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Learning outcomes

® To understand required data structures to estimate
genetic variance in Ve

® To apply and interpret results of the double hierarchical
generalized linear model
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Required data and data structures

® Aim: estimate genetic differences in Ve

® Available data
e Variance/standard deviation per animal

e E.g. within-individual variance of repeated
observation

e Within-litter variance of piglet birth weight
considered as trait of the sow
e Variance/standard deviation per family
e Half-sib families
e Full-sib families &

e Clones &
gWF\EENINGEN u‘“"if ﬁl‘
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Standard error genetic variance in Ve

® Differences in within-family variance assuming additive
model, e.g. paternal half-sibs

2
5| (2varw? 2 ) varw?2

- 2 2/a [( N+1 T %%v,add +48(n—1)(n+1)2

Se(aav,add) - N—1
" yarW = (1 - t)of = (1 — ah?)o}

varW = (1 —t)op = (1 — ah®)of

WAGENINGEN ) )
glr\m RSITY & RESEARCH Hill, 2004; J. Ind. Soc. Agric. Stat. 57:49-63.

Standard error genetic variance in Ve

® Exponential model
" z; = logE(Xy—X)? /(n— 1)
" z; has approximately a normal distribution with:

" var(z;) = ﬁ +v?

2 2
2 2 2 O
. Yo = cve = A0gyexp ( )

(1-t)o?
- se( 2) ~ J8/m t=intraclass correlation=ah?
Y=

2 e
- 1 (1_002 m=number of families
" se(0Zexp) = se(y?) * —* (—62 E ) n=family size
E

gWF\EENINGEN Hill and Mulder, 2010. Genet. Res. 92:381-395.
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Standard error genetic variance in Ve
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Key message:
- Hill and Mulder approximation gives underestimation compared
to Hill 2004 and simulations, but is in essence a bit simpler
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Standard error genetic variance in Ve
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Key message:
- You need at least 100 offspring per family
- Large data sets needed
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Optimum family size

® Given a fixed number of records
® Optimum family size: 2/y?

optimal family

——half-sibs

~-full-sibs

~#—clones
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Heritability is 0.3
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Clones are ideal!
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Key message

+ Large family size needed 100-200 half-sib offspring
+ For traits with low heritability, smaller family sizes are

required
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Estimating QTL/marker effects for Ve

® If marker affects the whole phenotypic variance
"R?=p(1-p)A-17?

® R2: amount of phenotypic variance explained by marker

® }* = multiplication factor phenotypic variance of
genotype x=0, 1 or 2

" If marker affects onIy2 environmental variance:
" R? = p(1 - ) - (%)

gy\:ﬁ?l\;m:‘sf” Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733 11

Sample size unrelated individuals
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Multiplicative effect size

Designs with 10,000 - 20,000 individuals needed to pick
up QTL for variance

gﬁﬁ?FNIkFGEN Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733. 12
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Different models to estimate genetic
variance in Ve

® Analysis of variance estimates per animal/family
e Relatively simple
e Rowe et al. (2006; Genet. Sel. Evol. 38:617-635)
e Sell-Kubiak et al. (2015; J. Anim Sci. 93:900-911)
® Using squared residuals as response variables

e Iterative REML method (Mulder et al., 2009; Animal
3:1673-1680)

e Double hierarchical generalized linear model
(Ronnegard et al., 2010; Genet. Sel. Evol. 42:8)

® Bayesian analysis

e Sorensen and Waagepetersen (2003; Genet. Res.
82:207-222)

13

Analysis of variance estimates per
animal/family

® Let’s look at analysis of log(variance) of within-litter
birth weight in pigs

e Use of log(variance) gives estimates at level of
exponential model

e Estimates are comparable to DHGLM results
® Complexity

e Need to account for heterogeneity of residual
variance due to sample size

2var?(x)
n+2

WAGENINGEN
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® var(var(x)) =
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Analysis of variance estimates per
animal/family

® Advantage
e Simple
e Intuitive
e Use of standard packages

® Drawbacks

e No feedback to correct for heterogeneity of residual
variance in model for phenotype

e Different number of observations for phenotype and
variance

WAGENINGEN i
UNIVERSITY & RESEARCH 5

Bayesian analysis of Ve

B Prior distributions for Av and other effects on Ve
" MCMC implementation

® Special software needed GSEVM v2 (Ibanez-Eschriche et
al. 2010, Journal of Animal Breeding and Genetics
127(3):249-251)

" Drawback: large computing time e.g. for large datasets

WAGENINGEN
UNIVERSITY & RESEARCH 16
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Comparison DHGLM and Bayesian method

Table 2. Estimates and 95 % confidence intervals of chosen parameters for pigs litter size data in Model 11 (first section) and Model 1V (second section) used by
Sorensen & Waagepetersen (2003). Results obtained by Sorensen & Waagepetersen (2003) (first row in each section), by Ronnegard et al. (2010) (second row) and

using IRWLS (third row)

Mean model

Residual variance model

Variances Fixed effects* Variances Cor p
ot at B Ba. B o, o,
Sorensen & Waagepetersen (2003) 111 158 0-60 1178 -016 0-34 011 -0-57
1:13, 2:00 0-31, 096 1:65, 1-90 ~ 024, —0:09 0-25, 043 0-08, 0-15 —0-72, =041
Ronnegard er al. (2010) 1:35 0-53 173 —017 0-32 0-13
099, 1-71 0-25, 081 161, 1-85 —023, =011 0-26, 039 0:09, 016
IRWLS 1-61 0-34 1:70 -017 032 018 —0-49
0-08, 0-61 1:57, 1-82 —-023, -0'11 0-26,0-39 5
Sorensen & Waagepetersen (2003) 1V 60 177 —-017 0-35 009 0-06
0-30, 092 1:65, 1-89 —025, —0-09 0-26, 0-44 0-06, 0-13 005, 0-09
Ronnegard et al. (2010) 0-44 172 —017 0-32 0-09 006
017,071 1:62, 183 —023, 011 026, 0-39 0-05,0-14 002, 0:11
IRWLS 028 1-69 -017 0-32 015 0-05 —0-52
0:02,0-54 1-57, 1-81 =023, =011 026, 0-39 0-10, 0-20 0-00, 0-09 —0-66,

*B.u is the intercept term in the model for (RETeSTual variance, B is the fixed eflect for insemination and §,_ is the fixed effect [OPUE difference in first and MM

Parameters in the same direction, but not equal

Relative small data set ~10,000 litter size observations from

~4100 sows

WAGENINGEN
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Felleki et al. 2012; Genet. Res. 94:307-317. 17

Summary

® In general large experiments/datasets required to

estimate genetic variance in Ve

® Simple methods can be appropriate, but have some
drawbacks

® Bayesian hierarchical models and DHGLM models are
more complex, but have more flexibility

WAGENINGEN
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DHGLM
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DHGLM model in detail

® The model as used in Ronnegard et al. 2010
® The extension in Felleki et al. 2012

® Some background

® Effect of transformations

® Extensions of DHGLM

QWAEENINGEN
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The DHGLM model

® Fixed effects on phenotype and residual variance; random
genetic effects on phenotype and residual variance

“il=lo xllm)+lo 2]+l
" yar(e) = ¢

" 10g(¢) = vav+Zvuv

AWBFENIN‘G.E‘N Ronnegard, L. et al. 2010. Genet. Sel. Evol. 42:8. 51

The DHGLM model - only fixed effects

® Maximum likelihood estimates for variance can be
obtained by using Gamma GLM with squared residuals as
response variable

" If fixed effects on mean are known without uncertainty
" el ~pixi

" E(el) =

" Var(e) = 2¢}

® Therefore: squared residual can be fitted using GLM with
log link function together with gamma distribution for
residual variance

" Note: Chi-square distribution is special case of gamma
distribution

AWﬁFEHINF.E‘N Ronnegard, L. et al. 2010. Genet. Sel. Evol. 42:8. 2
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The DHGLM model - only fixed effects

" Fixed effects are estimated and we have only predicted
residuals

" Eef) # b

® variance of predicted residuals is smaller than the true
variance, see example later.

® Therefore REML adjustment needed:
"E(el/(1-hy)) = @

" And use weights for residual variance:
" Var(e?/(1-hy)) = 2¢7/(1 = h)

" h; = leverage of observation i

AW{RE_E'NING.EN Ronnegard, L. et al. 2010. Genet. Sel. Evol. 42:8. 23

What is a leverage?

® Leverage: how much influence each data value y has on
each predicted y (9)

" X'Xb = Xy
"b=XX)"XYy

" §=Xb=XXX)"X'y = Hy
" H = X(X'X)"1X’ = The hat matrix

gWﬁGEHINF.EN Hoaglin, D. C. and R. E. Welsh. 1978. Am. Stat. 32:17-22. 24

29-1-2017
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A simple genetic example

® Suppose we estimate a breeding value based on a single
phenotype

® EBV = h?(P — P)
® The residual: é = (P — P) —EBV = (1—-h?)(P - P)
" var(é) = var((1 — h?)(P — P)) = (1 — h?)?d}

® Suppose ¢Z =1, h? = 0.3, o7
® par(é) = 0.7% = 0.49

® yar(é)/(1—h) = g2 = 0.7 : h = leverage=heritability in
this case; not in others

® Warning: h is not square root of heritability

WAGENINGEN
UNIVERSITY & RESEARCH
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DHGLM - Ronnegard

" Two univariate models implemented in ASREML
e Updating of both models

® Penalized quasi likelihood - approximation for h-
likelihood method

e No genetic correlation between phenotype and Ve
® Algorithm in ASREML
1. Initialize W=I

Estimate parame’zcers of model y
Calculate y,; = fh_ and W, = diag(%h)

Estimate parameters for y,,;
Update W = diag(9,;)"* based on step 4
6. Iterate steps 2-5 until convergence of parameters

WAGENINGEN
UNIVERSITY & RESEARCH Ronnegdrd, L. et al. 2010. Genet. Sel. Evol. 42:8.

au b~ WN

26
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Felleki adjustment

® Bjvariate linear mixed model

e Estimate correlations between random effects on
phenotype and its Ve

2 .
® Linearization of y,; = 1i—‘hi; no need to use log-link
function
2
.
e? 1——lhl-_¢i

" yui =1, = loghi +— -

" First-order Taylor series approximation; equivalent to
use of log-link function

WAGENINGEN
UNIVERSITY & RESEARCH Felleki et al., 2012; Genet. Res. 94:307-317. 27

DHGLM - IRWLS algorithm

® Implementation in ASREML

e Iterative reweighted least squares approximation of
h-likelihood

® Algorithm in ASREML

1. Run model on y with homogeneous residual
variance

Calculate y,, W, W,, where W = 1/¢Z in iteration 1
Run bivariate model on y and y,.

Update y,, W, W, based on output in 3

5. Iterate steps 3-4 until convergence of parameters

s W N

WAGENINGEN
n’ RSITY & REsEARCH Felleki et al., 2012; Genet. Res. 94:307-317. 2
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Gval !'=bw !-1.19 *V10
Ywt I=1. Gwt !=1.
Ped.txt
phenotype3.txt !maxit 1000 !skip 1 |DOPART $1

= IWORKSPACE 1800 !NOGRAPHICS 'DEBUG !LOGFILE 'RENAME !ARGS 12 // !DOPART $1
® DHGLM model of birth weight
- animal 32450 !I

- litter 2129 I

- parity 10 I

- sex 2 1

- farm 15 1

- ys 22 1

= sow P

- bw IM -99

- surv IM -99

|

-

|

-

IPART 1 # normal model
bw ~ mu parity sex farm.ys !r sow litter
residual units

IPart 2

IASUV !EXTRA 100 !SLOW

# in odd iterations, we use the predicted weights for the primary response

ITF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1

ITF EVEN ICALC S1=1./W1; HO=MIN(H1/S1, .9999); Z2=MAX(R1*R1,.0001)/(1-HO0)
ITF EVEN ICALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2

ITF EVEN ICALC W2=(1-H0)/2 #redefine weights for Y2

05 0.05

IASSIGN gen 0.016 0.0
0.0 0.08

" IASSIGN lit 0.015

= bw Gval 'Weight Ywt !WT Gwt ~ Trait Trait.parity Trait.sex Trait.farm.ys !r us(Trait,$gen).sow
us(Trait, $lit).litter If mv
| _® residual units.us(Trait) 'VARIANCESCALE

29

IPart 2

® IASUV !EXTRA 100 !'SLOW

ITF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1
e W1: weight for residual variance trait 1 = phenotype
® W1 = 1/exp(y,): reciprocal of residual variance

® IIF EVEN !CALC S1=1./W1; HO=MIN(H1/S1, .9999);
Z2=MAX(R1*R1,.0001)/(1-H0)
e S1= residual variance per observation
o Ho=— lasreml . p  —in yhat file of ASREML

residual variance”
2

o 72=-"
1-h;

® ITF EVEN ICALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2
e Y2: response variable y,
2

e

— i
1-h;

® vy, =logp; +

® ITF EVEN ICALC W2=(1-H0)/2 #redefine weights for Y2
e W2: weight for residual variance trait 2 =y,
e W2=(1-h)/2

30
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Background of h-likelihood

® H-likelihood is statistical framework for statistical
inference on models, suitable for hierarchical models

e Similar to maximum likelihood or REML
e Used when dispersion/variance is modeled

e Very useful when modeling heterogeneity of
residual variance

® Special packages needed such as hglm in R
e Only small datasets and no pedigree data

Ronnegard, L., Shen, X. & Alam, M. (2010). HGLM: a

g WAGENINGEN package for fitting hierarchical generalized linear models.
UNIVERSITY & RESEARCH

The R Journal 2, 20-28. 3

Model testing

® Adjusted Profile H-likelihood
" APHL = 2LogL — Y w,,; eZ; — ¥ In(

)

1
Wi

® Can be used together with likelihood ratio test or with
AIC

B AIC = APHL + 2t
® t s number of variances/covariances

® Unfortunately not implemented yet in ASREML4, but one
could calculate it based on yhat-file

WAGENINGEN 2
UNIVERSITY & RESEARCH Felleki et al., Genet. Res. 94:307-317; Mulder et al.
2013. Genet. Sel. Evol. 45:23

29-1-2017
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Bias in estimated variance components
with animal models and single
observations per animal

® Using animal model with single observations per animal
give biased variance components

Table 2 Variance components of the classical linear mean animal model and two double hierarchical generalized linear
models DHGLM1 and DHGLM2 (untransformed data)

Sub-model Variance component Classical DHGLM1 DHGLM2

Mean Sire-dam - - 0.071£0010
Genetic' 0.303 £0.041 0.099 £0.023 0.283 £0.039
Common environment 0013 £0.008 0063 +0.010 0.016 +0.008
Residual 0521 +£0.022
Heritability 0362 £0.043

Variance Sire-dam = 0.051£0.008 0.043 +£0.008
Genetic' S 0.204 +0.033 0.174+0.031

"Genetic variance is defined as 4*sire-dam variance.

WAGENINGEN Sonesson et al. 2013. Genet. Sel. Evol. 45:41.

UNIVERSITY & RESERRCH
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Reasons for bias

" Too high dependency between EBV mean and residual

® The extremer observations would get a larger estimate
for VEBV

® This would lower the ‘heritability’ for that particular
observation, therefore lower EBV

® Therefore:
e Genetic variance in phenotype too low
e Genetic variance in residual variance too high

WAGENINGEN

UNIVERSITY & RESEARCH
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Solution to avoid bias

® Traits with repeated observations

" Traits with single observations
e Sire models
e Sire-dam models

WAGENINGEN
UNIVERSITY & RESEAR
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Scaling of data

® Scaling: higher mean, higher variance

® Question:
® Are we picking up scaling effects?

® This would mean a high positive genetic correlation
between mean and variance

gWAEENINGEN
UNIVERSITY & RESEAR

36
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Evidence for scaling in fish

® Body weight of rainbow trout

® Genetic correlation between mean and Ve is:
e Freshwater:0.30
e Seawater: 0.79

® Genetic correlation between two environments

® Body weight: 0.70
® Ve of body weight: 0.56

gWF\EENINGEN
prERs s ReReae Sae-Lim et al., 2015. Genet. Sel. Evol. 47:46.

37

What to do with scaling?

® Scaling can be removed by log transformation
® Removes heterogeneity of variance

® Removes the mean-variance relationship

gWAEENINGEN
UNIVERSITY & RESEARC
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Transformation rainbow trout example

® Effect of log-transformation

® Genetic correlation between mean and Ve is:
e Freshwater: -0.83
e Seawater: -0.62

® Genetic correlation between Ve in the two environments
was -0.08

® Conclusion: log-transforming data has a large effect on
genetic correlations. Too large?

WAGENINGEN
UNIVERSITY & RESEARCH 39

Other transformations

® Square root transformation
® Cube-root transformation
® Box-Cox transformation
e The optimal transformation to get distribution back

to normal
A

" Problem: after (box-cox) transformation, genetic
correlations between mean and variance swap sign, but
may be used to check whether genetic variance in Ve is
not artefact of non-normality

Yang, Y., O. F. Christensen, and D. Sorensen.
-n"."‘iﬂf‘fﬁ.'\.-'.'k'?"i'i” 2011. Genet. Res. 93:33-46. 40
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Some extensions of DHGLM

® Estimating macro- and micro-environmental sensitivity

@ Reaction norm model for GXE combined with the
DHGLM for differences in Ve

e Mulder et al., 2013; Genet. Sel. Evol. 45:23.
® Estimating GXxE for Ve
e Fish in fresh water and sea water
e Sae-Lim et al., 2015; Genet. Sel. Evol. 47:46.
® Estimating purebred-crossbred genetic correlation for Ve
e Egg color in purebred and crossbred laying hens
e Mulder et al. 2016; GSE 48:39

WAGENINGEN ”
UNIVERSITY & RESEARCH

Some extensions of DHGLM

® Using genomic relationship matrix
e Mulder et al. 2013; J. Dairy Sci. 96:7306-7317.

e Sell-Kubiak et al. 2015; J. Anim. Sci. 93:1471-
1480.

® Estimating relationships between Ve and other traits,
such as fitness traits

e Mulder et al. 2015; Genetics 199:1255-1269.
® Using DHGLM for genomic selection or GWAS

e Ronnegard and Valdar, 2012; Genetics 188:435-
447 and BMC Genet. 13:63

e Ronnegard and Lee 2013 J. Anim. Breed.
Genet.130:415-416.

WAGENINGEN
UNIVERSITY & RESEARCH 42
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Summary

" DHGLM is a relatively fast and good method to estimate
genetic variance in Ve

e Opportunities for extension

® Repeated observations needed per genotype
® Single obs/animal: use sire or sire-dam model
e Multiple obs/animal: use animal model

® Transformations may be useful to check whether genetic
variance in Ve is not artefact of non-normality

WAGENINGEN 4
UNIVERSITY & RESEARCH 3

29-1-2017

22



