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Basic idea

* |s the within- vs. between-population
partitioning of the genetic variance for a
candidate trait (Q.) different from the
partitioning for random markers (i.e., neutral
molecular variation) over the same set of
populations (F.;)?

* Departures may suggest that the trait is under
selection



Table 12.2 Interpretation of (g1 versus Fgp comparisons.

Observation Interpretation

Qst > Fsr Divergent selection: spatial variation in trait values in excess
of neutral expectation.

Qs = Forp Consistent with divergence expected under drift. Does not rule out
selection, but does not support it either.

Qsr < Fgp Convergent selection: spatial variation in trait values less than
neutral expectation. Similar trait values are favored over populations.
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F<r, @ measure of population structure

One measure of population structure is given by Wright's Fq;
statistic (also called the fixation index)

Essentially, this is the fraction of genetic variation due to
between-population differences in allele frequencies

Changes in allele frequencies can be caused by evolutionary
forces such as genetic drift, migration, and local adaptation

Consider a biallelic locus (A, a). If p denotes overall population
frequency of allele A,

= then the overall population variance is p(1-p)
= Var(p,) = variance in p over subpopulations

= For = Var(p)/[p(1-p)]



Example of F¢; estimation

Population Freq(A)
1 0.1
2 0.6
3 0.2
4 0.7

Assume all subpopulations
contribute equally to
the overall metapopulation

Overall freg(A) = p =
(0.1 +0.6+0.2+0.7)/4=0.4

Var(pi) = E(piz) - [E(Pi)]z = E(Piz) - p2

Var(p,) = [(0.1%2 + 0.6% + 0.22 + 0.72)/4] - 0.42 = 0.065

Total population variance = p(1-p) = 0.4(1-0.4) = 0.24

Hence, F¢r = Var(p) /[p(1-p) ] = 0.065/0.24 = 0.27



Graphical example of Fg¢;
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Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395



Graphical example of Fg¢;

Homozygous
Diploid

Strong population differentiation

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395
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Graphical example of Fg¢;
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Diploid

Complete population differentiation

Modified from Escalante et al. 2004. Trends Parasitol. 20:388-395
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Maize population structure
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Qsr: Partitioning Additive Variance Over Populations

Consider a quantitative trait in a diploid with a purely additive-genetic basis, and denote
its genetic variance over the entire metapopulation by o%. From Table 11.3 (setting f =
Qsr), the within- and among-population components of variance can be represented as
otw = (1 — Qsr)os and 0% 5z = 2Qsr0, respectively, for a total variance in a structured
population of (1 + Qg7 )o%. Rearranging yields

2
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Qs = 12.26a

i U%B + ZU%W ( )

While the term Qg was introduced by Spitze (1993), this metric was proposed earlier
by Prout and Barker (1989, 1993) and Lande (1992), and strongly hinted at by Rogers and

For inbred populations,

Q — (1 + f)ag;B
T (14 f)od, + 202,



Distribution of Q¢ values

An important advance was the observation by Whitlock (2008) that the distribution
of realized Qg7 values (ignoring, for now, the additional error introduced by using the

sample estimate, Q s, for the true value of the realization for a particular trait) can often be
approximated using the Lewontin-Krakauer distribution for Fgr values (Equation 9.10a).
Simulations by Whitlock confirmed the suggestion by Rogers and Harpending (1983) that,
provided Fgr is small, the amount of information on population structure derived from the
variance components of a quantitative trait is equivalent to that from a single-marker Fgy.
Provided that the average Fg; is small, then under the null that Qg = Fgsq, to a very good
approximation, we have

, : . Fgsr .
= Qs1 ~ Xs, 1, implying Qgr ~ e— Xo, -1 (12.28a)

where F g is the average Fs1 over the scored molecular marker loci, and ng is the number
of demes. This expression assumes that Qg is estimated without error, a point addressed
shortly.

Michael Whitlock
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Figure 12.8 When Fgr is small, the Qg distribution for a neutral, completely additive
trait should approximately follow the Lewontin-Krakauer distribution (Equations 9.10a and
12.28a). In this example, two traits, one with Qg4 = 0.09, and a second with Qg7 = 0.16 are
both larger than Fgr = 0.06, but only trait 2 is significant. (After Whitlock 2008.)



The requirement that F'gr is small arises (in part) from x? being defined over (0, 00),
while Qg7 is restricted to (0, 1). Hence, the approximation given by Equation 12.28a assumes
that there is essentially no probability in the upper tail of a x* above a critical value,

Fsr _, 2 ng — 1
Pr (nd — 1 Xna-1> 1) = Pr (xnd_1 > For ~ () (12.28Db)

To achieve this condition, Whitlock (2008) recommended an upper limit of qu_» < 0.1. For
example, with ng = 2, 5, and 10, the probabilities in Equation 12.28b (with F gy = 0.1)
become 0.002, 4-10~%, and 2:10~*°, respectively.
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Figure 12.9 A violin plot for the distribution of the difference (Q s — Q%) for body length
in the sea-run brown trout (Salmo trutta), using the resampling scheme suggested by Whitlock
and Guillaume (2009), and detailed in Example 12.9. The width of the “violin” indicates the
probability mass in thatinterval, the dot denotes the highest posterior probability, and the error
bars the 95% credibility interval. Here this interval is completely above zero, demonstrating

that Qg7 is significantly in excess of its predicted neutral value given Fgr. (After Rogell et
al. 2012.)




Power

Insight into power is obtained by ésking, under the null, how often the ratio Qg1 /Fgr
exceeds some value, §. Rearranging Equation 12.28a yields

Pr <9i > 5) = Pr (("‘d —D@sr §(ng — 1)) = Pr (xi,,_l > 6(ng — 1)) (12.28¢)

Fgp Fgrp

Consider ng = 2, as occurs when comparing two populations. How much larger must the
true value of Qg be than the true value Fg; for this difference to be significant at the
a = 0.05 level? Because tests involving Qg are two-sided (either too large or too small
being of interest), and Pr(x$ > 5.02) = 0.025, Equation 12.28¢c gives the critical value as
d = 5.02. Hence, Qg7 must be in excess of 5 times Fgp to be significant at the 5% level. For
n = 10, Pr(x3 > 19.03) = 0.025, or § = 19.03/3 = 2.1, and hence only a two-fold difference
is required for significance. The same logic can be used to obtain the critical value when
Qsr < Fsr. For example, because Pr(x3 < 2.7) = 0.025, a value of Qg7 less than one third

of Fgr (2.7/9 = 0.3) is significant at the 5% level when ny = 10.
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Pgr: Approximating Qgr with Phenotypic Data

Because of the requirement for assays in a common-garden arena, true joint studies of Qg7
and Fgp are not common. Pujol et al. (2008) noted that roughly half of the wild popu-
lation studies they reviewed were not based on estimated additive variances. Instead, a
phenotypic-based proxy for Qs was used, where within- and /or among-population phe-
notypic variances replace the more challenging estimates of additive variation. The former
can easily be obtained via a standard ANOVA (e.g., Holand et al. 2011), while the latter re-
quire a series of parent-offspring or sib rearings in a common environment. A modification
of this purely phenotypic approach is to use

6(2;3 = 6812’3’ 8(2;”/ = h2 812’W (12.27&)
where c reflects the fact that only part of an observed phenotypic difference in means may
be genetic (Merild 1997; Leinonen et al. 2006; Saether et al. 2007; Brommer 2011). Substitution
into Equation 12.26 yields the Pg statistic of Leinonen et al. (2006),

~2

-~ o
Por 1 = £B 12.27b
STL 2(h?/e)Gpw + 0 p ( )

When ¢ = h?, this reduces to Equation 12.26a, with phenotypic variances replacing their
genetic counterparts. Holand et al. (2011) suggested doing a sensitivity analysis by varying



Empirical Data

Results from the large number of Qg7 vs. Fsr comparisons from natural populations were
summarized by Merild and Crnokrak (2001), McKay and Latta (2002), and Leinonen et al.
(2008, 2013). Values of Qs and Fgy are positively correlated, with » = 0.24 (Leinonen et
al. 2013). Thus, there is a modest tendency for the structure of quantitative-trait variation to
parallel the population structure for neutral alleles. The striking finding is that Qg7 > Fsr
for ~ 70% of all traits, which, taken at face value, suggested that diversifying selection

was very widespread (Figure 12.10). Conversely, values of Qsr < Fgp are rare, despite
the bias in this direction for neutral traits under a variety of conditions (discussed above),
suggesting that persistent stabilizing or uniform selection is far less common.

One potential explanation for this trend of Qsr > Fsr was offered by Miller et al.
(2008). They found that the variance of Qg7 is significantly larger than that for Fgr and
noted a strong positive correlation in the data between Q s and the difference (Qsr — Fsr).
Hence, populations with larger Qs values tend to also have greater departures from Fg.

In particular, they noted that if more variable traits are overrepresented in the sampling
process, this generates outliers of Qgsr, given the latter’s larger variance, which in turn
generates excessive (Qsr — Fsr) values, even under neutrality. Whitlock (2008) further
stressed this concern:

It will always be possible to choose a set of traits that have higher than average () g1 values.
Traits chosen in this way cannot reliably be used to infer the extent of spatially heterogeneous
selection. Examination of the traits chosen for many () g1 studies makes one wonder whether
traits are in fact always chosen with previous knowledge of the likely results.







A second source of bias in comparisons of QQsr and Fsp was noted by Edelaar and
Bjorklund (2011) and Edelaar et al. (2011). Markers with high mutation rates underestimate

Fsrp, and the most widely used markers in early Q s / Fs studies, microsatellites, have high
mutation rates. As shown in Figure 12.11, there is a strong positive relationship between
the polymorphism level of a marker (with highly polymorphic markers having higher
mutation rates) and the excess values of Qg1 over Fgp. Note that most of this trend is
driven by studies employing microsatellites, with allozyme studies showing an excess of
Qs largely independent of their polymorphism level.

Thus, the striking trend of Qs > Fsr is certainly inflated by ascertainment bias,
and somewhat inflated by the use of highly polymorphic markers (which is a more recent
trend), making it difficult to make any general statement about how commonly diversifying
selection structures quantitative traits in subdivided populations. As noted by Whitlock
(2008), “While useful, Qg is a crude measure of the genetic differentiation of a trait caused
by local adaptation.”




Closing Comments: Qs7, Fsrg, and Linkage Disequilibrium

Tests comparing Fgp values at candidate loci against the distribution of Fg; values at
putatively neutral markers were discussed at length in Chapter 9. Comparisons of Qg7
to Fig; are a step removed, in that, ideally, we would like to contrast the Fgrg value (the
average Fsp value for loci underlying our focal trait) against the genome-wide Fg7 neutral
standard. Given the near impossibility of locating all such causative loci, we have instead
been using Qs, as with an additive trait, this should track the Fs1¢ values at the underlying
causative loci. However, as is detailed in Chapters 16 and 24, allele-frequency changes are
not the only route through which genetic variances (and hence the components of Q g1) can
change. Selection-generated gametic-phase disequilibrium (LD)—even among unlinked loci—
can have a dramatic effect, even in situations where little allele-frequency change occurs.
This impact of LD on Qg1 was stressed first by Latta (1998, 2005), and later by Le Corre
and Kremer (2003, 2012; Kremer and Le Corre 2012). Because Qg7 is based on variance
components, it can be influenced by linkage disequilibrium, which generates covariances
between alleles at different loci, either inflating or deflating the resulting variances. When
this happens, the values of Qg7 and Fs7¢ can become decoupled, and (as we will see) Qg
can have more power to detect selection than Fgrg (even presuming we could locate all
the underlying loci).




Thus, while a significant departure of Q g; from the background value of Fi; is usually
taken as indicating a shift in the Fg;¢ values at the underlying trait loci, this is only strictly
correct when linkage disequilibrium is absent. Even in cases where selection induces little
allele-frequency change (and hence little shift in Fsy( relative to the background Fsr),
selection-induced disequilibrium (i.e., shifts in gamete, as opposed to allele, frequencies)
can still generate a significant Q ¢, signal. In particular, under the infinitesimal model, there
is essentially no shift in the allele frequencies at underlying loci (Fsrg ~ Fsr), but there
can be a substantial change in the genetic variances due to selection-induced LD (Chapters
16 and 24), and hence a perturbation of Qg1 away from Fgrg. In such a setting, a direct
comparison of Fsp¢ to the genome-wide Fis standard would not reveal any evidence of
selection, but a comparison of @ ¢ (with its LD-shifted variance components) against Fgr
might. Hence, under polygenic sweep conditions (Chapter 8), an appropriately performed
Qs test might detect selection signatures missed by allele-frequency based tests.




To expand on this point, we need to consider how the within- and among-population LD
(Ohta 1982) impact Qg7 Letting the subscript z denote either within- or among-population
values (z = w and z = a, respectively), we can express the variances comprising Qs as

05 =050+ds = (1+¢s)02, where ¢, = ad;() (12.30a)
where o2  is the linkage equilibrium value, d; is the disequilibrium contribution generated
by covariance among alleles at different loci (Equations 16.1 and 16.2), and ¢,, is the ratio of
the disequilibrium contribution to the linkage-equilibrium (i.e., genic) variance (note that
¢, is negative when d,, is negative). As discussed in Chapter 16, stabilizing or directional
selection within a population generates negative d, so we often expect negative within-
population LD (negative values of d,, and ¢,,).

Turning to theamong-population LD, Latta (1998) noted that if each population is under
stabilizing selection for a different optimum value (6), then for an additive trait where the




population means have reached their optimal values,
da = O'g - 2FSTQ 0'% (1230b)

where o} is the variance in the optimum value over populations, and ¢% is the expected
additive genetic variation if the populations were to be randomly mated to form a single,
panmictic, population (in linkage equilibrium). With nearly uniform selection (the variance
in 0 values over demes is small) and reduced migration (so that Fsp( is large), Equation
12.30b gives a negative covariance (d,, ¢, < 0) between trait-increasing alleles at different
loci across demes, reducing the among-group variance ¢ ; below its linkage-equilibrium
value. Conversely, if diversifying selection is strong (o7 is large) and gene flow is high (Fs1¢
is small), a positive covariance is expected (d,, ¢, > 0), and o, is inflated relative to its
value in the absence of LD. Thus, Qg7 often magnifies the effect of selection over what

is expected from changes in Fsq alone, with significant changes in Qg7 (relative to Fgr)
possible even when little differentiation has occurred at the underlying QTLs (Fsrg ~ Fsr).




For a completely additive trait, Le Corre and Kremer (2003) ciuaﬁtiﬁed the influence of
LD on Qgr by noting that the relationship between Qs (based on variance components)
and Fsrq (based on the underlying loci) is given by

I (1+¢a)FS'I‘Q
Qs = ($a — Pw)Fsrq + 1+ du (12.30c)

where ¢, is given by Equation 12.30a. Note that Qg7 equals Fsp¢g only when the among-
and within-population LD values are equal (¢, = ¢,,). Using Equation 12.30c, Kremer
and Le Corre (2012) showed that Qgr > Fgrg when ¢, > ¢,,. Given that stabilizing
selection within populations generates negative values of ¢,,, while diversifying selection
(variation in the optimum over populations) generates positive values of ¢, (Equation
12.30b), this combination amplifies the signal in Qg1 over that generated from Fspq. As
Qs > Fgr is the signal for divergent selection (Table 12.2), while our last result implies
that Qgp > Fero > Fgr, the impact of LD is to magnify the impact of divergent selection
over that expected from allele-frequency change alone (Fs7¢). Again, the salient point is

that even if the difference between Fs1¢ and Fs7 is small, the difference between Qs and

Fgrp can still be large.



Hence, while Qsr-based tests are fraught with complications, if properly performed
(which is no small feat), they may actually be more powerful than a scan for Fg outliers at
known candidate genes for the trait of interest (Chapter 9). While Fgp-based scans are trait
independent, knowledge of the potential target trait or traits allows Q g7, and thus further
information from LD, to be exploited. We return to this point below when considering
certain trait-augmented marker-based tests.

Table 12.2 Interpretation of (g1 versus Fgp comparisons.

Observation Interpretation

Qst > Fgr Divergent selection: spatial variation in trait values in excess
of neutral expectation.

Qs = Fgp Consistent with divergence expected under drift. Does not rule out
selection, but does not support it either.

Qsr < Fgp Convergent selection: spatial variation in trait values less than
neutral expectation. Similar trait values are favored over populations.




Example 12.7. Using candidate genes in the photoperiod pathway (detected in Arabidiopsis
thaliana), Ma et al. (2010) explored whether variation in these loci is involved in growth cessation
in populations of European aspen (Populus tremula) across a latitudinal gradientin Sweden. Their
population sample consisted of 10 trees from each of 12 sites (spanning roughly ten degrees of
latitude), scoring 113 SNPs from 23 photoperiod genes and 93 SNPs from 21 random control
genes. Six of the photoperiod SNPs showed significant associations with growth cessation (with
no evidence of epistatic interactions between these detected loci). While four of the photoperiod
SNPs showed a significant correlation with latitude, the Fg values for the photoperiod and
control groups of SNPs were not significantly different (0.018 vs. 0.016, corresponding to Fg7¢
and F g7, respectively), although photoperiod SNPs showed a significantly greater variance in
Fgr values relative to the control SNPs. None of the individual SNPs showed significant F g
departures from the control loci, so that even when using candidate genes in a known pathway
that is likely to be under selection, no signature of selection was observed in individual Fs7¢

values. However, as a group, the photoperiod SNPs showed a significant excess of pairs of

alleles from different loci correlated with each other (i.e.,, showed LD), while no such pattern
was seen with the control SNPs. Further, the highest five of the allelic pairs correlated between
loci also involved either one (or both) alleles (SNPs) that showed significant clines with latitude.
Thus, while selection in this study did not seem to generate a significant departure between
Fsrg and Fgr, it did generate among-population covariances.




Summary
* Qg is trait-specific
* Often approximated by using P.; (very
problematic)

* Ascertainment bias issues, more variable traits
usually chosen (i.e., a nonrandom set)

* Qq; does not necessarily track Fyq

— This is a good thing, as small allele-frequency
shifts result in little change in Fgq

— However, LD generated by selection can
significantly change Q¢;even in the face of NO
Forq Change



