝐖1 = 1/exp⁡(𝑦 𝑣): reciprocal of residual variance  

 
 !IF EVEN !CALC S1=1./W1; H0=MIN(H1/S1, .9999); 

Z2=MAX(R1*R1,.0001)/(1-H0) 
● S1= residual variance per observation 

● H0=
ℎ𝑎𝑠𝑟𝑒𝑚𝑙

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
: ℎ𝑎𝑠𝑟𝑒𝑚𝑙=in yhat file of ASREML 

● Z2=
𝑒𝑖
2

1−ℎ𝑖
  

 
 !IF EVEN !CALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2 

● Y2: response variable 𝐲𝐯 

● 𝑦𝑣,𝑖 = log𝜙𝑖 +

𝑒𝑖
2

1−ℎ𝑖
−𝜙𝑖

𝜙𝑖
 

 !IF EVEN !CALC W2=(1-H0)/2 #redefine weights for Y2 
● W2: weight for residual variance trait 2 = 𝐲𝐯 
● 𝐖2 = (1 − ℎ)/2 

  
 
 

30 
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Background of h-likelihood 

 H-likelihood is statistical framework for statistical 
inference on models, suitable for hierarchical models 

● Similar to maximum likelihood or REML 

● Used when dispersion/variance is modeled 

● Very useful when modeling heterogeneity of 
residual variance 

 

 Special packages needed such as hglm in R 

● Only small datasets and no pedigree data 

 

31 

Ronnegard, L., Shen, X. & Alam, M. (2010). HGLM: a 
package for fitting hierarchical generalized linear models. 
The R Journal 2, 20–28. 

Model testing 

 Adjusted Profile H-likelihood 

 𝐴𝑃𝐻𝐿 = 2𝐿𝑜𝑔𝐿 −  𝑤𝑣,𝑖 𝑒𝑣,𝑖
2 −  ln⁡(

1

𝑤𝑣,𝑖
) 

 

 Can be used together with likelihood ratio test or with 
AIC 

 𝐴𝐼𝐶 = 𝐴𝑃𝐻𝐿 + 2𝑡 

 t is number of variances/covariances 

 

 Unfortunately not implemented yet in ASREML4, but one 
could calculate it based on yhat-file 

 

 

32 
Felleki et al., Genet. Res. 94:307-317; Mulder et al. 

2013. Genet. Sel. Evol. 45:23 
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Bias in estimated variance components 

with animal models and single 

observations per animal 

 Using animal model with single observations per animal 
give biased variance components 

33 
Sonesson et al. 2013. Genet. Sel. Evol. 45:41. 

Reasons for bias 

 Too high dependency between EBV mean and residual 

 

 The extremer observations would get a larger estimate 
for vEBV 

 This would lower the ‘heritability’ for that particular 
observation, therefore lower EBV 

 

 Therefore:  

● Genetic variance in phenotype too low 

● Genetic variance in residual variance too high 

 

34 
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Solution to avoid bias 

 Traits with repeated observations 

 

 Traits with single observations 

● Sire models 

● Sire-dam models 

35 

Scaling of data 

 Scaling: higher mean, higher variance 

 

 Question: 

● Are we picking up scaling effects? 

 

 This would mean a high positive genetic correlation 
between mean and variance 

36 
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Evidence for scaling in fish 

 Body weight of rainbow trout 

 Genetic correlation between mean and Ve is: 

● Freshwater:0.30 

● Seawater: 0.79 

 

 Genetic correlation between two environments  

 Body weight: 0.70 

 Ve of body weight: 0.56 

 

 
37 

Sae-Lim et al., 2015. Genet. Sel. Evol. 47:46. 

What to do with scaling? 

 Scaling can be removed by log transformation 

 

 Removes heterogeneity of variance 

 

 Removes the mean-variance relationship 

38 
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Transformation rainbow trout example  

 Effect of log-transformation 

 Genetic correlation between mean and Ve is: 

● Freshwater: -0.83 

● Seawater: -0.62 

 Genetic correlation between Ve in the two environments 
was -0.08 

 

 Conclusion: log-transforming data has a large effect on 
genetic correlations. Too large?  

 

 39 

Other transformations 

 Square root transformation 

 Cube-root transformation 

 Box-Cox transformation 

● The optimal transformation to get distribution back 
to normal 

● 𝑦t =
𝑦𝜆−1

𝜆
 

 Problem: after (box-cox) transformation, genetic 
correlations between mean and variance swap sign, but 
may be used to check whether genetic variance in Ve is 
not artefact of non-normality 

 

 
40 

Yang, Y., O. F. Christensen, and D. Sorensen. 
2011. Genet. Res. 93:33-46. 
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Some extensions of DHGLM 

 Estimating macro- and micro-environmental sensitivity 

● Reaction norm model for GxE combined with the 
DHGLM for differences in Ve 

● Mulder et al., 2013; Genet. Sel. Evol. 45:23.  

 Estimating GxE for Ve  

● Fish in fresh water and sea water 

● Sae-Lim et al., 2015; Genet. Sel. Evol. 47:46. 

 Estimating purebred-crossbred genetic correlation for Ve 

● Egg color in purebred and crossbred laying hens 

● Mulder et al. 2016; GSE 48:39 

 

41 

Some extensions of DHGLM 

 Using genomic relationship matrix  

● Mulder et al. 2013; J. Dairy Sci. 96:7306-7317. 

● Sell-Kubiak et al. 2015; J. Anim. Sci. 93:1471-
1480. 

 Estimating relationships between Ve and other traits, 
such as fitness traits 

● Mulder et al. 2015; Genetics 199:1255-1269. 

 Using DHGLM for genomic selection or GWAS 

● Ronnegard and Valdar, 2012; Genetics 188:435-
447 and BMC Genet. 13:63 

● Ronnegard and Lee 2013 J. Anim. Breed. 
Genet.130:415-416. 

42 
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Summary 

 DHGLM is a relatively fast and good method to estimate 
genetic variance in Ve 

● Opportunities for extension 

 

 Repeated observations needed per genotype 

● Single obs/animal: use sire or sire-dam model 

● Multiple obs/animal: use animal model 

 

 Transformations may be useful to check whether genetic 
variance in Ve is not artefact of non-normality 

43 


