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Searching for signatures of selection 

•  Patterns of phenotypic divergence 
–  Too little or too much divergence relative to drift 
–  Examples: fossil data, temporal or spatial data on mean 

phenotypes, mRNA expression data 
•  Patterns in marker data associated with specific traits 

–  A nonrandom pattern in QTL or GWAS effects 
–  Example:  Excess of “plus” QTL alleles for height 

•  Patterns in marker data (trait-independent) 
–  Huge number of tests based on polymorphism data, 

divergence data, or both 
–  Examples: Tajima’s D, SDS test, McDonald-Kreitman, HKA 

test 
•  Association between fitness data and trait phenotypes 

–  Requires estimates of individual fitness (nontrivial) 
–  Example: Lande-Arnold fitness regressions 



Walsh & Lynch 
2018, aka Vol 2 

Course covers 
Chapters 8--10,  

12, 29--30 



A little about me 

•  BS in Mathematical Population Biology from 
UC Davis (Michael Turelli) 

•  PhD in Genetics from University of 
Washington (Joe Felsenstein) 

•  Post-doc at University of Chicago (Tom 
Nagylaki, Russ Lande) 

•  Been at University of Arizona for >30 years 
– Depts of Ecology & Evolutionary Biology, Public 

Health, Plant Science, Animal Science, Molecular 
& Cellular Biology 



Research Interests 
•  Evolutionary biology 
•  Genetics of complex traits 
•  Statistical and mathematical modeling 
•  Animal and plant breeding (applied evolution) 
•  I’ve taught many different courses on quantitative 

genetics in 25 countries, covering  
–  animal breeding 
–  plant breeding 
–  evolution 
–  mathematical modeling 
–  statistics 
–  human genetics 



Hobbies 
•  I have an odd hobby, moth collecting 









Time to tell the class about you! 

•  Name 
•  Where you are located and your current 

status (faculty, student, post-Doc, etc.) 
•  Current research interest 
•  Why you are taking this class 
•  One topic you would like addressed in the 

class 
•  A fun fact about you! 



Background: Quantitative 
genetics 

•  Fisher’s variance decomposition 
•  Additive genetic variance and heritability 
•  Inbreeding and effective population size 
•  Mutational variance 
•  Additive variance under drift and mutation 
•  The breeder’s equation and selection 

response 



Falconer 
Lynch & Walsh (1998) 
(aka Vol 1) 
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Basic model of Quantitative Genetics 

Basic model:  P = G + E 

Phenotypic value -- we will occasionally 
also use z for this value 

Genotypic value 

Environmental value 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E[P] 

Hence, genotypic values are functions of the  
environments experienced. 
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Basic model of Quantitative Genetics 
Basic model:  P = G + E 

G = average phenotypic value for that genotype 
if we are able to replicate it over the universe 
of environmental values, G = E [P] 

G x E interaction --- The performance of a particular 
genotype in a particular environment differs from 
the sum of the average performance of that 
genotype over all environments  and the average 
performance of that environment over all genotypes. 
Basic model now becomes  P = G + E + GE 

G = average value of an inbred line over a series 
of environments 
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East (1911)  data 
on US maize 

crosses 
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Each sample (P1, P2, F1) has same G,  all variation in 
P is due to variation in E 

Same G, Var(P) = Var(E) 
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All same G, hence 
Var(P) = Var(E) 

Variation in G 
Var(P) = Var(G) + 
Var(E) 

Var(F2) > Var(F1) due to Variation in G 
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The transmission of genotypes versus 
alleles 

•  With fully inbred lines, offspring have the same 
genotype as their parent, and hence the entire 
parental genotypic value G is passed along 
–  Hence, favorable interactions between alleles (such as with 

dominance) are not lost by randomization under random 
mating but rather passed along.  Same for clones! 

•  When offspring are generated by crossing (or 
random mating), each (diploid) parent contributes a 
single allele at each locus to its offspring, and hence 
only passes along a PART of its genotypic value 

•  This part is determined by the average effect of the 
allele 
–  Downside is that favorable interaction between alleles are 

NOT passed along to their offspring in a diploid (but  are in 
an autoteraploid) 
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Genotypic values 
It will prove very useful to decompose the genotypic 
value into the difference between homozygotes (2a) and 
a measure of dominance (d or k = d/a)  

aa Aa AA 

C - a C + d C + a 

Note that the constant C is the average value of 
the two homozygotes. 

If no dominance, d = 0, as heterozygote value equals 
the average of the two parents.  Can also write d = ka, 
so that G(Aa) = C + ak 
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The average effect of an allele 

•  The average effect αA of an allele A is defined by the 
difference between offspring that gets allele A and a 
random offspring. 
–   αA = mean(offspring value given parent transmits 

A) - mean(all offspring) 
–  Similar definition for αa. 

•  Note that while C, a, and d (the genotypic 
parameters) do not change with allele frequency, αx 
is clearly a function of the frequencies of alleles with 
which allele x combines. 
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Random mating 
Consider the average effect of allele A when a parent is randomly- 
mated to another individual from its population 

Allele from other 
parent 

Probability Genotype Value 

A p AA C + a 

a q Aa C + d 

Suppose parent contributes A 

Mean(A transmitted) = p(C + a) + q(C + d) = C + pa + qd 

  αA = Mean(A transmitted) - µ = q[a + d(q-p)] 
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Average Effects and Additive Genetic Values 

A ( G ij ) = αi + 

The α values are the average effects of an allele 

A key concept is the Additive Genetic Value (A) of 
an individual 

A is called the Breeding value or the Additive genetic 
value 

αi
(k) = effect of allele i at locus k  

A ( G ij ) = αi + αj 

j!



Key features of breeding values 
•  The expected mean deviation of an offspring is 

simply the average of the breeding values of its 
parents 

•  Because breeding values are deviations from the 
population mean, the expected breeding value 
of a random individual is zero 

•  If a (say) male is crossed to a number of random, 
unrelated females, the expected mean deviation  
in his offspring is simply BV/2.  Hence, can easily 
estimate a BV via crosses (BLUP is a 
generalization of this idea, see WL Chapters 19, 
20) 
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Genetic Variances 
Writing the genotypic value as 

The genetic variance can be written as 

This follows since 

Gij = µG + (αi + αj) + δij 

As Cov(α,δ) = 0 
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Genetic Variances 

σ2 

G = 
2 

A + 
2 

D 

Additive Genetic Variance 
(or simply Additive Variance) 

Dominance Genetic Variance 
(or simply dominance variance) 

Hence, total genetic variance = additive + dominance 
variances, 

σ σ
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Key concepts (so far) 
•   αi = average effect of allele i 
–  Property of a single allele in a particular population 

(depends on genetic background) 
•  A = Additive Genetic Value (A)  
–  A = sum (over all loci) of average effects 
–  Fraction of G that parents pass along to their 

offspring 
–  Property of an Individual in a particular population 

•  Var(A) = additive genetic variance 
–  Variance in additive genetic values 
–  Property of a population 

•  Can estimate A or Var(A) without knowing any 
of the underlying genetical details 
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One locus, 2 alleles: 

Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

Since E[α] = 0,  
Var(α) = E[(α -µa)2] = E[α2]  

= 2a2p(1-p) when k = 0  
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Q1Q1      Q1Q2        Q2Q2 

0        a(1+k)          2a            

This is a symmetric function of 
allele frequencies 

Dominance variance 

Can also be expressed in terms of d = ak 



Can estimate genetic variances from sets of 
relatives 

•  The slope of a parent-offspring regression 
is simply  
–  [Var(A)/2]/ Var(z) = h2/2 
– Where h2 is the (narrow-sense) heritability  

•  More generally, the phenotypic covariance 
between known sets of relatives can be 
used to estimate genetic variances 
– See Falconer (basics) or Lynch and Walsh (all 

the gory stuff) for details 



Drift 
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Sewall Wright R. A. Fisher 



Genetic Drift 
Random sampling of 2N gametes to form the N  
individuals making up the next generation results in 
changes in allele frequencies. 

This process, originally explored by Wright and Fisher, 
is called Genetic Drift. 

Suppose there are currently i copies of allele A, 
so that freq(A) = p = i/(2N) 

What is the probability that, following a generation of 
random sampling, the freq of A is j/(2N)? 

32 



This probability follows binominal sampling,  

Hence, if the current allele frequency is p, the 
expected allele frequency in the next generation 
is also p, but with sampling variance p(1-p)/(2N) 

Thus, when N is large, the changes in allele frequency 
over any generation are expected to be rather small 

However, the cumulative effects of generations of 
such sampling are very considerable. 33 

Wright-Fisher model (or process) of drift 



Eventually, any random allele will either be lost 
from the population or fixed (frequency one). 

If the allele has initial frequency p, then 

Pr(Fixation) = p 

Pr(loss) = 1- p 

The expected time to fixation is on order of 
4N generations. 
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Impact of drift 
•  Random change in allele frequencies 

results in loss of genetic variation over 
time as alleles become fixed 

•  “power” (i.e., time scale) of drift is  
o ~ 1/(2N) per generation 
o 2N is the expected time back to the 

common ancestor for two random 
sequences (the coalescence time) 

o 4N generations is the expected time back to 
the common ancestor for the entire 
population  

36 



Loss of heterozygosity under 
drift 



Loss of additive variation under drift 

•  More complicated with non-additive gene 
effects, see WL Chapters 11 and 23 

•  With only additive effects (d = 0, no 
epistasis), then Var(A) = a2*H, where H is 
the heterozygosity. 

•  Hence, over time, drift removes any 
additive variance 
– Var(A,t) = Var(A,0)[ 1- 1/(2N) ] t 



Actual vs. effective population size 

•  The actual size of a population N is far 
less important than the effective number 
of breeding individuals, or the effective 
population size, Ne, which sets the 
strength of drift. 

•  Ne replaces N in expressions for the 
power of drift 
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Effective Population size, Ne 

When the population is not ideal (changes over time, 
unequal sex ratio, uneven contribution from individuals), 
we can still compute an effective population size Ne 
which gives the size of an ideal population that behaves 
the same as our population 

We will consider Ne under 
       population bottlenecks 
       unequal sex ratio 
       unequal contribution for all individuals 

All the details in WL Chapter 3 



Ne under varying population size 

If the actual population size varies over time, the 
effective population size is highly skewed towards 
the smallest value 

If the populations sizes have been N(1), N(2), …, N(k), 
the effective population size is given by the harmonic  
mean  

Suppose the population sizes 
are 10000, 10000, 10000, 100. 

Ne becomes 399 

If 10000 is replaced by 109,  
Ne becomes 400 



Ne under unequal sex ratios 
When there are different number of males (Nm) and 
females (Nf), the effective population size is skewed 
towards the rarer sex 

Suppose we used 2 pollen plants to  fertilize  
a 1000 seed plants.  What is Ne in this case? 

Ne =  (4*2*1000)/(2 + 1000)  =  8  



Ne under unequal individual 
contributions 

Not all individuals contribute equally to the next 
generation.  What effect does this have on Ne? 
Let σ2

0 be the variance in offspring number for 
individuals in the population, then 

If contributions follow a Poisson distribution with a  
mean of 2 offspring per parent (male + female replace  
each other), then σ2

0 =2, and Ne = N 



Ne under unequal individual 
contributions (cont) 

If all individuals contribute EXACTLY the same 
number of offspring, σ2

0 = 0, and Ne = 2N, so that 
the effective pop size is twice the actual size 



Mutational variance 

•  What keeps additive variance from being 
driven to zero by drift?  New mutation! 

•  Quantitative-trait variation is a function of 
(1) the mutation rate and (2) the 
mutational effects (details WL Chapter 28) 

•  Var(m) = 2Nu Var(am) 
•  Var(m)/Var(E) is often called the mutational 

heritability, h2
m   

•  This is typically around 10-3  



Table from LW 



Mutation-drift equilibrium 
•  Drift removes variation, mutation 

introduces it 
•  Equilibrium additive variance (under 

neutrality) is 2NeVar(m) 
•  A delicate issue is the assumed mutational 

effects model 
!  a’ = a + α, where α is the mutation effect. 
!  This is called the incremental or Brownian-

motion model  (Hill and Lynch) 
! Depends on history: previous effect value (a) 



Other models 

•  House-of-cards, HOC (Kingman) 
!  a’ = α 
!  Independent of history (current value) 

•  Regression model (Zeng and Cockerham) 
!  a’ = τ a + α 
!  τ = impact of history. τ = 0 recovers HOC, τ  = 

1 recovers incremental 

•  All the gory details in WL Chapter 28 



The breeder’s equation 
•  The response to selection, R, (the across

-generation change in the mean) is related to
 the within-generation change in the mean (S) by
 the breeder’s equation 
–  R = h2S 
–  Chapters 6, 13-17, and 20 in WL cover this in detail 
–  The selection intensity i = S/σz, i.e., the within

-generation change in standard deviations 
–  The selection gradient β = S/σz

2,  
–  The breeder’s equation can be written as 

•  R = β σA
2, which is called the Lande Equation 


