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Outline

e Overview of polymorphism-based tests
* Tests based on allele-frequency change

— Waples adjusted tests
— Fisher-Ford test
— Schaefter linear trend test
* Tests based on spatial variation
— Lewontin-Krakauer tests
— Allele-environmental associations

e Tests based upon diversity pattern over
a chromosomal region



Polymorphism-based tests

* Several different sampling approaches
are used in attempts to detect ongoing
(or very recent) selection
— A population sampled at two (or more)
time points

— A series of populations sampled a single
time

— A single sample from a population



Temporal or spatial sampling

1) Excessive allele-frequency change. The first formal test of selection was proposed
by Fisher and Ford (1947), who used the machinery developed in Chapter 2 for the
divergence under drift to test for excessive change in a time-series of allele frequencies
from a single population. While perhaps the most unambiguous signature of selection,
this approach requires long-term monitoring of a population and having some rea-
sonably independent estimate ot /V.. The ever-increasing availability of ancient DNA
(aDNA) samples opens up exciting new data sets for this type of analysis (Mathieson
et al. 2015, Malaspinas 2016; Schraiber et al. 2016).

2) Excessive allele-frequency divergence. Lewontin and Krakauer (1973) proposed
using the divergence between a series of contemporaneously sampled populations
(presumably from a common ancestor) to test for selection. The machinery from Chapter
2 predicts the expected divergence under drift, as measured by Wright’s Fg statistic for
population structure. Loci displaying excessive Fgp values relative to drift are selection
candidates. Using an incorrect model of population structure can seriously compromise
these tests.



Single population sample

The above two categories require samples from multiple populations (either temporally or
spatially), which limits their widespread use. A less demanding design is a single population
sample, as employed by the three remaining categories.

3) Chromosomal spatial patterns of variation. As detailed in Chapter 8, a sweep
leaves a characteristic decrease in polymorphism around a selected site, and a number
of formal likelihood tests are based on the expected pattern of the nucleotide diversity,
7, as a function of the recombination distance, ¢, from the sweep (Equation 8.8a). Early
versions of these tests assumed that the population was in mutation-drift equilibrium at
the start of the sweep, while more recent versions have relaxed this strong assumption.



The final two categories divide tests by whether they assume an infinite-sites, or an infinite-
alleles, framework, using the neutral equilibrium results for these models developed in
Chapter 2. Recall that the infinite-sites framework considers a sequence as a series of separate
sites (e.g., SNPs), while the infinite-alleles framework treats each different DNA sequence
(haplotype) as a different allele (Figure 2.9). Both models assume that the region being
considered is small enough that recombination within the sample can be ignored. Given
the large (and diverse) number of tests in both of these categories, each section reviewing
these different approaches concludes with a summary table of proposed tests (Table 9.1 for
infinite-sites and Table 9.3 for haplotypes).

4) Changes in the site-frequency spectrum. Under the infinite-sites model, the fre-
quency spectrum of neutral sites at mutation-drift equilibrium is given by the Watterson
distribution (Equation 2.34). Starting with Tajima (1989), a number of tests have been
proposed that search for shifts in this spectrum following a sweep, such as an exces-
sive number of sites with rare alleles or with high-frequency derived alleles. The major
complication with this class of tests is that changes in population demography (such as
a recent expansion or contraction) or the presence of population structure (migration
between partly isolated populations) can mimic signatures of selection.



5) Tests based on haplotype information. Under the infinite-alleles model, the number
of alleles (haplotypes) in a sample at mutation-drift equilibrium is given by the Ewens
sampling formula (Equation 2.30a) and their allele-frequency spectrum by Equation
2.33b. Starting with Ewens (1972) and Watterson (1977, 1978), a number of tests have
used these expressions to detect departures from the neutral equilibrium model. As
with tests based on the site-frequency spectrum, significant departures can occur for
neutral alleles if the population is not in equilibrium or if population structure is present.

Two other strategies use haplotype information. The first searches for the distinct
signatures in the pattern of pairwise linkage disequilibrium (LD) predicted around a
hard or a soft sweep (Table 8.2). The second considers the frequency of a neutral allele as
a function of its age (Equation 2.12). Under neutrality, a common allele is an old allele,
with shorter blocks of LD, reflecting a longer history of recombination. The presence

of high-frequency alleles with long haplotypes (large blocks of LD) offers a signature
of selection (these are often called LRH, for long-range haplotype, tests). A key point
is that haplotype structure provides signals that can be missed by site-frequency and
hard-sweep tests, and thus offers more power in some settings.



Attempts to Account for Departures From the Equilibrium Model

Most tests for selection are based on the null hypothesis of the neutral equilibrium (or stan-
dard neutral) model (Chapter 2). While rejection of this null can indeed imply a signature
of selection, rejection can also occur if a neutral population is not in mutation-drift equilib-
rium. Cavalli-Sforza (1966) noted that demography and population structure should leave
a common signal over all genes within a genome, and this observation has been used in
attempts to correct for any genome-wide nonequilibrium features in the data. The simplest
approach is the outlier method, whereby values of the test statistic are computed for a large
number of genes, with outliers suggesting potential targets of selection. This is an enrich-
ment method, not a formal test. The second approach is to use data from presumably neutral
markers unlinked to a region of interest to infer the population history (e.g., bottlenecks, ex-
pansions, population structure). These histories can then be used to simulate the coalescent
structure (Chapter 2) for neutral alleles under this nonequilibrium model, which in turn can
be used to generate the distribution of the test statistic under this more appropriate null. A
final approach is to use presumably neutral sites to generate an empirical site-frequency
spectrum to use in place of the equilibrium Watterson distribution.



These approaches are based on information from a large number of loci obtained in
a genomic scan, with the assumption that most sites are not under positive selection and
hence provide information to better shape the null hypothesis. This critically relies on the
validity of Cavalli-Sforza’s assumption of a common demographic or population structure
signal over all loci, upon which any additional signal from selection is placed. Unfortunately,
this need not be the case, especially in a population that is expanding over space. Allelic
surfing can occur, wherein random alleles (and new mutations) on the leading edge of a
wave of population expansion can “surf ” (this wave) rather quickly to high frequencies
in newly founded parts of the population (Edmonds et al. 2004; Klopfstein et al. 2006;
Hallatschek et al. 2007; Travis et al. 2007; Excoffier and Ray 2008; Hallatschek and Nelson
2008, 2009; Excoffier et al. 2009a; Hallatschek 2011). Because neutral alleles on the leading
wave of expansion are largely random, surfing does not affect all genomic locations equally,
and as a result can mimic signatures of selection even after correcting for demography
or structure based on others markers within the sample. This is especially troublesome
as the model species most surveyed for recent selection—humans, cosmopolitan human
commensal Drosophila (melanogaster and simulans), and Arabidopsis—all have undergone
massive range expansions. Hofer et al. (2009) found that while a large fraction of the human
single-nucleotide polymorphisms (SNPs), short tandem repeats (STRs), and indels show
large (greater than 0.3) differences in frequency across world populations, this pattern is
easily accounted by allelic surfing, suggesting that this phenomenon can be a considerable
problem in the search for sites under recent selection in humans.



What is the correct null
model?

e Historically, this has been the
equilibrium-neutral model

* However, in many respects,
background selection (BGS) is more
biologically motivated

* Hence, have to adjust for the gene
density to recombination ratio



Allele-frequency change over
time

e \Would seem to be the most logical test

e Power issues

— Selection time scale is ~ 1/s
— Dritt time sale is ~ 1/(2N,)
— Hence, need tn >> 1/s



In the early literature, a number of workers tested for excessive divergence by simply
querying whether allele frequencies in two samples were significantly different. As noted
by Gibson et al. (1979) and Waples (1989b), this is inappropriate, as it does not account for
the evolutionary drift variance in allele frequencies

1\ t
o*(pe) = po(1 — po) [1 — (1 - 2Nc> ] ~ po(1 — pO)ZNc fort < N,

where pj is the initial allele frequency (Equation 2.14a). Consider a population sampled
at two time points (0 and t), with sample sizes of ny and n;, respectively. The estimated
divergence is

8 = Pr — Po (9.1a)
This divergence has an expected value of zero (as E[p;] = po), with a variance of

o? (&) = o* (Bt — Bo) = o (B1) + o (Po) — 20 (s, o) (9.1b)

where p; = p; + e;, the true value plus an error due to finite sampling. Because these are
draws from a binomial distribution, the sampling variance of the initial frequency is

2~ _ Po(l—po)
o” (po) = o (9.2a)




while the final allele frequency is influenced by both the drift and sampling variances
(Waples 1989a, 1989b)

o? (Be) = po(1 — po) |1 - (1 - 217:) (1 - ZJIVC)t]

=~ po(1 — po) . Lyt (1—L)] (9.2b)

If sampling is done (without replacement) before reproduction, then o (p;,po) = 0, and
substitution of Equations 9.2a and 9.2b into Equation 9.1b yields

~ 1 1 t 1
2 ~J p— ——  S—
o (5t) _p()(l p()) [27?,0 -+ o, -+ 9N, (1 27?4)] (9.20)

If sampling is done either after reproduction or with replacement, this generates a
covariance between the sample estimators p; and py; see Nei and Tajima (1981b) and espe-
cially Waples (1989a, 1989b) for details. Assuming this is not the case, so that o(py, ;) = 0,
Equation 9.2¢ yields the correct variance for the null hypothesis of random genetic drift,
giving the test statistic as

L (9.2d)



The application of this test requires an accurate estimate of p, to compute the sample
variance (Equation 9.2c). While the sample estimate, py, can be used, this can be improved
upon by noting that the expected allele frequency change is zero, meaning that p; also
contributes information about py. A simple average of the two frequencies is not appropriate,
as Py has a smaller drift variance and the two estimates may differ in informational value
due to differences in sample size, n;. Given these concerns, Schaffer et al. (1977) and Waples
(1989b) proposed a generalized (i.e., weighted) least-squares (GLS) estimator (LW Chapter
8) for po. Let p = (Do, pr)? denote the two sample estimates and denote its sampling variance-

covariance matrix by
2 [ ~ A
v=( o po) opop) 9.3
(0 (Po,D:) o (D) (9:3)

Finally, let 1 = (1,1)” be a vector of ones. The underlying statistical model is p; = po + €;,
which can be written in general linear model form as p = pyX +e, where V is the covariance
matrix for the vector, e, of residuals and X = 1. Recalling LW Equation 8.34 for GLS
regression, the resulting estimate of py is given by (X7 V~!X) ' X7V ~!p, which reduces
to

17Vv-ip

GLS (po) = 17v-11

(9.4)

because both quadratic products are scalars.



Example 9.1. One of the classic papers in evolutionary biology is Fisher and Ford’s (1947)
study of the medionigra gene in the scarlet tiger moth Panaxia dominula, a colorful day-flying
species with one generation per year. A single diallelic locus has a major effect on the forewing
pattern. Individuals that are homozygous for the dominula allele have multiple forewing
spots, while individuals that are homozygous for the medionigra allele have a darkly suffused
forewing with, typically, two small spots (the bimacula phenotype). Heterozygotes show an
intermediate pattern, which is called the medionigra phenotype. In 1938, Ford began study-
ing a small colony of this species in Cothill Fen, just southwest of Oxford, England. Starting
in 1941, capture-recapture data were used to estimate the census population size, with the
smallest estimated size between 1941 and 1947 being 1000. In 1939 (¢ = 0) the frequency of the
medionigra allele was estimated (from a sample size of ng = 223) as py = 0.092, while by 1947
(t = 8), its sample frequency had decreased to pg = 0.037 (ng = 1341). Taking N, = 1000
(this being the smallest estimated census value over any of the generations, and hence most
favorable to supporting drift), do these data show evidence of a departure from drift?

dominula medionigra bimacula



For simplicity, assume sampling without replacement, so that o (P, p;) = 0, with the
variances are given by Equations 9.2a and 9.2b. The resulting covariance matrix, V, becomes

1
v [ 2923 0 (00022 0
po(1 —po) 0 1L 8 |\ _1 —\ 0 0.0044
21341 ° 2000 21341

Because V! appears in both the numerator and the denominator of Equation 9.4, the un-
known constant, po(1 — pp), cancels out, allowing us to simply use the above right-hand
matrix for V, yielding

17v-1p ~49.496
1TV-11  674.762
Equation 9.2c yields the sampling variance for the difference in allele frequencies as

~ 1 1 t 1
2 ~ _ —
o (5t) ~ po(1 — po) |:2n0 + o, + N, (1 2nt>]

1 1 8 1
= 0.0734 - 0.9266 !m + 2682 + 2000 (1 - %T?)] = (0.0004495

GLS (pg) = = 0.0734




The resulting Waples test statistic for fit to pure drift becomes

(0.037 — 0.092)2

0.0004495 074

The probability that a x? random variable is this big or larger is 0.0095, implying strong
rejection of neutrality. By using different values of IV, in the above calculation, we can find
the largest effective population size that would still allow drift to account for these data. For
N, = 500, the test statistic becomes 4.19 (a p value of 0.040), while for N, = 250, the statistic
is 2.39 (a p value of 0.12). Hence, any effective population size slightly smaller than 500 would
be compatible with a hypothesis of the observed allele-frequency change being driven by drift.



Time series of frequencies: Fisher-Ford test

Let y; denote the transformed frequency of the allele in generation ¢. For a ¢ that is small
relative to N,, we find (approximately) that

ye = 2sin"" (y/pr) ~ N (yo,t/[2N]) (9.5a)

where yo = 2sin™' (,/po ) is the transformed value of the initial frequency. Estimates of
allele frequencies are made at k£ time points, with no requirements about the temporal
spacing between samples. Let y denote the vector of the transformed estimates of the k
sampled allele-frequencies, and let 1 denote a vector of ones of the same length

sin (7] 1
y =2 : , 1=(5) (9.5b)
sin~* [ 1

Finally, we need the covariance matrix, V, whose elements are independent of the allele
frequency (because of the variance-stabilizing transformation; Equation 9.5a). The sample
indices denote the sequence of samples, not the actual sampled generation itself (see Exam-
ple 9.2), with ¢, the generation number associated with the ith sample. The diagonal terms
of V are given from Equation 9.2¢c

1 1 1
Vi = 50 Tan, (1 - %) ~ ons. T 2N, (9:5¢)




Now consider the covariance between samples i and j, which correspond to generations ¢;
and t;, respectively (where ¢ > j and ¢; > t;). The estimates for these two sample points
have a shared history (from the base value, pg) of drift up through generation ¢;, yielding

o
9N,

sz',j = ‘/3,2‘ where t] <t (9.5d)
Note that the covariance with the base generation (¢ = 0) is always zero (which is why
the off-diagonal covariances for V in Example 9.1 were set to zero). The k x k matrix, V,
contains only those rows and columns corresponding to the k specific generations sampled.

This is now a goodness-of-fit problem for a linear model. Using Equation 9.4, we obtain
a generalized least-squares (GLS) estimate of the (transformed) initial frequency

N lTv— 1y

Yo = Jrv-11 (9.6a)
Using this value, the vector of deviations is

6y=y—§]0-1 (96b)

and the test statistic, the weighted sum of the squared (transformed) allele-frequency dif-

ferences, -
6, Vi, (9.6c)

is expected to be approximately x% _, distributed due to the normality assumption on ;.



Year t D y=2sin"' (\/p) n

1939 0 0.092 0.616 223
1943 4 0.056 0.478 269
1947 8 0.037 0.387 1341

Assuming N, = 1000, the resulting covariance matrix, V (on the transformed scale), becomes

Voo Vou Vog 1 2005 +0 0 0
V=|Vio Vaa Vag | = 0 2000 4 4 4
+ 8

o 2.269
Veo Vsa Vs 2000 0 4 2000

2-1341

1 4484 0O 0
= 5000 0 7717 4

0 4  8.745

In addition,

0.616 1 S
_17V-ly  418.851
— .4 o 1 i 1 = == = == . 4
Y (8322)’ ! (1) vielding 40 = 3711 = 774701 ~ >




Using this estimate for ¥, the vector of deviations from the initial value becomes d, =y —
0.541-1, returning a test statistic value of 63V“15y = 7.964, which when compared to a
x% distribution, returns a significance level of 0.0186. For N, = 500, Equation 9.6c returns a

value of 5.398, for a significance of 0.067, so the hypothesis that drift alone accounts for the
observed pattern of change cannot be rejected under this smaller value of N,.



Schaffer’s Linear Trend Test

A variation of the Fisher-Ford test was suggested by Schaffer et al. (1977), who noted that
power might be improved by going beyond a simple lack of fit test against the model
Y+ = p + e (where p is the transformed initial allele frequency), by asking if a significant
linear trend is present. The model now becomes

Yyt =p+ Bt+e (9.7a)
where a trend is indicated if 3 is significantly different from zero (the Fisher-Ford test
assumes [ = 0). Such a linear trend is not expected under drift but would be expected under
directional selection, assuming that the direction of selection is not changing (migration
from a population with a different allele frequency could also generate a linear trend). In
general-linear-model form (LW Chapter 8), Equation 9.7a becomes y = X3 + e, where

1 ¢
X=(s ) p=(4), B-x'VOXVY @)
| R

where the elements of V are given by Equations 9.5c and 9.5d. For the data in Example 9.2,
the resulting X matrix and the GLS estimate, 3, of the vector of parameters becomes

1 0
~ 0.609
x=|14), B=(_30)
( 1 8) —0.028
Applying LW Equation 8.35, the standard error on the slope is found to be 0.0086, showing

that it is highly significant. Stuber et al. (1980) used this approach to infer selection at sites
linked to several allozyme markers in a series of selected maize lines. One advantage of the
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Between-population divergence

* As we have just seen, divergence in allele
frequencies could be measured as the
change in a population over time

* |t would equally well be measured as the
observed divergence between two
populations separated form an ancestral
population at some time in the past

— For example, dairy vs. meat breeds of
cattle

— The machinery just used can be applied



DIVERGENCE BETWEEN POPULATIONS: TWO-POPULATION COMPARISONS

While most of the analysis of divergence data in structured populations is based on Fgy
statistics (Chapter 2), we start with a few comments on the simple situation in which one is
comparing a biallelic locus between two populations. As in the case of the divergence of a
single population measured at starting and ending time points, divergence can be measured
as the squared allele-frequency difference,

8¢ = (o1 — Do)’ (9.8)

namely, the squared difference between the frequency in the two populations at some
sample time, ¢, following their isolation from a common ancestor in generation 0. Whether

3} is too large, or too small, relative to drift can be evaluated using a simple modification
of the Waples test, wherein the denominator in Equation 9.2d is replaced by o2 (p;,1) +
0? (Dt,2), the sum of the allele-frequency sampling variances for each population (defined
as in Equation 9.2b). This expression requires estimates of the divergence time, ¢, as well
as the average effective sizes for both populations. More generally, because E [p; ;| = po, in
theory one could sample the two populations at different time points (¢; and t;), but now
using o2 (py, 1) + 02 (Pt,,2) in the denominator of the test statistic.



Finally, a very simple statistic that often appears in comparisons of selected versus
control populations is Grossman et al.’s (2010) ADAF statistic. This metric is a natural out-
growth of the type of comparisons shown in Figure 9.1, which focuses on the difference
in the derived allele frequency (DAF) between a control and a selected population. For a
candidate SNP, let Dy s denote the frequency of the derived allele in a nonselected con-
trol population (or its average frequency if multiple control populations are used) and its
frequency, Dg, in the putatively selected population, with ADAF = Dg — D . This statis-
tic ranges between plus one and minus one, and standard outlier approaches are used to
highlight SNPs with excessive values.



Fo - based tests

e With more than two populations, Fe;
provides a natural metric for
divergence

e F.-based tests examine where the
amount of between-population
divergence is too large, or too small,
relative to the pure drift hypothesis

— Landscape genetics



Recall: Feris the fraction of genetic variation due
to between-population differences

2
o
Fsp = (?)
po(l — po)

Under pure drift, this is roughly a linearly-increasing function
of divergence time

1\’ t
Fop=1|1—-1(1-— ~ f ¢ N,
ST [ ( 2Nc> ] ON. or < N

With migration and mutation, the equilibrium value of F¢;
is very model-dependent



Island model

Hierarchical model
| <o ]
m, e O L L L L LR 1 my
for d>1



Example9.4. Theeffectivenessof F'g to detect selection was examined by Taylor etal. (1995),
using a putative target of selection in the tobacco budworm (Heliothis virescens), anoctuid moth
and a major cotton pest in the United States. Pyrethroid insecticides have been used in control
efforts, and these act on voltage-gated sodium channels in the nervous system. The historical
usage patterns of these insecticides, and hence the putative selection pressures on sodium
channel genes, differed over the sampled populations examined by the authors. As a result,
they predicted that Flsp values at the sodium channel Hpy gene should be significantly higher

than for background loci, reflecting this differential selection over the sampled subpopulations.

Samples of adults from widely spaced locations in the United States revealed an Fgr value
of 0.041 £ 0.005 at the Hpy marker, in contrast to values of 0.002 & 0.001 at 14 other loci, with
the latter result indicating fairly weak population structure in this species.




Outlier Approaches

The underlying premise for most Fg;-based tests of selection was the suggestion by Cavalli-
Sforza (1966) that all neutral loci should have the same expected value of Fsr, reflecting

the genome-wide impact of common demographic and population-structure forces. Thus,
one can (in theory) use a large number of marker loci to estimate the baseline Fgr value
for the set of populations being compared, and then search for outlier loci. This approach is
easily modified to look for specific loci being outliers in specific populations (e.g., Akey et
al. 2002; Kayser et al. 2003; Akey et al. 2010). Loci with excessively high values indicate more
divergence than expected under drift, and the possibility that the marker is linked to a site
that is under differential selection over the demes. Likewise, excessively low values indicate
less divergence than expected under drift, and hence the potential for a site that is under
balancing selection near the marker. While the historical interpretation of Fg; data follows
from these last two statements, results from Chapter 8 on sweeps under uniform selection in
structured populations suggest that a more nuanced view is needed. Recall from Figure 8.8
that uniform selection over the entire metapopulation can generate excessive divergence
(Figure 8.8A) during a hard sweep of a single allele when it is still restricted to a subset
of the demes. Similarly, a soft sweep under uniform selection can also generate excessive
divergence. Conversely, a completed hard sweep through the sampled demes generates a
reduction in divergence relative to background levels of Fg; (Figure 8.8B).




The outlier strategy makes two assumptions: the vast majority of scored loci are neu-
tral, and all neutral sites reflect the same underlying population demography. As discussed
in the introduction to this chapter, new alleles arising on the leading wave of a population
expansion can “surf” to high frequencies, generating excessive values over the expected
background. Likewise, differences in the ratio of gene density to recombination rate in dif-

ferent parts of the genome change the expected pattern of background selection, potentially
creating outliers even among neutral markers.

A final complication is that when the population structure departs from the island
model (equal divergence is expected between all demes; Chapter 2), the variance in Fgp
is inflated, generating an excess of outliers. An interesting example of this phenomenon
appears in the work of Fourcade et al. (2013), who found that river fishes showed an unusu-
ally high number of outlier loci. While such an observation might be taken as evidence that
river species have higher rates of local adaptation, simulations by these authors showed
that species with a fractal (highly branching) population structure have a greatly inflated
variance in Fig7 relative to the island model. This arises because migration on fractal struc-
tures (such as rivers or valleys) generates a complex pattern of correlated allele frequencies.
Other types of population structures, such as hierarchical island models (Figure 2.11), pop-
ulation expansions from refugia, and allelic surfing, can all inflate the number of outliers
(Excoffier et al. 2009a; Bierne et al. 2013).




Tests Based on Fgr-generated Branch-lengths

When migration and new mutation can be ignored, Fs; provides an estimate of the diver-
gence time, T (scaled in 2N, generations), between two populations. Rearranging Equation
2.43, taking the log of both sides, and recalling that In(1 — z) ~ —z (for |z| < 1) yields

1
In(l— Fgy)=1tln (1 — 2Nc) ~ —t/2N, (9.9)
HenceT' = —In(1—Fgsr) ~ t/2N,, and one can recast an excessive Fgy value as an excessive

separation time required for drift to account for the observed divergence. These estimated
times are called branch lengths and (following the Cavalli-Sforza premise) should have the
same expected value over all neutral genes. An excessive branch length for a candidate gene
relative to some reference set of genes suggests excessive change relative to drift (Vitalis et
al. 2001; Rockman et al. 2003), and is the basis of the population branch statistics (PBS) of
Yi et al. (2010); see Figure 9.2.




Figure 9.2 Flgp-based branch lengths for Tibetan (T), Han (H), and Danish (D) populations.
(Left) Lengths based on the average Flg values for all sampled markers. (Right) The tree for
the EPAS1 gene. While the D and H branches show increased divergence relative to the average
Fgr, the divergence along the T lineage is far more dramatic. This is consistent with excessive
allelic divergence due to selection for living at high altitude (or perhaps other features, such
as allelic surfing). (After Yi et al. 2010.)



Dick Lewontin



Lewontin-Krakauer tests

e [ ewontin and Krakauer (1973) showed
that F¢r is roughly chi-squarec
distributed under neutrality and the
island model

e Third-generation versions of this test
allow for rather arbitrary covariance
structures among subpopulations and
can be rather powerful



The Lewontin-Krakauer Test: Basics

The above outlier methods (for either Fisy or branch lengths) are rather ad hoc, and best
viewed as enrichment methods, distilling down a reduced set of markers that is likely en-
riched for selected sites. The critical missing element in these methods is the expected
distribution of Fgp values for a random marker, allowing p values to be placed on out-
liers. Formal distribution-based tests were introduced by Lewontin and Krakauer (1973),
who considered the distribution of Fgr values for a random biallelic locus sampled over n
populations under an island model (Figure 2.11). If we assume that the distribution (over
populations) of the frequency of an allele is roughly normal, the expected large-sample
distribution of Fsr values approximately follows a Ax?_, distribution, with a scaling fac-
tor of A\ = E(Fsr)/(n— 1). Given Cavalli-Sforza’s assumption that, on average, population
structure influences all neutral loci equally, Lewontin and Krakauer estimated E(Fgr) from
the average F g over all scored loci, giving the distribution for a random realization Fs

as
1 (n —1)Fsp 0
_F gy ~J 9.10
b\ ST = F_S’j‘ Xn—-1 ( a‘)




There are a number of additional potential problems with this approach of using F g7
to provide an estimator of ). First, this estimate can be biased by skew resulting from a few

excessive Fgp values. Specifically, if F' ~ Ax?_,, estimating A by comparing means yields
the method-of-moments estimator, A = F/(n — 1), as E[x2] = n. However, even just a few

loci that are under selection—and hence with extreme large values of Fsp—inflate F' and
bias the estimate of A under the null. A more robust approach is to replace the usage of the

means with medians, the 50% values of the two distributions (Devlin and Roeder 1999).
Specifically, med(F) = med(Ax%_,), or

med(F')

A= med(x?2_,)

(9.10c)

For example, suppose the median for single-locus Fis; values among a collection of loci
sampled over five populations is 0.127. Because Pr(x% < 3.357) = 0.5, the median value of
a x7 is 3.357, yielding

med(F)  0.127
med(x2_,)  3.357

2= — 0.038

as a more robust estimate of \ under the null (drift) relative to that based on the mean, Fg7,
because the median-based estimate is not biased by the presence of a modest number of
loci under selection.



A third, and deeper,-p_roblem is the implicit assumption of Lewontin and Krakauer
that neutral allele frequencies are independent among demes. This is correct under the stan-

dard island model (Figure 2.11), which yields equal expected divergence among any pair
of demes, and the same amount of variation within any deme (assuming no among-deme
differences in N,). However, this assumption fails under more complex population struc-
tures, such as unequal migration between demes (e.g., the isolation by distance model,
wherein closer demes exchange migrants at higher rates) or hierarchical structure among
demes generated by their founding. These population-structure issues create correlations
among allele frequencies from different demes, inflating the variance of Fg; relative to the
expectations under the island model, which impacts the x* assumption (Nei and Maruyama
1975; Robertson 1975a, 1975b; Tsakas and Krimbas 1976).

As aresult of these concerns (and others; see Nicholas and Robertson 1976), the original
version of the Lewontin-Krakauer test quickly languished. However, its basic simplicity,
coupled with its requirement of only the type of data routinely gathered by ecological
geneticists (estimates of locus-specific Fisy values), fueled the search for ways to correct
these initial flaws.




Whitlock and Lotterhos (2015) recently suggested a potentially simple work-around
for many of these issues, going by the name of OutFLANK. They noted through exten-
sive simulations of very different population structures that the distribution for Fg values

(provided heterozygosity levels were not too small)msxeqLdoseto,x_,_b.u.tm.th_dJﬁetenL

recommended a two-step approach for obtammg approximate p values First, the upper
and lower 5% of the empirical Fisy values are trimmed. The logic being that loci under
uniform selection (generating excessive low values) and under divergent selection (gener-
ating expressive high values) are expected to be only a tiny fraction of all tested sites. The
remaining trimmed distribution, representing the core 90% of the values, is then used in a
ML setting to estimate the appropriate degrees of freedom for such a doubly truncated x?.
(More generally, Table A2.1 shows that the x* distribution is a special case of the gamma
distribution, and fitting the latter allows for what amounts to fractional degrees of freedom,
which might further improve the fit.) With the corresponding null density now estimated,
appropriate p values for outliers can be obtained. Their simulations showed that this ap-
proach worked well for excessively high values (i.e., the right-hand tail of the distribution),
but very poorly for the left-hand tail (those loci showing small Fs;- values than expected).



Second-generation versions

* The next wave of LK-type tests were
model-based, moving away from the
island model

e Bayes < (Beaumont and Balding 2004)

— All demes drawn from a common ancestor,
but with no further migration

— Foll and Gaggiotti's (2008) Bayescan
method



Third-generation tests

e Use marker data to estimate a general

covariance structure (or phylogeny)
among dens, use this to adjust tests

— FLK test ( Bonhomme et al. 2010)

— hapFLK test (Fariello et al. 2013)

— Bayenv/Bayenv2 (Coop et al. 2010;
Gunther and Coop 2013)

— PCAdapt (Duforet-Frebourg et al. 2014)



The Fs7 extension (FLK) of Bonhomme et al. (2010) uses a set of neutral loci together with
an outgroup to construct a kinship matrix, F, of populations, based on branch lengths of the
estimated phylogenetic tree among the sampled populations. The assumption is that some
pattern of evolution (described by F) unfolds from an ancestral population with an allele
frequency of pg, but with no further migration between subpopulations. For n populations,
the FLK test statistic is given by

(p—Do1)' F 1 (p — pol) e 177 1p

Po(1 — Po) (9.12)

TrLg =

where p is a vector of the allele frequencies for one particular locus over the n sampled
demes and 1 is a column vector of n ones. Bonhomme et al. showed that T i follows a
x? distribution under the null model of no selection, provided allele frequencies are not too
extreme, with outliers deemed to be candidates for loci under selection. Note that P is of
the same form as the GLS estimators for the initial frequency (Equations 9.4 and 9.6a), and
that T'» 1, k has the same general form as the test statistic for the Fisher-Ford test for excessive
allele-frequency change (Equation 9.6c).

£ o~ - - - e - .



ALLELE-FREQUENCY CORRELATIONS WITH ENVIRONMENTAL VARIABLES

A final approach for comparing allele frequencies over a set of populations was introduced in
Chapter 8, namely to search for correlations between allele frequencies and environmental
factors. This approach is often referred to as environmental association analysis (EAA)
or genetic-environmental analysis (GEA), although our preference is for the former to
avoid confusion of the latter with the analysis of genotype x environment interactions.
In such studies, typically, a large number of potential factors are initially considered, and

then the method of principal components (Appendix 5) is used to extract a smaller set of
environmental features. If polygenic adaptationis the norm, classic hard-sweep (Table 8.2) or
even soft-sweep signals will be unlikely, as the response is driven by modest allele-frequency
changes over a number of small-effect loci. Hancock et al. (2010a, 2010b) suggested that
such polygenic sweeps might be detected through subtle allele-frequency shifts that are
concordant in populations experiencing similar environments but in different geographic
regions.




Joost’s Spatial Analysis Method (SAM)

The extension of testing for an association between a specified candidate gene and a single
environmental factor to a more general genome scan over a set of environmental features
starts with Joost et al. (2007). Their spatial analysis method (SAM) computes separate logis-
tic regressions for each allele-environment combination. As discussed in Chapter 14, logistic
regressions are commonly used to model how the probability of an event varies with some
other variable, in this case predicting allele frequency as function of the environmental
value. As with second-generation LK tests, SAM has a critical limitation in assuming that
neutral alleles from different populations are uncorrelated. Failing to account for the natural
correlation in neutral allele frequencies shaped by shared migrations and/or history will
yield incorrect sampling errors. Further, populations in geographic proximity are expected
to have both correlated allele frequencies (due to migration) and correlated environmental
values, generating many false positives. While Poncet et al. (2010) extended SAM by allow-

ing for small-scale correlations in allele frequencies within spatially proximate demes, their
approach does not adjust for larger-scale correlations.




Accounting for Population Structure: Coop’s Bayenv and Frichot’'s LFMM

Coop et al. (2010; Eckert et al. 2010; Giinther and Coop 2013; also see Gautier 2015) attacked
the problem of adjusting for unknown population structure by using marker data to esti-

mate the expected correlation pattern among neutral alleles for the sampled populations.

This is akin to the kinship matrix approach used by Bonhomme et al. (2010) to adjust for
correlations among allele-frequency values from different demes. Example 9.5 sketches the
basic structure of their Bayenv approach, which uses Bayes factors (Appendix 2) to gauge
the support for an allele-environmental correlation after the effects of population structure
have been removed. Formally, however, this is still an outlier method, as it generates an
empirical distribution of Bayes factors for each SNP and uses this to assess the strength
of association for a given locus. An alternative implementation to adjust for population
structure, which is very closely related to Coop’s method (as well as to Duforet-Frebourg et
al.’s previously mentioned PCAdapt approach), is the latent factor mixed model (LFMM)
approach of Frichot et al. (2013), which is also outlined in Example 9.5.



Coop’s base model (Equation 9.13¢) is extended to account for environmental factors
that influence the allele frequencies as follows. Consider a vector, 3, of potential regression
coefficients for the impact of environmental factors on allele frequencies, and a matrix, X,
whose values in row ¢ correspond to the environmental parameters measured for the ith
population (this is simply a GLS linear model; see LW Chapter 8). The null mean p; for an
allele (Equation 9.13c) is augmented by the environmental effect to give

O ~ MVN,, [pO]-n + X.B’ pO(l _pO)n] (913d)

where 1,, is an n-dimensional vectors of ones. This model assumes that any relationships
between allele frequencies and the environmental variables have some linear component. The
addition of the vector X3 to account for environmental effects is an example of a factorial
regression (e.g., Baril et al. 1992), which is discussed at length in Volume 3 in the context of
analyzing genotype-by-environment interactions.

(p — ol — XB)T 2 (p — pol — XB)
Po(1 — Do)

(9.13e)

The Bayenv method of Coop et al. is atwo-step approach: (i) £2is estimated from a presumed set
of neutral markers, and (ii) the model is run with this matrix (or in a Bayesian framework, with
draws of this matrix to generate a posterior accounting for the uncertainty in its estimation;
Appendix 2).

Latent factor mixed model (LFMM, Frichot et al. 2013).



Tests for a pattern of reduced variation

e \isual scans

e Bottleneck ML models

— Uses maximum-likelihood to test whether the data
are better fit with a double-bottleneck model (see
Chapter 9 for details)

* Formal test using the spatial pattern of
variation

— CLRT-GOFT

— Sweepfinder (uses empirical SFS)

— XP-CLR (divergence between a selected an
unselected population)



Simple Visual Scans for Changes in Nucleotide and STR Diversity

The most basic approach is a simple plot of variation as a function of genomic location,
looking for either peaks (long-term balancing selection) or valleys (a recent sweep); see,
for example, Figures 8.1 and 8.2. With SNP data, variation is typically scored as average
nucleotide diversity, 7 (Chapter 4), within a sliding window to smooth out the inherent
noisiness from individual sites. With simple sequence repeats or microsatellite markers
(also known as simple tandem repeats, or STRs, and simple sequence repeats, or SSRs),
several different metrics of variation are available, such as copy-number variance, number
of alleles, and probability of heterozygosity. With their large number of alleles per marker
and high mutation rates, STRs provide a more consistent signal and are usually plotted on
a per-marker basis (as opposed to a sliding-window analysis); see Figure 9.3 and Example
9.6. A point of caution is that mutation rates at STRs can be length dependent, with smaller
arrays often expected to show less variation.
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Figure 9.3 Using microsatellites in the search for dog domestication genes. (A) Large Mun-
sterlanders have a black coat, suggesting the pigment gene TYRP1 on chromosome 11 may
be a possible domestication gene. A plot of variation for this breed (black) relative to both
control (neither black or brown) and brown individuals shows depressed variation spanning
this gene. (B) Dachshunds are characterized by shortened limbs, suggesting the FGFR3 gene
on chromosome 3 as a candidate. Dachshunds have an absence of variation at three microsatel-

lites spanning this gene, while variation is present in controls (normal-limbed breeds). (After
Pollinger et al. 2005.)



Likelihood-based tests

* Recall that a sweep generates a
particular pattern around a selectead
site, where the diversity increases as
one move away from the location

foi = (AN,5)~ci/@hs) — g=ei>

e A number of likelihood-based tests
examine where the spatial pattern of
diversity in a region fits this pattern. If
so, it allows one to estimate s



Woltgang Stephan



CLRT-GOF

e Stephan and Kim proposed the composite
-likelihood ratio test (CLRT)

e Jensen et al. (2005) found that the CLR test is

not robust to population structure or recent
bottlenecks.

e To distinguish sweeps from false signals
generated by demography and population
structure, Jensen et al. proposed that any
significant CLR result be subjected to an
additional goodness-of-fit (GOF) test to see
how well it fits a sweep model



Using spatial information (pattern ot diversity
along a chromosome) to detect sweeps

Likelihood of seeing k./n derived alleles at a site
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Sweepfinder

 The CLRT starts by assume the
Watterson distribution, as modified by
a sweep.

e Neilsen set al (2005) moditied this
approach to use the empirical SFS
(need to adjust for BGS)

* They called this approach Sweepfinder



XP-CLRT

® Chen et al also proposed using the
spatial pattern in a chromosome
region, but they examined the
expected allele frequency difference
between two populations (one
selected, the other not) descending
from a common population

* This is their cross-population (XP) CLRT

e Often used in the search for
domestication genes



Ascertainment Issues

Because many of these likelihood models exploiting genomic positional information are
computationally demanding, they are typically employed following a general scan of a
genome for some signature of selection, such as regions of depressed variation, or showing
unusual site-frequency spectra (such as those with a negative Tajima’s D or positive Fay
and Wu'’s H values, which are discussed in the next section). Choosing the region or regions

in which to perform the likelihood tests based on the appearance of these special features
creates a strong ascertainment bias that dramatically shifts the null distribution. (Note that
this is different from SNP ascertainment bias arising from the nonrandom choice of SNPs
at the start of the analysis.) The coalescent process can be noisy, and regions with unusual
underlying genealogies (such as strong compression of the nodes) can occur by chance even
under the equilibrium neutral model. This is especially true when a large number of sites
are sampled, presenting more draws from the same underlying process, some of which will
be realizations that are extreme values.




