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Estimation of genetic variance in Ve 

Han Mulder 

Contents 

 Data structures to estimate genetic variance in Ve 

 Double hierarchical generalized linear model (DHGLM) 

 Practical  

● Se of varav 

● DHGLM in asreml 
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Learning outcomes 

 To understand required data structures to estimate 
genetic variance in Ve 

 

 To apply and interpret results of the double hierarchical 
generalized linear model 

3 

Required data and data structures 

 Aim: estimate genetic differences in Ve 

 

 Available data 

● Variance/standard deviation per animal 

● E.g. within-individual variance of repeated 
observation 

● Within-litter variance of piglet birth weight 
considered as trait of the sow 

● Variance/standard deviation per family 

● Half-sib families 

● Full-sib families 

● Clones 
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Standard error genetic variance in Ve 

 Differences in within-family variance assuming additive 
model, e.g. paternal half-sibs 

 

 

 𝑠𝑒 𝜎𝑎𝑣,𝑎𝑑𝑑
2 =

2/𝑎2 2𝑣𝑎𝑟𝑊2

𝑁+1
+𝑎𝜎𝑎𝑣,𝑎𝑑𝑑

2
2
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𝑣𝑎𝑟𝑊2
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 𝑣𝑎𝑟𝑊 = 1 − 𝑡 𝜎𝑃
2 = 1 − 𝑎ℎ2 𝜎𝑃

2 

 

 

5 Hill, 2004; J. Ind. Soc. Agric. Stat. 57:49-63. 

Standard error genetic variance in Ve 

 Exponential model 

 𝑧𝑖 = log( (𝑋𝑖𝑗−𝑋𝑖
 )2 /(𝑛 − 1) 

 𝑧𝑖 has approximately a normal distribution with: 

 𝑣𝑎𝑟 𝑧𝑖 =
2

n−1
+ 𝛾2 

 

 𝛾2 = 𝐶𝑉2 = 𝑎𝜎𝑎𝑣,𝑒𝑥𝑝
2 𝜎𝐸

2
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2
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 𝑠𝑒(𝛾2) ≅
8/𝑚

𝑛
 

 

 𝑠𝑒 𝜎𝑎𝑣,𝑒𝑥𝑝
2 ≅ 𝑠𝑒 𝛾2 ∗

1

a
∗
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2

𝜎𝐸
2

2

 

 

6 
Hill and Mulder, 2010. Genet. Res. 92:381-395.  

t=intraclass correlation=𝑎ℎ2 

m=number of families 

n=family size 
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Standard error genetic variance in Ve 

7 

100 Half-sib families 

Heritability=0.3 

Varav,exp=0.05 

Key message: 
- Hill and Mulder approximation gives underestimation compared 

to Hill 2004 and simulations, but is in essence a bit simpler 

Standard error genetic variance in Ve 
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Key message: 
- You need at least 100 offspring per family 
- Large data sets needed 
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Optimum family size 

 Given a fixed number of records 

 Optimum family size: 2/𝛾2 

9 

Heritability is 0.3 

𝜎𝑎𝑣
2 =0.05 𝜎𝑎𝑣

2 =0.10 

Half-sibs 279 140 

Full-sibs 118 59 

Clones 40 20 

Clones are ideal! 

Optimum family size: effect of heritability 

10 

Key message 
• Large family size needed 100-200 half-sib offspring 
• For traits with low heritability, smaller family sizes are 

required 
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Estimating QTL/marker effects for Ve 

 If marker affects the whole phenotypic variance 

 𝑅2 ≅ 𝑝(1 − 𝑝)(𝜆 − 1)2 

 

 𝑅2: amount of phenotypic variance explained by marker 

 𝜆𝑥 = multiplication factor phenotypic variance of 
genotype x=0, 1 or 2 

 

 If marker affects only environmental variance: 

 𝑅2 ≅ 𝑝(1 − 𝑝)(𝜆 − 1)2
𝜎𝐸

2

𝜎𝑃
2

2

 

 

 
11 Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733 

Sample size unrelated individuals 

12 Visscher and Posthuma, 2010. Behavior Genetics 40(5):728-733. 

Allele frequency=0.5 
Type I error = 10-6 

Power=80% 

Designs with 10,000 – 20,000 individuals needed to pick 
up QTL for variance 
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Different models to estimate genetic 

variance in Ve 

 Analysis of variance estimates per animal/family 

● Relatively simple 

● Rowe et al. (2006; Genet. Sel. Evol. 38:617-635) 

● Sell-Kubiak et al. (2015; J. Anim Sci. 93:900-911) 

 Using squared residuals as response variables 

● Iterative REML method (Mulder et al., 2009; Animal 
3:1673-1680) 

● Double hierarchical generalized linear model 
(Ronnegard et al., 2010; Genet. Sel. Evol. 42:8) 

 Bayesian analysis 

● Sorensen and Waagepetersen (2003; Genet. Res. 
82:207-222) 
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Analysis of variance estimates per 

animal/family 

 Let’s look at analysis of log(variance) of within-litter 
birth weight in pigs 

● Use of log(variance) gives estimates at level of 
exponential model 

● Estimates are comparable to DHGLM results 

 Complexity 

● Need to account for heterogeneity of residual 
variance due to sample size 

 

● 𝑣𝑎𝑟 𝑣𝑎𝑟(𝑥) =
2𝑣𝑎𝑟2(𝑥)

𝑛+2
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Analysis of variance estimates per 

animal/family 

 Advantage 

● Simple 

● Intuitive  

● Use of standard packages 

 

 Drawbacks 

● No feedback to correct for heterogeneity of residual 
variance in model for phenotype 

● Different number of observations for phenotype and 
variance 

 
15 

Bayesian analysis of Ve 

 Prior distributions for Av and other effects on Ve 

 

 MCMC implementation  

 

 Special software needed GSEVM v2 (Ibanez-Eschriche et 
al. 2010, Journal of Animal Breeding and Genetics 
127(3):249-251) 

 Drawback: large computing time e.g. for large datasets 
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Comparison DHGLM and Bayesian method 

17 

Parameters in the same direction, but not equal 
Relative small data set ~10,000 litter size observations from 
~4100 sows 

Felleki et al. 2012; Genet. Res. 94:307-317. 

Summary 

 In general large experiments/datasets required to 
estimate genetic variance in Ve 

 

 Simple methods can be appropriate, but have some 
drawbacks 

 

 Bayesian hierarchical models and DHGLM models are 
more complex, but have more flexibility 

18 
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DHGLM 

19 

DHGLM model in detail 

 The model as used in Ronnegard et al. 2010 

 

 The extension in Felleki et al. 2012 

 

 Some background 

 

 Effect of transformations 

 

 Extensions of DHGLM 

20 
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The DHGLM model 

21 

 Fixed effects on phenotype and residual variance; random 

genetic effects on phenotype and residual variance 

 


𝐲
𝐲𝐯

=
𝐗 𝟎
𝟎 𝐗𝐯

𝐛
𝐛𝐯

+
𝐙 𝟎
𝟎 𝐙𝐯

𝐮
𝐮𝐯

+
𝐞
𝐞𝐯

 

 

 𝑣𝑎𝑟(𝑒) = 𝜙 

 log 𝜙 = 𝐗𝐯𝐛𝐯+𝐙𝐯𝐮𝐯 

 

 

Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 

The DHGLM model – only fixed effects 

 Maximum likelihood estimates for variance can be 
obtained by using Gamma GLM with squared residuals as 
response variable 

 If fixed effects on mean are known without uncertainty 

 𝑒𝑖
2~𝜙𝑖𝜒1

2 

 𝐸(𝑒𝑖
2) = 𝜙𝑖 

 𝑉𝑎𝑟(𝑒𝑖
2) = 2𝜙𝑖

2 

 Therefore: squared residual can be fitted using GLM with 
log link function together with gamma distribution for 
residual variance 

 Note: Chi-square distribution is special case of gamma 
distribution 

 

 

22 Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 
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The DHGLM model – only fixed effects 

 Fixed effects are estimated and we have only predicted 
residuals 

 𝐸(𝑒𝑖
2) ≠ 𝜙𝑖:  

 variance of predicted residuals is smaller than the true 
variance, see example later. 

 

 Therefore REML adjustment needed: 

 𝐸(𝑒𝑖
2/(1 − ℎ𝑖)) = 𝜙𝑖 

 And use weights for residual variance: 

 𝑉𝑎𝑟(𝑒𝑖
2/(1 − ℎ𝑖)) = 2𝜙𝑖

2/(1 − ℎ𝑖) 

 ℎ𝑖 = leverage of observation i 

 
23 Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 

What is a leverage? 

 Leverage: how much influence each data value y has on 
each predicted y (𝑦 ) 

 𝐗′𝐗𝐛 = 𝐗′𝐲 

 𝐛 = (𝐗′𝐗)−𝟏𝐗′𝐲 

 

 𝐲 = 𝐗𝐛 = 𝐗(𝐗′𝐗)−𝟏𝐗′𝐲 = 𝐇𝐲 

 𝐇 = 𝐗(𝐗′𝐗)−𝟏𝐗′ = The hat matrix 

 

24 Hoaglin, D. C. and R. E. Welsh. 1978. Am. Stat. 32:17-22. 
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A simple genetic example 

 Suppose we estimate a breeding value based on a single 
phenotype 

 𝐸𝐵𝑉 = ℎ2 𝑃 − 𝑃  

 The residual: 𝑒 = 𝑃 − 𝑃 − 𝐸𝐵𝑉 = (1 − ℎ2) 𝑃 − 𝑃  

 𝑣𝑎𝑟 𝑒 = 𝑣𝑎𝑟 1 − ℎ2 𝑃 − 𝑃 = 1 − ℎ2 2𝜎𝑃
2 

 

 Suppose 𝜎𝑃
2 = 1, ℎ2 = 0.3, 𝜎𝐸

2 

 𝑣𝑎𝑟 𝑒 = 0.72 = 0.49 

 

 𝑣𝑎𝑟(𝑒 )/(1 − ℎ) = 𝜎𝐸
2 = 0.7 : ℎ = leverage=heritability in 

this case; not in others 

 Warning: h is not square root of heritability 

 

 

25 

DHGLM - Ronnegard 

 Two univariate models implemented in ASREML 

● Updating of both models 

● Penalized quasi likelihood – approximation for h-
likelihood method 

● No genetic correlation between phenotype and Ve 

 Algorithm in ASREML 

1. Initialize W=I 

2. Estimate parameters of model y 

3. Calculate 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
 and 𝐖𝐯 = 𝑑𝑖𝑎𝑔(

1−ℎ

2
) 

4. Estimate parameters for 𝑦𝑣,𝑖 

5. Update 𝐖 = 𝑑𝑖𝑎𝑔(𝑦 𝑣,𝑖)
−1 based on step 4 

6. Iterate steps 2-5 until convergence of parameters 

 

 

26 
Rönnegård, L. et al. 2010. Genet. Sel. Evol. 42:8. 
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Felleki adjustment 

 Bivariate linear mixed model  

● Estimate correlations between random effects on 
phenotype and its Ve 

 

 Linearization of 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
; no need to use log-link 

function 

 

 𝑦𝑣,𝑖 =
𝑒𝑖
2

1−ℎ𝑖
≅ log𝜙𝑖 +

𝑒𝑖
2

1−ℎ𝑖
−𝜙𝑖

𝜙𝑖
 

 

 First-order Taylor series approximation; equivalent to 
use of log-link function 

 27 Felleki et al., 2012; Genet. Res. 94:307-317. 

DHGLM – IRWLS algorithm 

 Implementation in ASREML 

● Iterative reweighted least squares approximation of 
h-likelihood 

 

 Algorithm in ASREML 

1. Run model on 𝐲 with homogeneous residual 
variance 

2. Calculate 𝐲𝐯, 𝐖, 𝐖𝐯, where 𝐖 = 1/𝜎𝑒
2 in iteration 1 

3. Run bivariate model on 𝐲 and 𝐲𝐯. 

4. Update 𝐲𝐯, 𝐖, 𝐖𝐯 based on output in 3 

5. Iterate steps 3-4 until convergence of parameters 

 
28 Felleki et al., 2012; Genet. Res. 94:307-317. 
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 !WORKSPACE 1800 !NOGRAPHICS !DEBUG !LOGFILE !RENAME !ARGS  1 2  // !DOPART  $1 
 DHGLM model of birth weight 
     animal 32450 !I 
     litter 2129  !I 
     parity 10    !I 
     sex 2        !I 
     farm 15      !I 
     ys 22        !I 
     sow         !P 
     bw            !M -99 
     surv          !M -99 
     Gval !=bw !-1.19 !*V10 
     Ywt !=1. Gwt !=1. 
 Ped.txt 
 phenotype3.txt !maxit 1000 !skip 1 !DOPART $1 

 
 !PART 1 # normal model 
 bw ~ mu parity sex farm.ys !r sow litter 
 residual units 

 
 !Part 2 
 !ASUV !EXTRA 100 !SLOW 
 # in odd iterations, we use the predicted weights for the primary response 
 !IF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1 
 !IF EVEN !CALC S1=1./W1; H0=MIN(H1/S1, .9999); Z2=MAX(R1*R1,.0001)/(1-H0) 
 !IF EVEN !CALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2 
 !IF EVEN !CALC W2=(1-H0)/2 #redefine weights for Y2 

 
 !ASSIGN gen 0.016 0.005 0.05 
 !ASSIGN lit 0.015 0.0 0.08 

 
 bw Gval !Weight Ywt !WT Gwt  ~ Trait Trait.parity Trait.sex Trait.farm.ys !r us(Trait,$gen).sow 

us(Trait,$lit).litter !f mv 
 residual units.us(Trait) !VARIANCESCALE 

29 

 !Part 2 
 !ASUV !EXTRA 100 !SLOW 
 !IF ODD !CALC W1=EXP(R2-Y2) #redefine weights for Y1 

● W1: weight for residual variance trait 1 = phenotype 
● 𝐖1 = 1/exp(𝑦 𝑣): reciprocal of residual variance  

 
 !IF EVEN !CALC S1=1./W1; H0=MIN(H1/S1, .9999); 

Z2=MAX(R1*R1,.0001)/(1-H0) 
● S1= residual variance per observation 

● H0=
ℎ𝑎𝑠𝑟𝑒𝑚𝑙

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
: ℎ𝑎𝑠𝑟𝑒𝑚𝑙=in yhat file of ASREML 

● Z2=
𝑒𝑖
2

1−ℎ𝑖
  

 
 !IF EVEN !CALC Y2=LOG(S1)+(Z2-S1)/S1 #redefine Y2 

● Y2: response variable 𝐲𝐯 

● 𝑦𝑣,𝑖 = log𝜙𝑖 +

𝑒𝑖
2

1−ℎ𝑖
−𝜙𝑖

𝜙𝑖
 

 !IF EVEN !CALC W2=(1-H0)/2 #redefine weights for Y2 
● W2: weight for residual variance trait 2 = 𝐲𝐯 
● 𝐖2 = (1 − ℎ)/2 

  
 
 

30 
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Background of h-likelihood 

 H-likelihood is statistical framework for statistical 
inference on models, suitable for hierarchical models 

● Similar to maximum likelihood or REML 

● Used when dispersion/variance is modeled 

● Very useful when modeling heterogeneity of 
residual variance 

 

 Special packages needed such as hglm in R 

● Only small datasets and no pedigree data 

 

31 

Ronnegard, L., Shen, X. & Alam, M. (2010). HGLM: a 
package for fitting hierarchical generalized linear models. 
The R Journal 2, 20–28. 

Model testing 

 Adjusted Profile H-likelihood 

 𝐴𝑃𝐻𝐿 = 2𝐿𝑜𝑔𝐿 −  𝑤𝑣,𝑖 𝑒𝑣,𝑖
2 −  ln(

1

𝑤𝑣,𝑖
) 

 

 Can be used together with likelihood ratio test or with 
AIC 

 𝐴𝐼𝐶 = 𝐴𝑃𝐻𝐿 + 2𝑡 

 t is number of variances/covariances 

 

 Unfortunately not implemented yet in ASREML4, but one 
could calculate it based on yhat-file 

 

 

32 
Felleki et al., Genet. Res. 94:307-317; Mulder et al. 

2013. Genet. Sel. Evol. 45:23 
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Bias in estimated variance components 

with animal models and single 

observations per animal 

 Using animal model with single observations per animal 
give biased variance components 

33 
Sonesson et al. 2013. Genet. Sel. Evol. 45:41. 

Reasons for bias 

 Too high dependency between EBV mean and residual 

 

 The extremer observations would get a larger estimate 
for vEBV 

 This would lower the ‘heritability’ for that particular 
observation, therefore lower EBV 

 

 Therefore:  

● Genetic variance in phenotype too low 

● Genetic variance in residual variance too high 

 

34 
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Solution to avoid bias 

 Traits with repeated observations 

 

 Traits with single observations 

● Sire models 

● Sire-dam models 

35 

Scaling of data 

 Scaling: higher mean, higher variance 

 

 Question: 

● Are we picking up scaling effects? 

 

 This would mean a high positive genetic correlation 
between mean and variance 

36 
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Evidence for scaling in fish 

 Body weight of rainbow trout 

 Genetic correlation between mean and Ve is: 

● Freshwater:0.30 

● Seawater: 0.79 

 

 Genetic correlation between two environments  

 Body weight: 0.70 

 Ve of body weight: 0.56 

 

 
37 

Sae-Lim et al., 2015. Genet. Sel. Evol. 47:46. 

What to do with scaling? 

 Scaling can be removed by log transformation 

 

 Removes heterogeneity of variance 

 

 Removes the mean-variance relationship 

38 
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Transformation rainbow trout example  

 Effect of log-transformation 

 Genetic correlation between mean and Ve is: 

● Freshwater: -0.83 

● Seawater: -0.62 

 Genetic correlation between Ve in the two environments 
was -0.08 

 

 Conclusion: log-transforming data has a large effect on 
genetic correlations. Too large?  

 

 39 

Other transformations 

 Square root transformation 

 Cube-root transformation 

 Box-Cox transformation 

● The optimal transformation to get distribution back 
to normal 

● 𝑦t =
𝑦𝜆−1

𝜆
 

 Problem: after (box-cox) transformation, genetic 
correlations between mean and variance swap sign, but 
may be used to check whether genetic variance in Ve is 
not artefact of non-normality 

 

 
40 

Yang, Y., O. F. Christensen, and D. Sorensen. 
2011. Genet. Res. 93:33-46. 
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Some extensions of DHGLM 

 Estimating macro- and micro-environmental sensitivity 

● Reaction norm model for GxE combined with the 
DHGLM for differences in Ve 

● Mulder et al., 2013; Genet. Sel. Evol. 45:23.  

 Estimating GxE for Ve  

● Fish in fresh water and sea water 

● Sae-Lim et al., 2015; Genet. Sel. Evol. 47:46. 

 Estimating purebred-crossbred genetic correlation for Ve 

● Egg color in purebred and crossbred laying hens 

● Mulder et al. 2016; GSE 48:39 

 

41 

Some extensions of DHGLM 

 Using genomic relationship matrix  

● Mulder et al. 2013; J. Dairy Sci. 96:7306-7317. 

● Sell-Kubiak et al. 2015; J. Anim. Sci. 93:1471-
1480. 

 Estimating relationships between Ve and other traits, 
such as fitness traits 

● Mulder et al. 2015; Genetics 199:1255-1269. 

 Using DHGLM for genomic selection or GWAS 

● Ronnegard and Valdar, 2012; Genetics 188:435-
447 and BMC Genet. 13:63 

● Ronnegard and Lee 2013 J. Anim. Breed. 
Genet.130:415-416. 

42 
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Summary 

 DHGLM is a relatively fast and good method to estimate 
genetic variance in Ve 

● Opportunities for extension 

 

 Repeated observations needed per genotype 

● Single obs/animal: use sire or sire-dam model 

● Multiple obs/animal: use animal model 

 

 Transformations may be useful to check whether genetic 
variance in Ve is not artefact of non-normality 

43 


