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Topics

Definitions, dimensionality, addition,
subtraction

Matrix multiplication

Inverses, solving systems of equations
Quadratic products and covariances
The multivariate normal distribution
Eigenstructure

Basic matrix calculations in R



Matrices: An array of elements

Vectors: A matrix with either one row or one column.

Usually written in bold lowercase, e.g. a, b, c

12
a=|13) b=(2 0 5 21)
47

Column vector Row vector

3x1) (1x4)

Dimensionality of a matrix: r x ¢ (rows x columns)
think of Railroad Car

General Matrices

Usually written in bold uppercase, e.g. A, C, D

3 1 2 0 1
C=1{2 5 4 D=3 4
1 1 2 2 9
(3 x 3)
Square matrix (3x2)

Dimensionality of a matrix: r x c (rows x columns)
think of Railroad Car

A matrix is defined by a list of its elements.
B has ij-th element B, -- the element in row i
and column |



Addition and Subtraction of Matrices

If two matrices have the same dimension (both are r x ¢),
then matrix addition and subtraction simply follows by
adding (or subtracting) on an element by element basis

Matrix addition: (A+B); =A; + B

Matrix subtraction: (A-B);=A;-B;

1) |

(3 0) (1 2
A—(l 2) and B—(2 1)

49 . 9 —9
C—A+B—(3 3) and D=A-B ‘(—1 1)

Examples:

Partitioned Matrices

It will often prove useful to divide (or partition) the
elements of a matrix into a matrix whose elements are
itself matrices.

3 1 2 SR L.
11 2 2 ‘5 4 d B
1 1 2

R 7 « . 2 . 5 4
a=(3). b=(1 2), d (1) B (1 2)

One useful partition is to write the matrix as
either a row vector of column vectors or
a column vector of row vectors



3 1 2 r

,. ! A column vector whose
C=12 5 4|=1rs

11 2 elements are row vectors

— U =

A row vector whose
= | C Co 'C:
(1 e 3) elements are column
vectors

A S

Towards Matrix Multiplication: dot products

The dot (or inner) product of two vectors (both of
length n) is defined as follows:

a'b= i:(lzbi
i=1

Example:

and b=(4 5 7 9)

[
Il
N

a'b=1*+2*5+ 3*7 + 4*9 = 60



Matrices are compact ways to write
systems of equations

The least-squares solution for the linear model

y=p+01z1+ " Pnzn
yields the following system of equations for the ;
o(y,z1) = Bro*(z1) + Boo(z1,22) + -+ + Buo(z1, 2n)
o(y,22)= B1o(21,22) + B20?(22) + *+*+ Bno(z2,2n)

G(ya zn)z 310(21: zn) +‘;320'(22, zn) + 0+ 3.“02(2"‘)
This can be more compactly written in matrix form as

02(zy) o(z1,29) ... o(z1,2n) B, o(y, z1)

0(21,22) 0’2(2:2) cee O’(ZQ,Zn.) 32 - o(y,zg)

0'(21-, Z”) 0(32': Zn T 0'2(.2“) .3”- U(U Z“)
XTX B XTy

or, '3 — (XTX)—1 XTy 10



Matrix Multiplication:

The order in which matrices are multiplied affects
the matrix product, e.g. AB # BA

For the product of two matrices to exist, the matrices
must conform. For AB, the number of columns of A must
equal the number of rows of B.

The matrix C = AB has the same number of rows as A
and the same number of columns as B.

C(rxc) = A(rxk) B(kxc)
ij-th element of C is given by

Elements in the
jth column of B

Cij = ZAHBU Elements in the i‘rn
=1 row of matrix A

Quter indices given dimensions of
resulting matrix, with r rows (

and c columns (B / \
rxc — B

rxk (kxc)

\/

Inner indices must match
columns of A = rows of B

Example: Is the product ABCD defined? If so, what
is its dimensionality? Suppose

A3x5 BSx9 C‘?xé D6x23

Yes, defined, as inner indices match. Resultis a 3 x 23
matrix (3 rows, 23 columns) 12



More formally, consider the product L = MN

Express the matrix M as a column vector of row vectors

m;
ms

M= : where m; = (M Mip =~ M)
\m./

Likewise express N as a row vector of

column vectors :f
+V23

N=(n; n; -+ mny) where n; = _

The ij-th element of L is the inner product |\
- C-"

of M's row i with N's column j

ml.nl ml.n2 ... ml..nb
m2- nl m2 -n2 ... m2 -nb
L= : :
mr-nl mr.n2 ... mr -nb
13

_f[a b e f\ [(ae+bg af-+bh
AB_(C d) (g h)_(ce+dg cf+dh)

Likewise

[ ae+cf eb4df
BA_(ga-}—ch gd—l—dh)

ORDER of multiplication matters! Indeed, consider
Cays Ds,s which gives a 3 x 5 matrix, versus Ds,s Cs,5,
which is not defined.

14



Matrix multiplication in R

o R fills in the matrix from
> A<-matrix(c(l,2,3,4),nron=2) . . .
> B<-matrix(c(4,5,6,7),nron=2) the list ¢ by fl||lﬂg IN as

>A columns, here with 2 rows
0,11 [,2]
[1,] 1 3 (nrow=2)
2 2 4
> B ) )
[1] L2 Entering A or B displays what was
EH AS' g entered (always a good thing to check)
> A %% B
(1] [,2] .
[1,] 19 27 The command %*% is the R code

[2,] 28 40 for the multiplication of two matrices

On your own: What is the matrix resulting from BA?
What is A if nrow=1 or nrow=4 is used?
15

The Transpose of a Matrix

The transpose of a matrix exchanges the

rows and columns, AT; = A,

Useful identities
(AB)T = BT AT “ h
(ABC)T = CT BT AT a=1i . b=1:
Inner product = a'™o =a' x b nx1

\/

Indices match, matrices conform

Dimension of resulting product is 1 X 1 (i.e. a scalar)

by .
(ay, - a,) ( ;‘ ) -a’h Xﬂxbj Note that bTa = (bTa)T = aTb

b, 16



Quter product =ab" =a (n X 1) b’ (1 Xn)

~_

Resulting product is an n x n matrix

a)
az

(b1 b2 bn)
Qpn
(llbl (llbg (llbn
(lQb] (l-zb-g - (lan
a‘nbl aan SR %) bbn

17

Multidimensional Taylor series

Suppose we let f(x) be a scalar (single-dimension) function of a column vector, x =
(z1y--- ,rn)T, of n variables. The gradient (or gradient vector) of f with respect to x is
obtained by taking partial derivatives of the function with respect to each variable. In ma-
trix notation, the gradient operator is denoted by

af
dx,
9 .
Vx[f] B B_)f( -
af
OTn

The gradient at a point, x,, corresponds to a vector indicating the direction of local steepest
ascent of the function at that point (the multivariate slope of f at x,).

18



In univariate calculus, the local extrema of a function occur when its slope (first derivative) is
zero. The multivariate extension is that the gradient vector is zero, so the slope of the function
with respect to all variables is zero. A point x, where this occurs is called a stationary or
equilibrium point, and corresponds to either a local maximum, minimum, saddle point, or
inflection point. As with the calculus of single variables, determining which of these cases is
correct depends on the second derivative. With n variables, the appropriate generalization
is the Hessian matrix

*f d* f
. B_If dx, Oxp
2 L - -
Hx[f]=Vx [(Vx[f]> ] = afaiT = : - : (A6.5)
?f ‘ 0 f
Ox, Oy N B_xﬁ

Note that this is the outer product of V [ f | with itself. Recall for an n-dimensional column
vector a, ) that while the inner product, a’{x nlnx1 = 9_a; returns a1 x 1 matrix (a scalar),
the outer product, a,.;a’,,,, returns an n x n matrix whose ijth element is a;a;, or (in our

case)

_(f(x)/0z:) _ & f(x)

Hij 61‘, o 31‘,- 3:1:,

19

To see how the Hessian matrix determines the nature of equilibrium points, a slight
digression on the multidimensional Taylor series is needed. Consider the (second-order)
Taylor series of a scalar function of n variables, f(z,,---,z,), expanded about the point x,,

f(x) = f(xo) +Z(Ii - Io,s)g—i + %ZZ(L- — Toi)(T; — lo,j)% +--- (A6.7a)

i=1 j=1

where all partials are evaluated at x,,. If we note that the first sum is the inner product of the
gradient and (x — X, ), and the double sum is a quadratic product involving the Hessian,
we can express Equation A6.7a in matrix form as

f(x) = f(x0) + VT (x — x,) + %(x —x,)TH (x — x,) (A6.7b)

where V and H are the gradient and Hessian of f with respect to x when evaluated at x,,

V=Vx[fllxx, and H=Hx[f]|}

20



R code for transposition

> t(A)

[,11 [,2] t(A) = transpose of A
(L,1] 1 2
2,1 3 4

> g<-matrix(c(l,2,3),nron=3) Enter the column vector a
> a

C,1]

(1,1 1

2,] ¢

3.1 3 :

> £(a) %*% Compute inner product a'a
1]

1,] 14

E a]%+% +(a) Compute outer product aa’
(.11 G.2] [,3]

L, 1 2 3

2J 2 4 6

(J 3 6 9

Solving equations

e The identity matrix |

— Serves the same role as 1 in scalar algebra, e.g.,

a*1=1*a =a, with Al=lA= A
e The inverse matrix A1 (IF it exists)
— Definedby AAT=1, ATA =1
— Serves the same role as scalar division

* To solve ax = ¢, multiply both sides by (1/a) to give:
e (1/a)*ax = (1/a)c or (1/a)*a*x = 1*x = x,

® Hence x = (1/a)c

e Tosolve Ax=c, A'/Ax=A"c

e OrA’Ax =Ix=x=A"c

21

22



The Identity Matrix, |

The identity matrix serves the role of the
number 1 in matrix multiplication: Al =A, IA = A

| is a square diagonal matrix, with all diagonal elements
being one, all off-diagonal elements zero.

1 fori=]j

ij }
O otherwise

1 0 0
I:u:s ={0 10
0 0 1

23

The Identity Matrix in R

diag(k), where k is an integer, return the k x k | matix

> I<-diog(4)
> 1

(.11 0,21 [,3] [.4]
[1,] 1 6 0 0

2,1 0 1 0 0
[3,] 0 0 1 0
4,7 5} 0 0 1
> 12 <-diag(2)
> 12

(.11 [, 2]
1,] 1 0

z,j o 1

24



The Inverse Matrix, A

For a square matrix A, define its Inverse A, as
the matrix satisfying

ATA=AA1 =1

For A = (Z 2) Al:‘(wl ' —dc _ab)
/

If this quantity (the determinant)
is zero, the inverse does not exist.

25

If det(A) is not zero, A exists and A is said to be
non-singular. If det(A) = 0, A is singular, and no
unique inverse exists (generalized inverses do)

Generalized inverses, and their uses in solving systems
of equations, are discussed in Appendix 3 of Lynch &
Walsh

A is the typical notation to denote the G-inverse of a
matrix

When a G-inverse is used, provided the system is
consistent, then some of the variables have a family
of solutions (e.g., x; =2, but x, + x5 = 6)

26



Inversion in R

solve(A) computes A

det(A) computes determinant of A

> A Using A entered earlier
(.11 [,2]
1,] 1 3
[2,] 2 4 -
> solve(A) ComPUte Al
(.11 [,2]
[1,] -2 1.5
2,7 1 -0.5
lve(A) %*% A
m ﬁ]) [,2] Showing that AT A = |

[1,] 1 -8.881784e-16
[2,] 0 1.000000e+00
Elgeng) Computing determinant of A

27

Example 8.5. To see further connections between the determinant and the solution to a set
of equations, consider the following two systems of equations:

r1+x9=1 Set two: 09999 -1 + 29 =1

2r1 + 219 = 2 2x1 + 219 =2

The determinant for the coefficient matrix associated with set one is zero, and there is no
unique solution, rather a line of solutions, x; = 1 — x5. In contrast, the determinant for
the matrix associated with set two is nonzero, hence its inverse exists and there is a unique
solution. However, the determinant nearly zero, 0.0002. Such a matrix is said to be nearly
singular, meaning that although the two sets of equations are distinct, they overlap so closely
that there is little additional information from one (or more) of the equations. For this set of
equations,

Al —10,000 5000 <= —3.63 x 10712 (0

~ \ —10,000 —4999.5 )’ N 1 1
While there technically is a unique solution, it is extremely sensitive to the coefficients in the set
of equations, and a very small change (such as through measurement error) can dramatically

change the solution. For example, replacing the first equation by z1 4+ 0.9999 - 25 = 1, yields
the solutionof 1 = 1, 29 ~ 0.

Set one:

28



Useful identities
(AT = (AT
(AB)! = B A"

For a diagonal matrix D, then det (D), which is also
denoted by IDI, = product of the diagonal elements

Also, the determinant of any square matrix A,

det(A), is simply the product of the eigenvalues A of A,
which statisfy

Ae = Le

If Aiis n x n, solutions to A are an n-degree polynomial. e is
the eigenvector associated with A. If any of the roots to the
equation are zero, A" is not defined. In this case, for some
linear combination b, we have Ab = 0.

29

Variance-Covariance matrix

* A very important square matrix is the
variance-covariance matrix V associated with
a vector x of random variables.

* V; = Cov(x;x), so that the i-th diagonal
element of V is the variance of x;, and off-
diagonal elements are covariances

* Vis a symmetric, square matrix

30



The trace

The trace, tr(A) or trace(A), of a square matrix
A is simply the sum of its diagonal elements

The importance of the trace is that it equals
the sum of the eigenvalues of A, tr(A) = 2 A

For a covariance matrix V, tr(V) measures the
total amount of variation in the variables

A; / tr(V) is the fraction of the total variation

in x contained in the linear combination e,'x, where
e, the i-th principal component of V is also the

i-th eigenvector of V (Ve; = A, )

31

Eigenstructure in R

eigen(A) returns the eigenvalues and vectors of A

> V<-matrix(c(10,-5,10,-5,20,0,10,0,30),nron=3)

>V

L1 L2d 3]
1,1 11 -5 10
2,1 -5 20 0
[3,1] 10 O 30
> eigen(V)
$values

[1] 34.410103 21.117310 4.472587

$vectors

£

PC 1

L, 2]

]| ©.3996151 | ©.2117936
[2,]]-0.1386580 |-0.9477830
1| ©.9061356 |-0.2384340 -0.3493816

[,3]
0.8918807
0.2871955

Trace = 60

PC 1 accounts for 34.4/60 =
57% of all the variation

0.400* x4 — 0.139*x, + 0.906*x5

32



1
Fx) 2= F(3%0) + VT = X0) + 55 — ) TH (x — %) (AG.7h)
where V and H are the gradient and Hessian of f with respect to x when evaluated at x,,

V=Vx[fllx.x, and H=Hx[f]|x_y

At an equilibrium point, %, all first partials are zero, so (Vx| f])” is evaluated at % is
a vector of length zero. Whether this point is a maximum or minimum is then determined
by the quadratic product involving the Hessian when evaluated at X. Consider a vector, d,
of a small change from the equilibrium point

fE+d) - f(X) ~ % .d"Hd (A6.8a)

Because H is a symmetric matrix, we can diagonalize it and apply a canonical transformation

(Equation A5.17a) to simplify the quadratic product in Equation A6.8a, which returns

f(x+d) - f(x) = % > iyl (A6.8b)
i=1

Stable if all |A] < 1

33
Leslie matrix: Age-structured growth
by by -+ bpr bi
L0 - 0 0
L=|0 & 0 0 (29.3a)
E ~ 0 0
0 0 --- £, 0

If n(t) is a vector of the number of individuals in each age/stage class at time £, then
n(t+1) = Ln(t). The asymptotic growth rate, A, for this population is the largest eigenvalue
of L, while its associated eigenvector is the stable age distribution. The Leslie matrix is just
one type of life-history projection matrix. More generally, the life history of a species may
be more accurately defined by stages, rather than ages. For example, a perennial plant could
spend many years in a rosette stage before flowering. Life-history graphs are a more general
approach for categorizing such stage-structured organisms. In an age-structured model,
individuals increase in age at each step, but in a stage-structured model, an individual can
remain in the same stage on the next step (e.g., stays as a rosette), generating a loop in
the graph (an arrow that circles back to itself), and hence a nonzero diagonal element, L;;,
representing the chance of remaining in stage i in the next step (Caswell 1989, 2001).

34



0 10 10
L3 — 1 0 0
0 1 0

> L<-matrix(c(0,1,0,10,0,1,10,0,0),nrow=3)

> L

[,11 [,2] [,3]
[1,] @ 10 10
[2,] 1 0 (]
[3,] (] 1 (]
> eigen(L)
eigen() decomposition

$values Growth rate = 3.58
[1] |3.577089| -2.423622 -1.153467 1 class % = 73.7

$vectors = .96/(.96+.27+0.8)

[,1] [,2] [,3] 2 class % = 20.6
[1,] 0.96035836 |-0.9131654 0.6570260 3 class % = 5.8
[2,] 0.26847480 | 0.3767771 -0.5696095
[3,] 0.07505398 |-0.1554603 0.4938237 35

Quadratic and Bilinear Forms

Quadratic product: for A, ,, and X, x 1

7L n
xTAx = ZZaz‘jxixj Scalar (1 x 1)
i=1 j=1

Bilinear Form (generalization of quadratic product)
for Ay« nr @nx1, Om 1 their bilinear formis bTy, ., An i nan 1

m T
bTAa=) D Aibia,
i=1 j=1
Note that b’/Aa =a'ATb

36



Covariance Matrices for
Transformed Variables

What is the variance of the linear combination,
CiX1 + CoXo + ... + X, ? (note this is a scalar)

n n n
02 (CTX) :0'2 (ZCLIL'1> =0 Zcil‘i,ZCj Z;
i=1 i=1 J=1
n n 72. 1L
= ZZU(C"'Z""CJ Tj) = ZZQ ¢j o (Ti,x;)

i=1j=1 =1 j=1
—c'Ve
Likewise, the covariance between two linear combinations
can be expressed as a bilinear form,

o(a’x,b’x)=a’Vb i

Example: Suppose the variances of x;, x,, and x3 are
10, 20, and 30. x, and x, have a covariance of -5,
x, and x5 of 10, while x, and x5 are uncorrelated.

What are the variances of the indices
Y1 = X1-2X2+5x3 and Yo = 6x2-4x3?

10 =5 10 | 0
V=1|-5 20 0 ]|]. e={-21]. = 6
10 0 30 5 —4

Var(y;) = Var(c;"x) = ¢;" Var(x) ¢; = 960
Var(y,) = Var(c,™x) = c," Var(x) c, = 1200
Covly1,y2) = Cov(ci'x, c,'x) = ¢;T Var(x) c, = -910

Homework: use R to compute the above values
38



The Multivariate Normal
Distribution (MVN)

Consider the pdf for n independent normal
random variables, the ith of which has mean
; and variance 62,

TL s ) (.'EZ' . /_Li)z
p(x) = | [(2m) 20" exp (— o7

=1

= (2m) /2 (HUL) exp (— Z (5612_02“‘)>

This can be expressed more compactly in matrix form

39

Define the covariance matrix V for the vector x of
the n normal random variable by

o2 0 = 0 ;
0 o2 - 0 ,
v=| 2 Vi=]]0?
S - i=1
0 - o o2
Define the mean vector p by gives Z;
p=| .
n i - 1 2 . B .
Z( gzu) =@x-—pw)' V(x—p) Pn

i=1
Hence in matrix from the MVN pdt becomes

i - 1 S
p(x) = (2r)” 2| V|72 exp —g(x—u)IV Lx—p)

Notice this holds for any vector n and symmetric positive-
definite matrix V, as |V | > 0. 40



The multivariate normal

e Just as a univariate normal is defined by
its mean and spread, a multivariate
normal is defined by its mean vector p
(also called the centroid) and variance-
covariance matrix V

41

Vector of means p determines location

Spread (geometry) about p determined by V

X1, X equal variances,

X1, Xo equal variances,
1. %2 €9 uncorrelated

positively correlated

Eigenstructure (the eigenvectors and their corresponding
eigenvalues) determines the geometry of V.

42



Vector of means p determines location

Spread (geometry) about p determined by V

T f 1 T | e—
X1, X equal variances, Var(x;) < Var(xy),
negatively correlated uncorrelated

Positive tilt = positive correlations
Negative tilt = negative correlation

No tilt = uncorrelated i

Eigenstructure of V

The direction of the largest axis of
variation is given by the unit-length

— vector €1, the 1st eigenvector of V.

A &1
! The next largest axis of orthogonal

. (at 90 degrees from) €4, is
e given by €5, the 2nd eigenvector

L B

44



Principal components

* The principal components (or PCs) of a covariance
matrix define the axes of variation.

— PC1 is the direction (linear combination ¢'x) that explains
the most variation.

— PC2 is the next largest direction (at 90degree from PC1),
and so on

e PC, = ith eigenvector of V

e Fraction of variation accounted for by PCi = %; /
trace(V)

e |fV has a few large eigenvalues, most of the variation
is distributed along a few linear combinations (axis of
variation)

® The singular value decomposition is the
generalization of this idea to nonsquare matrices

45

Properties of the MVN - |

1) If x is MVN, any subset of the variables in x is also MVN

2) If xis MVN, any linear combination of the
elements of x is also MVN. If x ~ MVN(,V)

for y=x+a, y is MVN,,(u + a, V)

for y=alx= Zaixi, yis N@@alp,a’ Va)
k=1

for y= Ax, y is MVN,, (Au,, ATVA>

46



Properties of the MVN - ||

3) Conditional distributions are also MVN. Partition x
into two components, x; (m dimensional column vector)
and x, ( n-m dimensional column vector)

Vx1x1 Vx1XQ
() e () = v (G
2 V)élXQ Vx2x2
X1 | x5 is MVN with m-dimensional mean vector

l‘l’xll)(Q - IJ"]_ + VX1X2V)Z21X2 (x2 o “2)

and m x m covariance matrix

_ _ -1 T
Vx1]X2 — VX1X1 VX1X2VX2X2 VX1X2

Properties of the MVN - I

4) If x is MVN, the regression of any subset of
X on another subset is linear and homoscedastic

X1 = Bx, (%2 +e
= K4 + VX1X2 lexz (x2 o ”2) + €

Where e is MVN with mean vector 0 and
variance-covariance matrix Vg |x,

48



1+ Viax Vix, (X2 = 1y) +e

The regression is linear because it is a linear function
Of X2

The regression is homoscedastic because the variance-

covariance matrix for e does not depend on the value of
the x’s

VX1|X2 — VX1X1 VXl X2VX2X2 Vxlx2

All these matrices are constant, and hence

the same for any value of x "

Example: Regression of Offspring value on Parental values

Assume the vector of offspring value and the values of
both its parents is MVN. Then from the correlations
among (outbred) relatives,

Zo Lo 1 h%/2 h?/2
z | ~NMVN | | ps |,02| h2/2 1 0
Zd Hd h2/2 0 1

Let x; =(2,), Xz2= (ZS)

2d

. h?c? of 1 0
VX1,X1=U§a Vxix: = 9 (1 l)a VX2,X2=0'5<0 1

= pq+ VX1X2V£21X2 (x2 o uz) t+e

50



Regression of Offspring value on Parental values (cont.)

= B3+ Vxaxa Viax, (X2 — ) +e

h20? 10
VX1,X1 = 023 VX1D(2 = 2 (1 1)’ szyxz = ag(o 1

Hence, _ h*o? (1 0 (2s— ps
2o = o+ 5 (1 1)o, 0 1)\ za— pa +e

h? h?
=uo+7(zs—ns)+7(zd—,ud)+e

Where e is normal with mean zero and variance

_ —1 T
Vx1|x2 = VX1X1 - VX1X2VX2X2 VX1X2

h2c2 1 0\ h202 /1
2 _ 2_ z -2 z
o2 =02 5 (1 1)o; (0 1) 5 (1)

4
=02 (1 —h—>
2

Additional R matrix commands

Operator or Description

Function

A*B Element-wise multiplication

A%*% B Matrix multiplication

A %o0% B Outer product. AB'

crossprod(A,B) A'B and A'A respectively.

crossprod(A)

t(A) Transpose

diag(x) Creates diagonal matrix with elements of x in the principal diagonal
diag(A) Returns a vector containing the elements of the principal diagonal
diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure.
solve(A, b) Returns vector x in the equation b = Ax (i.e., A"1b)

solve(A) Inverse of A where A is a square matrix.

ginv(A) Moore-Penrose Generalized Inverse of A.

ginv(A) requires loading the MASS package.

y<-eigen(A) yS$val are the eigenvalues of A
ySvec are the eigenvectors of A

y<-svd(A) Single value decomposition of A.
yS$d = vector containing the singular values of A
y$u = matrix with columns contain the left singular vectors of A
ySv = matrix with columns contain the right singular vectors of A



Additional R matrix commands (cont)

R <- chol(A)

y <- qr(A)

cbind(A,B,...)
rbind(A,B,...)
rowMeans(A)
rowSums(A)
colMeans(A)
colSums(A)

Choleski factorization of A. Returns the upper triangular factor, such that R'R =

QR decomposition of A.

ySqr has an upper triangle that contains the decomposition and a lower
triangle that contains information on the Q decomposition.

ySrank is the rank of A.

ySqraux a vector which contains additional information on Q.

ySpivot contains information on the pivoting strategy used.

Combine matrices(vectors) horizontally. Returns a matrix.
Combine matrices(vectors) vertically. Returns a matrix.
Returns vector of row means.

Returns vector of row sums.

Returns vector of column means.

Returns vector of coumn means.

53

Additional references

* Lynch & Walsh (1998)

— Chapter 8 (intro to matrices)

— Appendix 3 (G-inverses_

e Walsh and Lynch (2018)
— Appendix 5 (Matrix geometry)

— Appendix 6 (Matrix derivatives)
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