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Topics
• Definitions, dimensionality, addition, 

subtraction
• Matrix multiplication
• Inverses, solving systems of equations
• Quadratic products and covariances
• The multivariate normal distribution
• Eigenstructure
• Basic matrix calculations in R
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Matrices:  An array of elements

Vectors:  A matrix with either one row or one column.

Column vector Row vector

(3 x 1) (1 x 4)

Usually written in bold lowercase, e.g. a, b, c

Dimensionality of a matrix:  r x c (rows x columns)
think of Railroad Car
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Square matrix (3 x 2)

General Matrices

Usually written in bold uppercase, e.g. A, C, D

Dimensionality of a matrix:  r x c (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element Bij -- the element in row i
and column j
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Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x c), 
then matrix addition and subtraction simply follows by 
adding (or subtracting) on an element by element basis

Matrix addition:   (A+B)ij = A ij + B ij

Matrix subtraction:   (A-B)ij = A ij - B ij

Examples:

-D = A-B
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Partitioned Matrices
It will often prove useful to divide (or partition) the 
elements of a matrix into a matrix whose elements are
itself matrices. 

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors
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A row vector whose 
elements are column 
vectors

A column vector whose 
elements are row vectors
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Towards Matrix Multiplication:  dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

Example:

a .b = 1*4 + 2*5 + 3*7 + 4*9 = 60
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Matrices are compact ways to write 
systems of equations
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yields the following system of equations for the bi

This can be more compactly written in matrix form as 

XTX XTyb

or, b = (XTX)-1 XTy

The least-squares solution for the linear model
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Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g.  AB = BA

For the product of two matrices to exist, the matrices
must conform.  For AB, the number of columns of A must
equal the number of rows of B. 

The matrix C = AB  has the same number of rows as A
and the same number of columns as B.
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C(rxc) = A(rxk) B(kxc)

Inner indices must match
columns of A = rows of B 

Outer indices given dimensions of
resulting matrix, with r rows (A)
and c columns (B)

Example:  Is the product ABCD defined?  If so, what
is its dimensionality?  Suppose

A3x5 B5x9 C9x6 D6x23

Yes, defined, as inner indices match.  Result is a 3 x 23
matrix (3 rows, 23 columns)
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More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors
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Example

ORDER of multiplication matters!  Indeed, consider
C3x5 D5x5 which gives a 3 x 5 matrix, versus D5x5 C3x5 , 
which is not defined.



15

Matrix multiplication in R
R fills in the matrix from
the list c by filling in as
columns, here with 2 rows 
(nrow=2) 

Entering A or B displays what was
entered (always a good thing to check)

The command  %*% is the R code
for the multiplication of two matrices

On your own:  What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?
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The Transpose of a Matrix  

The transpose of a matrix exchanges the 
rows and columns, AT

ij = Aji

Useful identities
(AB)T = BT AT

(ABC)T = CT BT AT

Inner product = aTb = aT
(1 X n) b (n X 1)

Indices match, matrices conform
Dimension of resulting product is 1 X 1 (i.e. a scalar)

Note that bTa = (bTa)T = aTb
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Outer product = abT = a (n X 1) bT 
(1 X n)

Resulting product is an n x n matrix
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Multidimensional Taylor series
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20
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R code for transposition
t(A) = transpose of A

Enter the column vector a

Compute inner product aTa

Compute outer product aaT

22

Solving equations
• The identity matrix I

– Serves the same role as 1 in scalar algebra, e.g., 
a*1=1*a =a, with AI=IA= A

• The inverse matrix A-1 (IF it exists)
– Defined by A A-1 = I, A-1A = I
– Serves the same role as scalar division

• To solve ax = c, multiply both sides by (1/a) to give: 
• (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x, 
• Hence x = (1/a)c
• To solve Ax = c,  A-1Ax = A-1 c
• Or A-1Ax  = Ix = x = A-1 c
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The Identity Matrix, I
The identity matrix serves the role of the
number 1 in matrix multiplication:  AI =A, IA = A

I is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

Iij =
1 for i = j

0 otherwise
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The Identity Matrix in R
diag(k), where k is an integer, return the k x k I matix 
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The Inverse Matrix, A-1

For a square matrix A, define its Inverse A-1, as
the matrix satisfying
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If det(A) is not zero, A-1 exists and A is said to be
non-singular.  If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch & 
Walsh

A- is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is 
consistent, then some of the variables have a family
of solutions (e.g., x1 =2, but x2 + x3 = 6) 
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Inversion in R

det(A) computes determinant of A

solve(A) computes A-1

Using A entered earlier

Compute A-1

Showing that A-1 A = I

Computing determinant of A
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Useful identities

(AB)-1 = B-1 A-1

(AT)-1 = (A-1)T

Also, the determinant of any square matrix A, 
det(A), is simply the product of the eigenvalues l of A,
which statisfy

Ae = le
If A is n x n, solutions to l are an n-degree polynomial. e is 
the eigenvector associated with l.  If any of the roots to the 
equation are zero, A-1 is not defined. In this case, for some 
linear combination b, we have Ab = 0.  

For a  diagonal matrix D, then det (D), which is also 
denoted by |D|, = product of the diagonal elements
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Variance-Covariance matrix

• A very important square matrix is the 
variance-covariance matrix V associated  with 
a vector x of random variables.

• Vij = Cov(xi,xj), so that the i-th diagonal 
element of V is the variance of xi, and off-
diagonal elements are covariances

• V is a symmetric, square matrix
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The trace
The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals

the sum of the eigenvalues of A,  tr(A) = S li

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

li / tr(V) is the fraction of the total variation 
in x contained in the linear combination ei

Tx, where
ei, the i-th principal component of V is also the
i-th eigenvector of V (Vei = li ei)
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Eigenstructure in R
eigen(A) returns the eigenvalues and vectors of A

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation

PC 1

0.400* x1 – 0.139*x2 + 0.906*x3
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Stable if all |li| < 1
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Leslie matrix: Age-structured growth
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Growth rate = 3.58
1 class %  = 73.7
= .96/(.96+.27+0.8)
2 class % = 20.6
3 class % = 5.8
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Quadratic and Bilinear Forms

Quadratic product: for An x n and xn x 1

Scalar (1 x 1)

Bilinear Form (generalization of quadratic product)
for Am x n,  an x 1, bm x1  their bilinear form is bT

1 x m Am x n an x 1

Note that bTA a = aTAT b
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Covariance Matrices for 
Transformed Variables

What is the variance of the linear combination,
c1x1 + c2x2 + … + cnxn ? (note this is a scalar)

Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,
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Example:  Suppose the variances of x1, x2, and x3 are
10, 20, and 30.  x1 and x2 have a covariance of -5,
x1 and x3 of 10, while x2 and x3 are uncorrelated. 

What are the variances of the indices
y1 = x1-2x2+5x3 and  y2 = 6x2-4x3?

Var(y1) = Var(c1
Tx) = c1

T Var(x) c1 = 960

Var(y2) = Var(c2
Tx) = c2

T Var(x) c2 = 1200

Cov(y1,y2) = Cov(c1
Tx, c2

Tx) = c1
T Var(x) c2 = -910

Homework:  use R to compute the above values
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The Multivariate Normal 
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
µi and variance s2

i

This can be expressed more compactly in matrix form

40

Define the covariance matrix V for the vector x of 
the n normal random variable by

Define the mean vector µ by gives 

Hence in matrix from the MVN pdf becomes

Notice this holds for any vector µ and symmetric positive-
definite matrix V, as | V | > 0.
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The multivariate normal

• Just as a univariate normal is defined by 
its mean and spread, a multivariate 
normal is defined by its mean vector µ
(also called the centroid) and variance-
covariance matrix V
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Vector of means µ determines location

µ

Spread (geometry) about  µ determined by V

µ

x1, x2 equal variances,
positively correlated

x1, x2 equal variances,
uncorrelated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.
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Vector of means µ determines location

µ

Spread (geometry) about  µ determined by V

x1, x2 equal variances,
negatively correlated

µ

Var(x1) < Var(x2), 
uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation
No tilt = uncorrelated

44

Eigenstructure of V

µ

e1l1

e2l2

The direction of the largest axis of 
variation is given by the unit-length 
vector e1,  the 1st eigenvector of V.

The next largest axis of orthogonal
(at 90 degrees from) e1,  is
given by e2, the 2nd eigenvector
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Principal components 
• The principal components (or PCs) of a covariance 

matrix define the axes of variation.  
– PC1 is the direction (linear combination cTx) that explains 

the most variation.
– PC2 is the next largest direction (at 90degree  from PC1), 

and so on

• PCi = ith eigenvector of V
• Fraction of variation accounted for by PCi = li / 

trace(V)
• If V has a few large eigenvalues, most of the variation 

is distributed along a few linear combinations (axis of 
variation)

• The singular value decomposition is the 
generalization of this idea to nonsquare matrices
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Properties of the MVN - I

1) If x is MVN,  any subset of the variables in x is also MVN

2) If  x is MVN,  any linear combination of the 
elements of x is also MVN.  If x ~ MVN(µ,V)  
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Properties of the MVN - II

3) Conditional distributions are also MVN.  Partition x
into two components, x1 (m dimensional column vector)
and  x2 ( n-m dimensional column vector)

x1 | x2 is MVN with m-dimensional mean vector

and m x m covariance matrix
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Properties of the MVN - III

4)  If x is MVN, the regression of any subset of 
x  on another subset is linear and homoscedastic

Where e is MVN with mean vector 0 and
variance-covariance matrix 
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The regression is linear because it is a linear function
of x2

The regression is homoscedastic because the variance-
covariance matrix for e does not depend on the value of 
the x’s

All these matrices are constant, and hence
the same for any value of x
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Example:  Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN.  Then from the correlations
among (outbred) relatives,
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Regression of Offspring value on Parental values (cont.)

Where e is normal with mean zero and variance
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Additional R matrix commands
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Additional R matrix commands (cont)
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Additional references

• Lynch & Walsh (1998) 
– Chapter 8 (intro to matrices)
– Appendix 3 (G-inverses_

• Walsh and Lynch (2018) 
– Appendix 5 (Matrix geometry)
– Appendix 6 (Matrix derivatives)


