

Analysis of variance						
Variate: yield						
Source of variation	Additive ANG	SVA s.s.	m.s.	V.F.	F pr.	
E	7	5678.7416	811.2488	1466.47	<.001	
G	210	614.2675	2.9251	5.29	<.001	
Residual	1470	813.1999	0.5532			
Total	1687	7106.2090				
Analysis of variance Source d.f.		Finlay Wilkin s.s.	nson m.s.		v.r.	F pr.
Genotypes	210	614.2675	2.9251	(5.32	< 0.001
Environments	7	5678.7416	811.2488	1753.13		<0.001
Sensitivities	210	230.1422	1.0959	2.37		<0.001
Residual	1260	683.0577	0.4627			
Total	1687	7106.2090	4.2123			
ANOVA table for AMMI model						
Source		d.f.	S.S.	m.s.	v.r.	Fpr
Genotypes		210	614	2.9	5.29	<0.001
Environments		7	5679	811.2	1466.47	<0.001
Interactions		14/0	813	0.6	2.02	<0.001
IPCA 1		210	173	0.8	2.93	<0.001
Residuals		1040	398	0.4	2	

Factorial regression
μ_i = μ + G_i + E_j + ∑_{k∈K} β_{ik}Z_{jk} + <u>¢</u>_{ij}
Ine Z_{jk} are observed environmental covariables
Temperature / %humidity / radiation / water / etc.
Higher order relationships (eg: quadratic) possible
Slope (β_{ik}) is sensitivity of genotype *i* to environmental covariable k
Ine β_{ik} is interpretable!
E.g. sensitivity to temperature

Summary

□ We want to find structure in the GxE

- Understanding
- Prediction of GxE

□ Implicit environmental info: AMMI

- Captures (hopefully) a lot of GxE
- Little understanding and predictability

□ Explicit environmental info: Factorial Regression

- More understanding and predictability
- But requires environmental info

□ The real challenge: Find the E's for factorial regression that explain the GxE.