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Outline

Quantitying divergence
Short-term divergence (drift)
— Lande’s CV test

Long-term divergence (mutation)

— Lande’s Brownian-motion model (N_-based )
— MDE version (Var(m)-based)
* Ornstein-Uhlenbeck process

Time-series based tests



Between-line divergence

* Due to both partitioning (i.e., fixation of
alternative alleles) of the initial additive variance
{short time scales} and the accumulation of new
mutations {longer time scales}, two initially
identical populations (i.e., the same mean), will

diverge over time

« A number of tests are based on whether an
observed amount of divergence is too fast
(directional selection), or too slow (stabilizing
selection), relative to the expectation under drift



The between-population variance due to the initial
additive variance will approach 2Var(A) over time

More precisely,

1 .
= (N +2ft) a4 (0)

Fort > N, divergence via mutation becomes important



Estimating the Among-group Variance

With L replicate populations, a common estimate in the literature for o%(t) is

L
L STm) — (0P
Va(t) = 7= D [3:0) ~ 20) (12.80)
the sample variance among the sample means, i, - - -, Z1,, of the replicate population. When

just two populations are being considered (as in some of the tests developed below), their
squared difference

d*(t) = [21(t) — 22(t))” (12.8b)
is often used. This is easily related to Equation 12.8a by noting for L = 2 that
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Vg = 51 ;_1: (z, - ) = + = — (12.8¢)
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These expressions for Vi overestimate the true among-line variance o, as the sample
means are measured with error. In particular, Z; = y; + e;, so that

02

0?(Z;) = 0 (i) + 0(&;) = 0% + ;z (12.8d)
where o2 is the trait variance and n is the sample sized used to estimate p;. When ¢% =
2fi0% > o /n (which is equivalent to 2f;h* >> 1/n), the difference between 0?(z;) and 0%
is small.

As suggested by a number of authors (Lynch 1988a, 1990; Turelli et al. 1988; Bjoklund
1991; Savalli 1993), a simple way to avoid this issue is to estimate the among-group variance

from a standard one-way ANOVA, with

Vi (t) = MSg ;OMSW

(12.8e)

Key point: use ANOVA to estimate between-population variance



Russ Lande




Test for short-term divergence

» Lande proposed a test for whether an
observed amount of divergence
(between-population variance) was
sufficiently different from that expected
under drift (assuming N, is roughly
known).

« Computes a test whose statistic is roughly
F-distributed.

* Could also use this approach to look to
too little divergence (stabilizing selection),
but not a lot of power



Lande’s Constant Variance Test, Fy

Is an observed divergence over a modest amount of time significantly different than that
expected by drift? For the case in which one has only a single estimate of the among-
population divergence, Lande (1977b) suggested the statistic

Vi(t)

Foy = £V ,(0)/N, (12.9a)
2
XL-1
Foy ~ ~ Fr_

This assumes V,(0) know without error. [f
estimated, then the denominator degrees of
freedom is that of the estimate



Example12.2. Lande (1977b) used Equation 12.9a to evaluate the results of a 12-year divergence
experiment involving five populations of Drosophila pseudoobscura (Anderson 1973). Two of the
populations had been maintained at 25°C, two at 27°C, and one at 16°C. They were then raised
in two common environments (16 and 25°C) and measured for wing length. Estimates of the
additive genetic variance for these two environments were 0.88 and 0.77, respectively, while the
among-population variances were approximately 6.62 and 4.37, respectively. An approximate
upper bound for the number of generations of divergence is { = 150, whereas the effective
population size probably always exceeded N, = 1000. The use of these extreme bounds gives
conservative estimates of Fi;y/, making it more difficult to demonstrate diversifying selection
on wing length. The resulting values (for the two environments) were

6.62 4.37

Foyy = —50.15, and Fpy,= — 37.84
CViL = 150+ 0.88/1000 e TeVi2 7 150 0.77/1000

Given that Pr(Fy o, > 4.6) = 0.001, both values are highly significant. Thus, the hypothesis
that the observed line divergence is solely attributable to random genetic drift can be rejected
confidently. More likely, the different thermal conditions resulted in selection for different wing
lengths.



Longer-term divergence tests

* The previous test assumes that the
divergence is simply due to drift of the
initial variance, and that mutation has yet
to become important (i.e., t << N,)

* Over longer time scales, much of the
divergence is generated by new
mutations, and hence tests are based
upon the mutation variance (or mutation
heritability), rather than N..




Again focusing on a character with a purely additive genetic basis, starting with an
ancestral-population genetic variance of 0% (0), and assuming the infinite-alleles model, the
expected variance of genotypic means for replicate populations isolated ¢ generations in the
past is

0% (t) = 202t + 2(0%(0) — 2N,02) (1 — et/ (2Nv>) (12.10)

where o2, is the per-generation mutational rate of input of genetic variance, as described in
Chapter 11. This expression shows that as ¢ becomes large, the expected rate of increase of
the among-population variance for a neutral quantitative trait becomes a constant 2¢2, per
generation. The same formulation applies to the among-species genetic covariance for a pair
of traits, if the mutational rate of production of covariance between the traits is substituted
for 02, (Lande 1979a).

Under the incremental mutation model, divergence is a linear
function of the mutational variance, and independent of
the effective population size
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Figure 12.3 The expected fraction of neutral among-population variance attributable to mu-
tations arising subsequent to the isolation event. It is assumed that the base population is
in drift-mutation equilibrium, 0% (0) = 2N.0?2,, with the same effective size as the daugh-
ter species, so that from Equation 12.1b, the divergence due to base-population variance is
4N.02 [1 — e t/(2Ne)], To obtain the actual number of generations of divergence for any
population size, the horizontal axis is multiplied by N.



Divergence via mutation

e Under the incremental model variance
iIncreases without limit

* Under either the HOC or regression
models, the divergence eventually
reaches an upper limit

~y 4E(a?)
7B (1—7)2[1 +4N.u(l — 7)]

(12.12)

For 7 < 1, the temporal approach to the equilibrium level of divergence is defined by the
mutation rate (u), assuming an identical N, in the base and descendant populations,

o%(t) =[1—-(1—u)?]c% (12.13)

and hence is quite slow (approximately 2u per generation).



The effective mutational
variance

 Most estimates of the mutational variance or
mutation heritability are obtained in very small
populations

— Under this setting, the effects of selection against
mutations is largely ignored (as 4N_Is| < 1)

* As N, increases, the fraction of mutations that
are effectively neutral likely decreases, so that
for large values of N, the effective mutational
-variance heritability may be orders of
magnitude less than small-population estimates



Rate-based tests

* Either small values of N, or large values ot
Var(m) lead to divergence. Hence, rate
tests find either the

— Largest value of N, that is consistent
with drift, N (U).
* N, > N_(U) rejects drift

—Smallest value of Var(m) consistent with
drift, Var(m)

 Var(m) < Var (m), rejects drift



Directional selection (excessive divergence)
© N(U)

Divergence Excessive divergence
consistent with drift relative to drift

Var(m)

Var(m),
Excessive divergence Divergence
relative to drift consistent with drift



Rate-based tests (cont.)

« Under test of stabilizing selection, look for
too little divergence relative to drift

— Smallest value of N, that is consistent
with drift, N_(L).
* N, < N_(L) rejects drift

— Largest value of var(m) consistent with
drift, Var(m)

* Var(m) > Var (m),, rejects drift



Stabilizing selection (too little divergence)

N, N (U)

Too little divergence Lack of Divergence
relative to drift consistent with drift

Var(m) Var(m),

Lack of divergence Too little divergence
consistent with drift relative to drift




| ande’s Brownian-motion model

* Under the Brownian-motion model, the
mean at time t follows a normal
distribution with a variance of

—t Var(A)/N = t h? Var(z)/N,

Conversely, Turelli et al. (1988) noted that if the population has been at its current size
sufficiently long enough that the additive genetic variance is at its mutation-drift equilib-
rium value, then (assuming the infinite-alleles model) 64 = 2N,0?2,, yielding

07 = 2tN.o> /N, = 2to2,, (12.16b)



Tests Based on the Brownian Motion Model

Under the Brownian motion model, the mean phenotype p; ~ N(uo,02), providing the
basis for tests of either too much, or too little, divergence based on simple normal theory.
Suppose an absolute divergence of d = | u(t) — p(0) | is observed, where p(t) and p(0)
are the means from two samples from the same population taken ¢ generations apart. The
probability of this level of divergence under drift alone is given by

Pr (| u(t) — w(0)| < d) =Pr('““)‘“(°)' < i) =Pr(|U| < ai) (12.17)

Ot Ot

where U isa unit normal random variable. Lande’s (1976) original test (distinct from his 1977
Fov test; Equation 12.9a) was based on the constant variance assumption, o7 = th?c?/N.,.
Recalling that Pr(| U | < 1.96) = 0.95, Lande’s critical effective population size below which
there is a < 5% probability of an absolute deviation as large as d satisfies

d
1.96 = . implying (1.96)*th?c? = N.d> 12.18a
Equation 12.18a allows one to determine critical values for either divergence time, ¢, heri-
tability, h?, or N, that are consistent with drift. For example, solving for the upper bound,
N, ., on the effective population size that is compatible with drift yields

t - h? - 1.962 t h?
New= =" =384 5

»

(12.18b)



P (too little divergence) = a/2
a/4 a/4

20.5-a/4 20 5+a/4

I Zo/4 Unit normal, u 21_0/4 I

P (too much divergence) = a./2

Figure 12.5 Critical values for an a-level test of a departure from drift having either too little,
or too much, absolute divergence. Too much absolute divergence occurs when the unit-normal
scaled test score is either in the lower & /4 or upper a/4 tail (for a total probability of a/2). Too
little absolute divergence occurs when the unit-normal scaled test score is too close to zero,
namely, a region of probability a/4 below zero and a region of probability «/4 above zero
(for a total probability of a/2). Here, z,, satisfies Pr(U < z,,) = p, where U is a unit-normal
random variable. See the text for further details.



t-h?.2.242 t h?
Neu < — 5.02 *
T dz dz

(12.19a)
Because populations with smaller N, should show more drift (and divergence), Equation
12.19a gives the largest value of N, that is consistent with drift generating the observed
amount of divergence. If the assumed N, exceeds N, ,, we reject the hypothesis that drift
can account for this fast a divergence. Likewise, because Pr( | U | < 0.03) = 0.025, the critical
lower-bound population size N, ; in a test that evolution has been too slow (support for
stabilizing selection) is

t-h?.0.032 t h?
N, > = 0.0009 -
S a2

(12.19b)

If our assumed N, is less than N, ;, we reject the hypothesis that drift can account for this
slow a divergence.



Example 12.3. Reyment (1982) observed a change of 1.490, in the size of a Cretaceous
foraminifer over roughly 5 - 10° generations. Taking a typical heritability value of 0.3, Equation
12.18b (i.e., assuming a one-sided test, namely, a test only for excessive divergence) gives the
upper bound, N, ,, on population size consistent with this amount of divergence as

t h? 5:10°.0.3
= 3.84 - ~ 260,000
&2 1.49?

N.. =384

However, paleontological data suggest that the census population size N >> 10°, implying
that drift was unlikely to account for such a ragld divergence (of course, caveats from Chapter
3 apply in that usually N, < N). Assuming h* values of 0.5, 0.7, and 1.0 yields NN, ,, values of
433,000, 607,000, and 867,000 respectively, so that only for assumed h? values close to one does
the critical N, under drift approach the assumed size of N, > 10°.

Using the two-sided test (strict departure from drift, either too little or too much absolute
divergence), the value of the 3.84 used above is replaced by 5.02 (Equation 12.19a), resulting in
an ~31% (5.02/3.84 = 1.307) increase in N, ,, value, with critical values of ~ 340,000, 566,000,
794,000, and 1,133,000 for h? values of 0.3, 0.5, 0.7, and 1.0, respectively. Similarly, the lower
critical N, ; (the size below which the lack of divergence is too 1mprobable under drift) is 61
(using Equation 12.19b with h? = 0.3). :




The structure of the tests given by Equations 12.17 through 12.19 depends on N, and h?.
A second approach is to instead base tests on the mutational variance, ¢, alone. The idea
is that if N, has been roughly constant for a sufficient amount of time, then the additive-
genetic variance for a neutral trait approaches its mutation-drift equilibrium value, 2N.02,
(Equation 11.20c). Under this condition, Equation 12.16b shows that the among-group vari-
ance becomes 0% = 2to?,, giving the MDE (mutation-drift equilibrium) version of Lande’s
F test (Equation 12.9a) as
Vi(t)

2to2,

FMDE - (12.20&)

We can also arrive at this test by substituting 2N.0?2, for V4(0) in Equation 12.9a. As above,
Vg is best estimated from the among-group variance in a one-way ANOVA (Equation 12.9f).

L-1 L-1
Pr Vtgztafns( )Vt]=1—a
[(Xl—a/2,L—l) 5(t) Xa/2,L-1 5(?)

- ~— Ld —

L-1 \ Vi) _ ., L—1 \ Vg(t)
< < —_1 —
Pr [(Xl—a/2,b—l> 2to? — fim < (Xa/2,L—l> 2to? L-o




A slightly different formulation of this test is based in terms of the observed rate of
divergence (Lynch 1990). Letting A = (Vi /t)/o? be the estimated rate of divergence scaled
in units of the environmental variance, Equation 12.20c becomes

Pr[( (L_l)/z)AShfn5<(L_1)/2)A]=1—a (12.20d)

X1-a/2,L-1 a/2,L—1

yielding the upper and lower bounds on the mutational heritability hZ, consistent with drift.
For a = 0.05 and L = 2, Equation 12.20b becomes

Pr(0.10- A < hZ, <509-A) =0.95 (12.20e)

Thus, the hypothesis of drift is rejected (at @ = 0.05) if the mutational heritability is too
small to account for the observed divergence rate, namely
d2

B, < 0.0+ A 010 = (12.21a)

60nversely, the divergence is too slow to be accounted for by drift if the assumed
mutational heritability is too high to account for the observed divergence rate, or when

d?
hZ > 509 - A ~ 509 - " (12.21b)



Example 12.4. We now return to Reyment’s foraminifer data from Example 12.3. Using the
original Lande model (Equation 12.18b), we rejected the hypothesis that drift could have ac-
counted for the divergence. Applying Equation 12.21a, the hypothesis of drift accounting for
excessive divergence is not rejected when

d? 1.492
2 . —* — ° .
B > 010 = =0.10 ==

This critical value of the mutational heritability is several orders of magnitude lower than typical
values of this parameter, implying that this pattern of divergence is not too excessive for drift.
Thus, we reach two very different conclusions depending on whether the constant vari-
ance (Example 12.3) or equilibrium variance (Example 12.4) assumption is used. Which is the
better choice? In our view, the constant variance assumption (Equation 12.16a) is less prob-
lematic, as the usable amount of 02, and hZ, may decrease with increasing N,. In such cases,
2N,02% /N, may not be a constant over N,, complicating tests based on critical mutational
variances. Conversely, most trait heritabilities typically fall within a modest window of values,
and one can vary the assumed value of h? in Equation 12.16a to examine its consequences.

=44-1077



Ornstein-Uhlenbeck Models

Under the OU model, the expected change in the mean value of a process at a value
of z is a(f — z) with a > 0, so that if z < 6, it increases, while it decreases for z > 6.
The parameter a, which measures the strength of the restoring force, is a measure of the
strength of stabilizing selection. Under the standard model of Gaussian stabilizing selection
(Example 5.6; Equation 16.17), where w? measures the strength of selection (smaller w?
implies stronger selection), Example A1.13 shows that

_ _%
@= 21 2
o; +w
As with Brownian motion, the value of the process at time ¢ is normally distributed (Equation
A1.33b), but now with mean and variance

pe =0+ [z, — fle” (12.22b)

(12.22a)

b
2 - 1 — —2at 12.22c¢
9= 5, [1 —e =] ( )
whereb = 0% /N, under the constant-variance model. For large t, the mean value approaches
the optimal value (#), while the divergence variance approaches an asymptotic value of
b ol 4w’
2 2N,

(12.22d)



Summary

* Under the Brown-motion model (the
incremental mutation model), under
neutrality, means linearly diverge without
limit from each other

» Under the HOC or regression mutational
models, eventually the between
-population variance reaches a limit

* A limiting divergence also occurs under
stabilizing selection (OU model)



Times Series tests

 The above tests are based on external
comparisons: one has two time points
and a guess for t, and either Ne, or h?_
or Var(m)

» A second type of data is a stratophenetic
series, a time series of means for a
population over some part of the fossil
record.

— Time series tests are based on internal
characteristics of just this series alone.
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Stephen Jay Gould

Niles Eldredge




* Raup proposed the use of statistical tests
of the pattern of divergence in fossil
sequences to test the Eldredge-Goula
suggestion that punctuated equilibrium
(excess periods of stasis, followed by
rapid change) is common in the fossil
record

o Eldredge and Gould suggested that species
-level selection might generate such a pattern

o Raup framed the null model as a random walk



There are two important caveats with random-walk models. First, any observed pheno-
typic trend could be entirely environmental, with changes in the mean being independent
of any underlying genetic change. Second, as highlighted by Raup (1977), a pattern indis-
tinguishable from a random walk can mask significant underlying selection, such as short,
episodic bursts of directional selection in shifting directions or stabilizing selection with
drift occurring in the optimal value. These are examples of hierarchical models of random
change, wherein selection is driving the generational change, but the focus of selection
(either directional or stabilizing) is randomly changing, generating an random walk.



Departments from a symmetric

random walk

Runs test: Each step equally likely (under
drift) to be increasing or decreasing

— Too few runs (changes in sign): directional
trend

— Too many runs: stabilizing selection
Bookstein's largest scaled excursion
Hurst exponents

Hunt's model-weighting method



of the largest scaled excursion,

= Xk | Sk (12.23b)

ay/n
Namely, the largest absolute value of the walk (maxy, | Sk |) over any of the sampled times,
expressed in terms of the expected standard error of the walk value at the final sample time
(ov/n). For v > 1, critical values (the upper p in the tail of the null distribution) are very
closely given by the corresponding p/4 critical values for a unit normal. For example, the
upper 5% tail corresponds to 7y = 2.25, consistent with the value of 2.24 for a normal with p/4
= 0.0125. The upper 1% and 0.1% upper tail probabilities correspond to 7 values of 2.8 and
3.5, respectively. Series with values exceeding these critical values are said to be improbably
directional, consistent with directional selection (or an environmental trend). Conversely,
a series that does not vary enough is said to be improbably constrained, consistent with
some sort of stabilizing selection or other cause of stasis. The lower 5%, 1%, and 0.1%
values correspond to vy values of 0.62, 0.49, and 0.41, respectively. Failure to reject the null
of a random walk still allows for considerable selection, either due to a lack or power or

randomness in the direction of selection over time. Multivariate random-walk tests are
discussed by Bookstein (2013).




Another widely used test for departures against the null of a symmetric random walk
(closely related to Bookstein’s approach), called scaled range analysis, is based on Hurst
exponents (Hurst 1951). The idea behind this approach is that the absolute difference of a
symmetric random walk |z; — x| scales as ov/t (which can be estimated from Equation
12.23a). Defining the standardized range, R(7), for a time interval (7) as

- |z — a0 |

R(T) (12.24a)

o

one then regresses R(7) on ever-increasing values of 7, fitting the log-log regression
In[R(7)] = HIn(T) + € (12.24b)

where the slope (H) is the Hurst exponent (i.e., R o 7). Under a symmetric random walk
with uncorrelated increments, absolute trait divergence is expected to scale with the square
root of time, giving H = 0.5. As increments become more positively correlated, H increases
to 1.0 (directional persistence), consistent with directional selection. As adjacentincrements
become increasingly negatively correlated, H decreases to zero (anti-persistence), consis-
tent with stabilizing selection or some other form of stasis. Roopnarine (2001) discussed
permutation tests for the significance of H # 0.5. Gingerich’s (1993) LRI (log rate versus
log interval) method is a version of this test, where the slope (G) of his LRI regression is
simply G = H — 1 (Roopnarine et al. 1999).



While straightforward and widely applied in the early literature, these methods typ-
ically have low power, meaning that the null hypothesis of a symmetric random walk is
hard to reject (Roopnarine et al. 1999; Roopnarine 2001; Sheets and Mitchell 2001). This is
especially the case with stratophenetic series, with their usual incompleteness and sporadic
coverage due to the vagaries of the fossilization process. Further, as noted by Sheets and
Mitchell (2001), there is an asymmetry of detection in that stabilizing selection is easier to
detect than directional selection. They showed that the Hurst exponent (and, by extension,
the LRI method) has the highest power to detect stabilizing selection, followed by Book-
stein’s approach, and then the runs test. Conversely, for detecting directional selection, the
runs test is often the most powerful, followed by the Hurst exponent, and then Bookstein’s
approach.



Gene Hunt




Hunt's method

* Low power for tests of departures from
symmetric random walks creates a “tyranny of
the null hypothesis,” potentially overinflating
the role of drift

e Hunt initially considered three basic models:

» a symmetric random walk (with an
incremental mean value of zero)

» a directional (or generalized) random walk
(mean increment different from 0)

= stasis.



Example 12.5. Anderson et al. (2000) proposed that a series of candidate models can be
compared via their Akaike weights, an approach used by Hunt (2007) to assess the relative
fit of a series of candidate models for long-term evolution (Figure 12.6). Suppose one has a
series of models that were fit using maximum likelihood. If these models are not nested (so
that likelihood-ratio tests for comparing fit are not available; LW Appendix 4), then comparison
statistics, such as the Akaike information criterion (AIC; Akaike 1974) can be used to rank
them. AIC rewards goodness of fit (higher log-likelihood, L), while penalizing for the number
of parameters (k) with smaller AIC values implying a better model. Withn < 40k observations,
Anderson et al. suggested that a corrected version of AIC should be used,

2k(k + 1)
n—k—1

AIC, = —21In(L) + 2k + (12.252)

which differs from the standard AIC measure in the addition of the last term. Suppose that one
has a set of m candidate models and computes the support for model ¢ relative to the best fitting
of all m models,

Ai = AICc,z' — mln(AIC'c) (1225b)

The resulting Akaike weights for each of the candidate models are given by

e—(D:/2)

Z;,’;l e—(Ai/2)

w; = (12.250)



Table12.1 Summary of the 251 fossil sequences examined by Hunt (2007), each fit using three models
of divergence: random walk, directional selection, and stasis. Counts given under the Trait and Fossil
group categories are the numbers of times a model had the highest Akaike weight (Example 12.5)
for a fossil sequence. For example, 13 of the 251 sequences (0.052) had directional selection as the
model with the highest support, while 5 of 114 (0.044) size-related traits had directional selection
as the most-supported model. Values under the Median column correspond to the median fraction
of support over all sequences for a given model. For example, half of all sequences had a support
for directional change model of 0.06 or less, while 95% of all sequences have a fractional support for
directional selection in the 0.04 to 0.08 range. The fossil groups are planktonic and benthic microfossils
(Plank and Benth) and macrofossils (Macro).

Trait Fossil group
Model Median, 95% CI All  Size Shape Other Plank Benth  Macro
Directional 0.06 (0.04, 0.08) 13 5 4 4 5 3 5
Random 0.47 (0.39, 0.56) 123 67 43 13 24 57 42
Stasis 0.34 (0.20, 0.50) 115 42 68 5 12 37 66

251 114 115 22 41 97 113



Stasis

Figure 12.6 A De Finetti diagram of the support for the random walk, directional walk, and
stasis models. Each point corresponds to the coordinates of the Akaike weights for these three
models (which sum to one) for a single stratophenetic series. Points near vertices corresponds
to almost 100% support for a particular model, hence the lables at the vertices. Points along
an edge of the triangle indicate very little support for the model perpendicular to that edge.
Unfilled points indicate strong support (weight for most supported model at least 2.7 times
the weight of any other model). (After Hopkins and Lidgard 2012.)



