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Trait-specific marker approaches

* The idea is to use trait-associated markers, such
as QTLs or GWAS hits

— Test for a nonrandom distribution of QTL/GWAS
effects or frequencies
* Hence, although such tests use markers, they
are trait-specific (unlike the tests to be covered
shortly that are entirely based on markers and
hence are trait-independent)

* Data are now categorical (as opposed to the
continuous data on divergence of means)

— Use signature over an entire collection of markers




Outline

* Orr's QTL sign tests
— QTLST-EE (assumes all loci have equal effects)
— QTLST

e GWAS- based tests
— tSDS scores
— Berg-Coop Q, test

» Applications to genomic data, esp. levels
of gene expression



A typical QTL map from a likelihood analysis
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Allen Orr's QTL sign tests
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s there an excess of “plus” QTL alleles in the
larger line?



Orr’s QTLST and QTLST-EE Sign Tests

Assume that n detected QTL differences (alternative fixed alleles at n loci) are found via
a standard QTL mapping experiment involving a cross between two lines (LW Chapter
15). Under neutrality, there should be no systematic directionality as to whether a line is
fixed for increasing (plus) alleles over decreasing (minus) alleles at any particular QTL.
This simple idea forms the basis of sign tests, but it requires modifications to account for
the actual biology. For example, when the line means differ, the high (larger trait value)
line is expected to contain more plus alleles (assuming equal effects; with a distribution of
allelic effects, this need not be the case, as is discussed below). Orr noted that by choosing
the larger line, we have introduced an ascertainment bias, as this line is expected to contain

an excess of plus alleles. To proceed, we need some appropriate conditioning on this fact to
obtain an unbiased statistic representing the value that constitutes an excess of plus alleles.
The simplest approach is Orr’s equal-effects model, where all n QTLs have close to equal

effects. Here, the large line must contain at least [n/2] high (plus) QTLs, where

(n/2)+1 forneven
/2] = { (n+1)/2 fornodd

In other words, the high line must contain at least one more high allele than the low line



In other words, the high line must contain at least one more high allele than the low line
(because all have equal effects). Determining whether an observed number, 144, of plus
alleles in the high line constitutes an excess now becomes a simple combinatorial problem.
The probability of k high alleles in one line (under neutrality) follows from the binomial,
where there is an equal chance that a random line gets a plus or a minus allele at any
particular QTL, yielding

Pr(n, = ) = () /s = () a/r

Note that all values of k containa (1/2)" term. We now condition this probability of & alleles
in the high line on the fact that this line must contain at least [n/2] plus alleles, yielding

Pr(n > nign |1 > [0/2) = fros i’[";;g’]‘)) ( ) / Py (5) w2




where the common term of (1/2)" in both the numerator and denominator cancels. This is
Orr’s QTL sign test for equal effects, or QTLST-EE. Orr noted that a minimum of n = 6
detected QTLs is required for this test to be applied. To see this, note for n = 6 that [n/2] = 4,
and the most extreme value, np;,, = 6, givesa pvalue of 1/22 ~0.05, while forn = npign = 5,
the smallest p is 1/16 ~ 0.0625. For large values of n, Orr noted that Equation 12.31a can be
approximated by a normal, with

Pr (n+ > Nhigh | M4 2 ['n,/2]) ~ 2 !1 —® (nh’igh ;/ZL/Q])] (12.31b)

where ®(z) = Pr(U < z) for U ~ N(0,1).



Example 12.8. True et al. (1997) found that none of the eight detected QTLs for the posterior
lobe in the male genitalia in a Drosophila cross were antagonistic, i.e., with effects in the opposite
direction of the line value, such as low (minus) alleles in the high line or high (plus) alleles in the
low line. Orr suggested that the equal-effects model may be reasonable for this trait. Assuming
that this model holds, we have n = 8, [n/2] = 5, npigh = 8, and Equation 12.31a yields the
probability of having all eight detected QTLs from the high line being plus alleles as

g(f)/i (j> EE (2)(5)(3) +6) 56+281+8+ p =001

325

showing that this is a highly significant excess. Orr’s normal approximation (Equation 12.31b)
yields
p~2|1—-& 8-5 =2[1—®(2.1213)] = 0.034
o~ 874 , :

The latter approximation is rather conservative, but not surprising, as this is a large-sample
approximation and the number of detected QTLs here is very modest.

D. sechellia F1 hybrid D. mauritiana




Under this strong assumption of equal effects, QTLST-EE is a nonparametric test, mak-
ing no other assumptions, and not using any information on the actual difference between
the high and low lines. Anderson and Slatkin (2003) noted that this test can be highly bi-
ased by trait choice (whereby the investigator, often unconsciously, chooses traits showing

excessive divergence). While Orr’s approach corrects for ascertainment bias within any spe-
cific trait comparison, it assumes that the traits were chosen at random. To examine the
impact from nonrandom trait sampling (which, as previously discussed, also biases Qg
tests), Anderson and Slatkin simulated 7" identical and independently distributed traits,
each with 10 QTLs of equal effects, and then chose the most divergent single trait from this
set for the subject of a QTLST-EE test. They found that this process of trait ascertainment
introduces a significant bias. For n = 10 QTLs, Equation 12.31a gives the probability of 9
or more plus alleles in the high line as 0.0285. However, when the trait was not randomly
chosen, but rather the high line from the most divergent trait in a set of 25 traits was used,
then over 50% of the time it contained at least 9 high alleles. This lack of robustness with
respect to the trait ascertainment scheme means that significant QTLST-EE results must be
interpreted with caution.




A second class of tests proposed by Orr avoids this problem, and indeed, simulations
show that it is conservative (Anderson and Slatkin 2003; Rice and Townsend 2012). For
these tests, let D be the difference between the high and low lines. This may be either the
actual observed difference, or the difference based on summing the effects over all detected
QTLs. With a distribution of QTL effects in hand, one can then condition on the number
of plus alleles, given the observed difference, D. This is Orr’s QTL sign test (QTLST). The
seemingly problematic issue of the distribution of QTL effects can be easily handled via
a bootstrap approach in one of two ways. First, one could use the observed distribution
of absolute QTL effects (|a|), and then fit this using some standard distribution. Orr used
the gamma distribution (Equation A2.25a; Figure A2.2) because of its flexibility and the
fact that the exponential, a commonly assumed distribution of effect sizes (Chapter 27),
is a special case. Note that estimating the distribution parameters that give the best fit is
done using a truncated distribution, as QTL effects below a critical absolute size would
not be detected. One can then generate the p value for the observed number of plus alleles
through parametric bootstrapping. To do so, we generate n draws from this distribution,
randomly assign each a sign, and only keep those samples for which the total (G) of signed
QTL effects equals or exceeds D. The resulting distribution of plus alleles in the high line is
now conditioned on neutrality (signs drawn at random), the assumed distribution of QTL
effects, and the actual divergence D, yielding




p=Pr(ny 2 npigh |G 2 D) = Z Pr(ny =1i|G > D) (12.32)

?:Znhigh

where Pr(n, = i|G > D) is simply the fraction of times that exactly ¢ plus alleles were
found in the retained bootstrap samples (i.e., those showing a divergence of at least D).
Alternatively, instead of sampling from the fitted distribution, one could use standard
bootstrapping and directly sample (with replacement, and with draws randomized with
respect to sign) from the observed distribution of QTL effects (e.g., Rice and Townsend
2012).

While the QTLST adjusts for ascertainment bias, it does so the expense of power. As
noted by Rice and Townsend (2012), the difference (D) provides some information on the
amount of any previous selection, and by conditioning on its value, we are removing this
evidence. Consider the extreme case where a line fixes plus alleles at all ten QTLs, and all
have equal effect. In order to obtain the observed value of D, we must condition on only
those cases where all ten are fixed, giving this test zero power (Griswold and Whitlock
[2003] also noted the low power of this test). Rice and Townsend found that both the power
and the false-positive rate increase with the variance of QTL effects.



Applications of QTL Sign Tests

Using QTLST-EE, Rieseberg et al. (2002) performed a meta-analysis of over 2600 QTL effects
from 572 traits in 86 studies. Their summary statistic was the QTL ratio: the fraction of
antagonistic QTLs for the comparison of interest (Table 12.3). Roughly half of the studies
involve wild x domesticated crosses, where strong directional selection is suspected for
domestication traits. Upon restricting analysis to those examples with six or more QTLs per
trait (Orr’s condition for such tests to have any power), 35 of the 54 qualifying traits (65%)
believed to be involved in domestication showed significant departures from neutrality (i.e.,
too few antagonistic QTLs). By contrast, only 14 of 84 nondomestication traits (15.6%) in
crosses involving domesticated species showed significant departures. Treating this latter
class of traits as a control demonstrates that QTLST-EE behaved in the direction predicted
for these crosses (revealing signatures for domestication traits and a lack of signatures for
nondomestication traits).

Loren Rieseberg




Antagonistic Total
Trait Category QTLs QTLs QTL ratio LS Means
Animals 73 312 0.234*" 0.185 + 0.039]
Plants 128 439 0.292** 0.202 = 0.025
Interspecific 47 245 0.192** 0.137 £ 0.154
Intraspecific 154 506 0.304™* 0.250 + 0.243
Outcross 98 425 0.231** 0.170 £ 0.174
Self 103 326 0.316** 0.217 £ 0.262
Life history 111 540 0.206™* 0.139 £ 0.175
Morphology 138 508 0.272** 0.266 + 0.255
Physiology 8 40 0.200* 0.176 £ 0.125
Phenology 37 124 0.298** 0.236 + 0.219
Total 201 751 0.268



We conclude by briefly highlighting the utility of two applications of sign tests to specific
biological problems (as compared to the broad generalizations explored above). Albertson
et al. (2003) examined traits in the massive species radiation occurring among cichlid fishes
in the East African rift lakes. One striking feature of this radiation is extensive convergent
evolution across lakes in feeding morphology, suggesting parallel directional selection. The
authors used QTLST (with effect sizes drawn from a gamma distribution) to examine the
genetic basis of feeding morphology through crossing two wild species from Lake Malawi.
Because most individual traits had less than six QTLs, they grouped the traits, finding that
only 4 of the 46 QTLs were antagonistic for jaw and teeth features. The highly significant
p value supports directional selection on these feeding traits. Muir et al. (2014) examined
QTLs in tomatoes (Lycopersicon) to explore leaf-related traits in wild species thought to
be associated with adaptation to precipitation. They found no significant departure from
neutrality for two leaf and two trichome (leaf hair) traits, but a significant departure from
neutrality for two stomatal traits. They computed p values using both QTLST and QTLST-
EE, and they found (in agreement with Anderson and Slatkin 2003) that QTLST was more
conservative, yielding p values about twice as large as those obtained from QTLST-EE.

-




GWAS-based approaches

* Usually a lot more GWAS “hits” than QTL
hits for a given trait.

* Again, the key idea is to perform a test
over a collection of markers for a given
trait and contrast this with some neutral
expectation.
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Approaches Based on Combining Signals

The basic idea of combining signals over a set of GWAS markers has been exploited in
several different ways. The initial suggestion was gene set enrichment analysis (GSEA)
from genomics (Subramanian et al. 2005), wherein one considers clusters of genes on the
basis of membership in some functional group (i.e., the same gene ontology, GO, class). This
tactic was used by Daub et al. (2013), who computed the average Fsp value over a set of
pathway-connected genes and contrasted this with the average F'q; value over a same-sized
set of putatively neutral markers. Using this approach, they found evidence for selection on
several human pathways, many connected with pathogen response. They also noted that
long-distance LD was detected, which they attributed to epistatic interactions. While this
could be correct, a confounding factor is that selection is also expected to generate such
long-distance (i.e., between loosely-linked sites) LD with strictly additive genes (Chapters
16 and 24).

In the Daub et al. analysis, the “trait” was a specific pathway, while other analyses have
consider more classical human traits, in particular, height. A simple, but robust, approach
was used by Turchin et al. (2012). They examined allele frequency differences for 139 GWAS
markers for height between Northern- and Southern-European populations. Under neu-
trality, allele-frequency increases in plus alleles should be randomly distributed between
two populations (i.e., the sign test introduced above). Instead, what they found was that 85
of the 139 markers (sign test p = 0.01) showed an increase for high alleles in the Northern-
European population. Note that one advantage of GWAS data is that typically a reasonable
number of hits (marker-trait associations) are found, while QTL-based studies often fail to
have more that five detected QTLs for a focal trait (and hence Orr’s test is not applicable).




Using GWAS information

Tests Based on £tSDS Scores

Recall Field et al.’s (2016) singleton density score, SDS (Equation 9.42), for detecting very
recent selection on a given single site. In that paper, they also showed how to extend this
approach to search for polygenic selection on a given candidate trait, given a set of associated
GWAS marker scores. This requires that both the SDS values and GWAS test statistics (such
as a z value under a normality test) for a set of markers were generated using the same
population. The SDS score for a given marker is first translated into a tSDS (trait-SDS)
score, where the sign of the SDS score is changed so that trait-increasing markers receive
positive scores. Their simplest approach was to combine the tSDS scores associated with all
the significant GWAS markers for a target trait, using this mean as the test statistic.

Field et al. noted that most of the trait variance is usually explained by markers whose
GWAS test statistics do not pass the genome-wide significance threshold (Chapter 24), and
hence are not included in the test set. To incorporate information from these nonsignificant
(but potentially biologically important) markers, they used a regression-based approach.
Data points for the regression were generated by first binning SNPs with very similar GWAS
scores, taking the bin average GWAS score as the predictor variable and bin average tSDS
score as the associated response variable. A significant regression (or correlation) is expected
under selection, but not under drift. Both the average tSDS score and regression approaches
detected clear signals of selection for increased height in Britain over the past 2000 to 3000
years. Several other traits (infant head size, body mass index [BMI], and female hip size, to
name a few) also showed evidence of recent polygenic selection.



The Berg and Coop Q. Test

The final approach leveraging GWAS-estimated marker effects for a target trait is due to
Berg and Coop (2014), building on previous work by them (Coop et al. 2010; Giinther and
Coop 2013) as well as by Ovaskainen et al. (2011). Let p/ = (p; 1,pi2," ", Pi.m) denote the
vector of allele frequencies for the ith marker over m subpopulations, where p; ; denotes
the allele frequency in population j. Example 9.5 showed that the expected distribution of
p; under neutrality is approximately given by

P; ~ MVN,, [ pi01,pi0(1 — pi0)82] (12.33a)

where 2 is a (marker-estimated) matrix of expected covariances in allele frequencies over
the subpopulations and p; ¢ is the allele frequency in the ancestral population. As detailed
in Chapter 9, this formed the basis of Coop’s Bayenv test for excessive divergence at a specific
locus. Berg and Coop (2014) extended this result to a trait-based test as follows. Suppose n
GWAS hits are discovered for the focal trait, where the trait-increasing allele for the ith
marker changes the trait by a value of g;, with p; ; denoting the frequency of this allele in
population j. The GWAS-predicted mean genetic value for the trait in population j thus
becomes

a; = 2 Zg,; Dij (1233b)
i=1



To proceed, Berg and Coop expressed all of the a; values as deviations from the grand
mean, yielding a; = a; — a. This uses one degree of freedom, and returns the vector
(a*)! = (a},a’,---,a’,_,), where one population is dropped. As Berg and Coop note,
information from the dropped population is fully retained by the vector a*, so that the
choice of which population to drop has no impact on the resulting analysis. The resulting
vector is now distributed as

(a*)" ~ MVN,,_1(0,2V4$2] (13.33e)

As discussed in Appendix 5, a standard trick with a vector of correlated variables is to
use a transformation to return a vector of uncorrelated variables of unit variance. Berg and
Coop did this by using the Cholskey decomposition (Appendix 5) of £2 = CC?, using the
transformation

1
=—C'a" 13.33
x=—=C"a (13.33f)
which returns
x ~ MVN,,,-1(0,I) (13.33g)
This is the basis for the Berg-Coop Q. test, whose statistic is given by
a\T —1.%
Q. =xTx= &) 2 a (12.33h)

2V 4



Under neutrality, Q, ~ x2,_,, as x* x is the sum of (m — 1) squared unit-normal random
variables. Note by comparing this result to Equation 9.13c, that the @, test is very similar in
form to the Giinther-Coop (2013) XTX test for selection on a single site, but with estimated
trait genetic values replacing allele frequencies.

Robinson et al. (2015) applied this test to height and BMI based on ~9400 individuals
from 14 European countries, finding evidence that selection favored increased height and
reduced BMI. Mathieson et al. (2015) also applied this test to Europeans, but used ancient
DNA from 230 individuals (who lived between 6400 to 300BC), and reported evidence for
two independent episodes of selection for height.



Divergence in gene expression
levels

The amount of mMRNA for a candidate
gene is a quantitative trait, and hence
one can test for whether an observed
amount of divergence is excessive

Less of an ascertainment issue, as one can
score the expression levels of all genes
within a given genome

Cis and trans versus local and distant
ASE (Allele-specific expression)



Applying Lande’s test

With this concern in mind, the version of Lande’s test used by these investigators
starts by noting that E[V4] = 2N,.0? for an additive trait at mutation-drift equilibrium
(Equation 11.20c). Assuming expression values are drawn from a normal distribution under
the null model, then when L lineages are used to estimate the among-group variance and
k individuals per line were used to estimate V4, Equation 12.5a shows that both estimators
approximately follow x? distributions, with

Ve~ (2ton) xi-1/(L—1) and Vi~ (2Neop,) Xk-1/(k—1) (12.34a)

where ¢ is the time of divergence since the common ancestor. These expressions suggest a
modified version of Lande’s Fj pg test statistic,

Vi/(2ton) _ Vs (N) U Xia/(L-1)

Fio. = = e
MPE ™ Va/(2Neo?)) — Va \t ) xi1/(k—1)

(12.34b)



where this statistic follows an F' distribution, with Fyinr ~ Fp_1 -1 (as it is the ratio of
two x? random variables, scaled by their degrees of freedom; see LW Appendix 5). A scaled
ratio less than a critical value of Fy, /; is suggestive (at level a) of too little divergence, and
hence suggestive of stabilizing selection, while a scaled ratio in excess of F _, /, implies too
much divergence, suggestive of directional selection. These critical values are given by

V t V, t
V—i S Fa/Z,L—l,k—l (Fc) and V—i > Fl—a/2,L—l,k—l (ﬁc) (12340)

where F,, ys v denotes critical values for an F' distribution and satisfies
Pr(Fyn < FaMN) =«

In the case where just two populations (L = 2) are compared by using their squared differ-
ence, d?, then recalling that V3 = d?/2 (Equation 12.8¢), the conditions given by Equation
12.34c become

d? 2t d? 2t
Vi < Fay21,k-1 (]7> or Vi > Fya/2,1,k-1 (F) (12.34d)



Example 12.9. Rifkin et al. (2003) examined variation in gene expression at the start of meta-
morphosis in six inbred lines of Drosophila: four melanogaster, one simulans, and one yakuba. Of
the roughly 12,900 genes whose transcripts were examined, 52% (~6700 genes) showed expres-
sion changes in at least one lineage (either between species or within the melanogaster lines). For
~4500 of these genes, the authors could not reject the hypothesis that all six lineage-specific sam-
ples came from the same distribution, and these were deemed to be evolutionarily stable and
potentially under stabilizing selection. Of the remainder, ~1700 genes showed no significant
variation across the sampled melanogaster lines, but a significant difference between melanogaster
and one of the other species. These were deemed to be under lineage-specific selection.

The evolutionary forces acting on the remaining 527 genes were examined using Equation
12.34b. Divergence was scored separately between melanogaster and each of the other two species
(L = 2) using d?, with V4 estimated from the among-group variance in four fully inbred D.
melanogaster lines (k = 4). Because d? is used, critical values are given by Equation 12.34d,
with one correction. The expected among-group variance (for an additive trait) between a set
of fully inbred lines is twice the additive variance (from Table 11.3, with 2f = 2), so that 2N,
replaces [N, in the critical values. The resulting upper and lower 2.5% critical values follow



first by noting that Pr(F} 3 > 17.4) = 0.025 and Pr(F} 3 < 0.001) = 0.025. These authors
used an estimated effective population size for D. melanogaster of N, = 3 - 10°, while the total
divergence times (twice the separation time, in generations) were estimated as 2t = 4.6 - 107
(melanogaster-simulans) and 2t = 10.2 - 107 (melanogaster-yakuba). Hence, the critical values for
excessive divergence were

4.6 - 107 10.2 - 107
6 100 = 1334 and Femeryak =174~ 5 = 195.8

Fc,mel-sim =174 -

Transcripts whose ratio of d°/V, exceeded these values are unusually divergent. Using this
criterion (as well as the lower threshold for too little divergence), of these remaining 527 genes,
464 were consistent with drift, while 63 were consistent with excessive divergence between at
least one species pair.



Brownian motion or Ornstein-Uhlebeck?

Under a Brownian motion model, the expected divergence (measured by the among-
group variance) scales linearly with divergence time, ¢ (Equation 12.10, under the infinite-
alleles assumption). In contrast, under an Ornstein-Uhlenbeck (OU) process (drift countered
by stabilizing selection), the total divergence approaches an asymptotic value (Equation
12.22¢). Bedford and Hartl (2009) used an OU process to fit the pattern of expression di-
vergence within a clade of seven species of Drosophila. In accordance with the OU model
(and consistent with stabilizing selection), they found that the divergence variance does not
increase linearly with time but, rather, quickly approaches an asymptotic value.

In contrast, Khaitovich et al. (2004, 2005) argued that gene expression can evolve in a
mostly neutral fashion, based in large part on an observed linear increase in the divergence
of among-species expression with time within the clade of great apes. They also noted
the observation of Riftkin et al. (2005), namely, a positive correlation between levels of

within- and among-species variation for the expression of different genes. Such a pattern

is expected under neutrality, as both divergence and standing variation are functions of
o2,. However, this is not strong support for neutrality, as a number of other features can
create such a correlation. For example, genes whose expression is strongly influenced by
the environment may naturally exhibit higher levels of variation, both within and among
samples. Likewise, linearity in divergence, by itself, is suggestive, but not sufficient. Unless
the actual rate of divergence is consistent with the rate of polygenic mutation, linear patterns
of evolutionary diversification need not imply neutrality.




Applications of Sign-based Tests to Expression Data

While Orr’s tests were framed in the increasingly dated technology of QTL mapping, their
central underlying idea (effects are randomly distributed among lines under neutrality) fits
very nicely with genomics-era data. We already mentioned a GWAS application of sign-
based tests, and there is an increasing use of sign-based approaches to explore the nature of
selection on gene expression. The standard QTL-based tests discussed above are not directly
applicable, as most genes have very few detected eQTLs, and thus do not qualify for testing
based on Orr’s requirement of at least six QTLs per trait. However, as reviewed by Fraser
(2011), two rather different approaches have been used to circumvent this limitation.



The first approach is simply to shift focus from the expression levels at single genes to the
pattern of expression over a set of genes, pooling these to create a setting with more than six

eQTLs for the trait. Bullard et al. (2010) used this approach in a cross of two closely related
yeast species, Saccharomyces cerevisiae and S. bayanus. One key requirement in the statistical
analysis is that each eQTL is independent, as a single eQTL that simultaneously influences
k genes should be weighted as one change, not k changes, in the same direction. The use
of cis-regulatory alleles ensures independence over a set of loosely linked genes. Bullard
et al. accomplished this by only considering alleles showing ASE. An excessive number
of up-regulated ASEs over a specific gene set from one species indicates the presence of
lineage-specific selection, and a number of pathways were detected showing this feature.
Fraser et al. (2011) used a similar approach in a cross of two subspecies of the mouse
(Mus musculus). They chose gene sets defined by shared GO (Gene Ontology Consortium)
membership, and found over 100 genes with evidence of lineage-specific selection. These
studies are important, as (at least for these two crosses) they suggest that adaptation via
gene-expression changes may be widespread, highly polygenic, and involves cis-regulatory
sites.




A second modification of a sign-based test for expression data, which was offered by
Fraser et al. (2010), applies to genes whose expression levels are influenced by both cis
and trans eQTLs. The central premise of sign-based tests is that directionality is random

under the null, so that in a cross of lines A x B, if an eQTL from A is a cis up-regulator,
this should provide no information as to whether a trans-acting factor from A (acting on
the expression level at the same target gene) is an up- or down-regulatory allele. Cis- and
trans-acting alleles whose influence is in the same direction (up and up, down and down)
are called reinforcing, and those acting in opposite directions are called opposing. With a
collection of genes whose expression is influenced by both cis and trans eQTLs, a simple
2 x 2 contingency table can be constructed and tested for departures from randomness. If
a significant departure is seen, it is a straightforward process to estimate the amount of
excess in a particular class (e.g., Example 10.1). Fraser et al. applied this approach in a cross
of two yeast (Saccharomyces cerevisiae) strains that diverged roughly 107 generations ago and
found an excess of roughly 242 genes showing reinforcing levels of cis and trans. While this
approach suggests significant regulatory evolution over the genome, it does not indicate
which specific transcripts are involved. This result is reminiscent of some of the approaches
for detecting genome-wide signatures of selection examined in Chapter 10: evidence of a
genome-wide pattern is seen, but no particular gene can be singled out with confidence as
being a target of the selection process generating the observed pattern.




Example 12.10. Using cis and trans expression data, Emerson et al. (2010) suggested a test
for neutral expression evolution that is related in spirit to sign-based tests. They combined
their polymorphism data with divergence data from Tirosh et al. (2009) to examine the within-
and among-species expression control in the yeasts Saccharomyces cerevisiae and S. paradoxus.
They used a MacDonald-Kreitman approach (Chapter 10) by examining the fraction of cis- and
trans-controlled transcripts measured within and between species. Their resulting contingency
table,

Polymorphism Divergence
Cis 396 1270
Trans 412 541

was highly significant, with trans polymorphisms being slightly more common than cis, but
over twice as many cis regions were fixed. Such a pattern could arise from either an excessive
number of cis fixations between species, an excessive amount of trans polymorphism within a
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Example 12.11. Fraser (2013) suggested yet another approach for detecting selection on the
expression level of specific sets of transcripts. First, the genes comprising a specific functional set

are chosen (e.g., UV protection), and then an expression score for a population is calculated from

the mean frequency of all eSNPS that up-regulate members of this set. This was done over aseries

of roughly 60 human populations that have lived and evolved under different environmental
conditions (such as summer UV flux), computing the correlation between the environment vari-
able and expression score. The significance of this correlation was tested using a randomization
approach, wherein the correlation between expression score and environmental variable is com-
puted using a random set of genes. This was repeated ~10° times to generate a distribution
for each gene-environment correlation under the null. This approach is very similar to meth-
ods examined in Chapter 9 to search for individual SNP frequency-environmental associations
(Hancock et al. 2010a, 2010b, 2011; Fumagalli et al. 2011). However, the latter is performed on
a SNP-by-SNP basis, whereas the focus here is on the entire set of regulatory actors in some
network. Using Fraser’s approach, significant signals were detected for transcript sets involved
in UV response, immune cell proliferation, and diabetes. Further, using a catalogue of puta-
tive locally adaptive human SNPs, Hancock et al. (2011) found a roughly ten-fold enrichment of
eSNPS and SNPs in cis-regulatory regions over amino-acid replacement SNPs in the same genes.
This suggests a more important role in local adaptation for regulatory, as opposed to structural,
changes.




