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Marker-based tests

* We now move to test based on molecular
markers, either in a candidate region (or
regions) or in a genomic scan

* Trait-independent, use allele and/or gamete
frequencies, not additive variation.

— Hence, no information of effect sizes

* Need to have an understanding of the
patterns expected for strictly neutral alleles



Neutral equilibrium model

e The standard neutral model, or the neutral
equilibrium model, assumes
— Strictly neutral alleles
— The population is in mutation-drift equilibrium

— Hence, the population size has been constant for a
sufficiently long amount of time to reach mutation
drift equilibrium

— No population structure



Behavior under drift alone

* Results in one lineage ultimately becoming
fixed

— Coalescent theory

* Loss of variation (in the absence of new
mutation)

* Neutral allele frequency as a function of age



Loss of heterozygosity under drift

1 t
Ht:HO(l_ﬁ)

Ht i Hoe_t/(zN)

t = —2N In(H,/Hp)



Pure drift distribution

* Can solve using Diffusion theory (WL Appendix
1)

pf(Po,t) = po +po(l —po) Y (20 + 1)(—1)*

1=1

F(1—i,i42,2,pp) - e iH1L/AN



Probability density
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Mean time to loss or fixation

Mean sojourn time

ta(po) ~ —4N[poIn(po) + (1 — po) In(1 — po)]

Mean sojourn time, conditioned on fixation

4N (1 — po)In(1 — po)
Po

ts(po)

Mean sojourn time, conditioned on loss
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Figure2.2 Mean times to fixation and loss of neutral alleles with starting frequency p, (from
Equations 2.11b and 2.11c). The times are scaled in units of 4N generations, and thus need to
be multiplied by 4N to obtain absolute numbers of generations.



Age of a neutral allele

e A common allele is an old allele

I

4Np In(p)
l—p

E(t) = —

Example 2.3. The mutation CCR5-432 destroys the human CCRS5 receptor, which is used by the
HIV virus to enter the cell, leading to significant resistance against HIV infection. This deletion
occurs at frequencies up to 14% in Eurasians, but is absent in Africans, Native Americans, and
East Asians. Assuming a frequency of p = (.10 and an effective population size N = 5000 for
Caucasians, Stephens et al. (1998) used Equation 2.12 to estimate the age of this allele (under
the assumption of neutrality) to be

~ 4 - 5000 - 0.1 log(0.1
t=— 0.0 o8 )=511659nerations




1.0

P

06

1
04
Allele

02
0

|
% 0 -+
=]

(suonesauail Ny) oy

10



Coalescent time for 2 alleles

Consider a random sample of n alleles drawn from a current population, assumed to
obey all the properties of the idealized Wright-Fisher model, and with no recombination
within alleles._Focusing initially on just two of the sampled alleles, we first evaluate the
probability that both members of the pair are direct copies of a single allele in the preceding
generation. Assuming that each individual produces a large number of gametes, because
there are 2V gene copies in the population in each generation, this probability is simply
1/(2N), whereas A\; = 1—(1/2N) is the probability that coalescence occurred at some earlier
generation. Conditional on coalescence not having occurred in generation one, the proba-
bility of coalescence one further generation in the past is again equal to 1/(2N), yielding
A1(1/2N) as the unconditional probability of coalescence two generations back. This simple
rule can be generalized to give the probability of coalescence exactly ¢ generations in the

past,

P.(t) = A7"1(1/2N) (2.37)

which defines a geometric distribution, with the sum of P.(t) over the interval ¢ = 1
to oo being equal to one. One simple related point is that the probability that the most
recent common ancestor (MRCA) between two sampled alleles occurred within the last ¢
generationsis 1— A} ~ 1—e~"/2¥ namely one minus the probability of no common ancestor
over the first ¢ generations into the past.



The logic used to derive this result is easily extended to the entire sample of n gene
copies. There are p,, = n(n — 1)/2 possible pairs of n copies, each of which will or will not
coalesce in the preceding generation with respective probabilities 1/(2N) and [1 — (1/2N)].
If the sample size is much smaller than the population size, the probability of coalescence
for any pair in the sample in the preceding generation is simply the product p,, /(2N). Thus,
the probability distribution for the coalescence time of one pair within a set of n sequences

1S
Pe(pn,t) =[1- (p,,/2z\')]'-l[p,,/(2N)] (2.39)

Namely, a geometric random variable with success parameter (p,,/2N). The mean time to

coalescence of the first pair is then 2N/p,, generations (as opposed to 2N generations with
a single pair). Because at this point two copies have coalesced into one, the sample size has
been reduced by one, and the mean time to coalescence of the next pair is found by resetting
Pn topn_1 = (n—1)(n—2)/2. This procedure can be followed recursively down to the final
pair (p,, = 1), which again has an expected coalescence time of 2.V generations (Figure 2.10).
The implication of these results is that the expected time for merging n random lineages
into n — 1 lineages,
4N

tn =2N/p, =
P nin-1)

(2.40)

increases with decreasing sample size.
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Drift and mutation

At equilibrium, key parameter is
0 = 4N u.

* kealleles  E(H) = {— [9k/9(lc - 1)]
¢
. Infinite-alleles  E(H) = 146
¢

* SNP (k=4) E(H) —



Descriptors of neutral variation

* Single summary statistics
— Heterozygosity
— Nucleotide diversity
— Number of singletons
— Allele frequency

* Frequency spectrum (full distribution of the
number of alleles and their frequencies)

— Site-frequency spectrum (SFS): single SNPs

— Allele-frequency spectrum (AFS): single
haplotypes (SNPs + LD)



Frequency spectra

* For a sample of m sequences, this is given by
(n, n,,, ..., n_) where n, is the number of
alleles in the sample present as exactly k
copies
— Monomorphic sample,n,=~=n_, =0,n_=1
— All singletons, n, =m,n,=-=n_=0
— 10 sequences: 4 singletons, 1 present as two

copies, 1 present as four copiesn,; =4,n,=1,n,
1, all others O

—The constraint on the n and m: 2 k* n, =m



Infinite alleles vs. infinite sites

* |Infinitely many alleles (infinite alleles)

— Consider a block of DNA that has no recombinants
in your sample

— Each different DNA sequence (haplotype) is a
different allele

— Requires phased data
* |nfinitely many sites (infinite sites)
— Each nucleotide is considered a different site

— Again, no recombinants in your sample

— Does not require phased data, but may used
polarized data (ancestral vs. derived alleles)



Infinite alleles vs infinite sites

AAGACC
AAGGCC
AAGACC
AAGGCC
AAGGCA



Infinite alleles: Ewen’s sampling
formula

* Number of alleles, k, in a sample of size n

Sk 9%
Sn(61)

Pr(kleban) —

Sn(0L) =00, +1)(0L +2)--- (0, +n—1)



Warren Ewens




Ewen’s (cont)

* Prob. Monomorphic

(n—1)!
0, +1) 0, +2)--- (0, +n—1)

Pr(k=1) =

e Mean and variance in k

1 X j

Ek)=1+86; - S o’(k) =6, - ,
) ngzobﬂ—l (k) =0 (6L + 4)



Allele-frequency spectrum

* Let n, = number of alleles with exactly i copies
in sample (size n) n
Zz’ ‘N, =N
i1=1

n!

Pr(nlanQa 'ty Nip | n, k) - Sk (17112712 veemMin )m!ng! e nn!

n! 6%
k! (mymg -+ myg )Sn(0L)

Pr(my, - ,my,k|n,0) =



Infinite sites

Ancestral (original) vs. derived (new mutation)
Nucleotide diversity, nt

Number of segregating sites, S
Site-frequency spectrum

—Number, s, of sites with exactly j derived
alleles in the sample



Nucleotide Diversity

Suppose a population sample of n random sequences has been obtained for a particular
genomic region. In principle, such a stretch of DNA might consist of intronic or intergenic
sequence or of the subset of silent (synonymous) sites in one or more coding regions. Letting
ki; be the number of site-specific differences between observed sequences ¢ and j, and L be
the number of sites per sequence, the average fraction of pairwise differences between the
sampled sites,

" 9 n o n
O = —— ki;j/L 4.1
n(n_l);jz;l J/ ( )

yields a heterozygosity-based estimate of § = 4N.u (Tajima 1983). This formulation, fre-
quently called the Tajima estimator, is often denoted by 7 in the literature.



Number of Segregating Sites

Although nucleotide diversity is the most transparent means of estimating 6, it is by no
means the only, or even the most efficient, approach. Watterson (1975) pointed out an
alternative statistical measure of allelic diversity—the total number of segregating sites (.S)
in the region analyzed over the full set of n sequences. Because a segregating site is any
nucleotide position that harbors two or more variants, S clearly increases with the length
L of the sequence and the number of individuals assayed. Watterson (1975) showed that
under the assumptions of neutrality and drift-mutation equilibrium, an unbiased estimator
of the per-site parameter § = 4N, u is

s = S/(Lay) (4.3a)

where -
ap = z 1/4 (4.3b)

j=1

By rearranging, it can be seen that Equation 4.3a relates directly to the expected site-
frequency spectrum for a sample under drift-mutation equilibrium with a known value
of # (Equation 2.35a). A central point here is that when the nucleotide sites surveyed are
neutral and in drift-mutation equilibrium, like the Tajima estimator (Equation 4.1), the Wat-
terson estimator provides a separate estimate of 6. In Chapter 9, we will see that when the

assumptions of neutrality and / or equilibrium are violated, the values of 5,, and 55 deviate
from each other in ways that yield insight into past population-genetic processes.



Site frequency spectrum

Can be unfolded or folded.

Unfolded SFS assumes the polarity of the
alleles are known

Folded SFS simply uses the minor allele
frequency

Can express the SFS as either

— the fraction, x, of sites in a particular allele
frequency in the population,

— Or the number, n,, of sites with k derived alleles in
a sample



Watterson distribution

* Let x = population frequency of all sites with a
fraction of x derived alleles

L

7 1 1
—— —_— < <
$(@) x for 2N — zs 1 2N

Folded Watterson distribution, x = freq of minor
allele (x < 0.5)

= fo L< <1/2
1—2 2(1-2) PN =TS




Expected number of sites in a sample

unfolded
0L .
E(sj))=—, for 1<i<n-—1
)
folded
E(s;) = o, O _ 0m o 1<i< n/2]



