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Tests covered here

e SFS tests

— Very sensitive to the equilibrium
population assumption. Lots of false
positives

e Haplotype-based tests

— Perhaps the strongest tests for soft
sweeps, ongoing selection

— A large number of different tests (and
approaches!)



SFS tests

* Recall that the full site frequency
spectrum under the neutral equilibrium
model is simply a function of 8 = 4N_u

e Recall also that there are a number of
different ways to estimate 6.

* These estimates should all give the
same answer (within sampling error)
under the standard neutral model.

* Departures in estimators indicate that
this model does not hold



Site frequency spectrum (SFS)

e The distribution of either the minor allele
frequency (folded frequency spectrum) or the
frequency of a derived allele (unfold

frequency spectrum) given by the Watterson
distribution (6/x)

e A sweep inflates the frequency of sites
segregating rare alleles (folded spectrum)

e Sweeps inflate the frequency of derived
alleles, increasing the number of high-
frequency sites in the (unfolded) SFS




Watterson distribution
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Expected number of sites in a sample
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Distribution of allele frequencies under a
sweep

Distribution under sweep

tion\x

Number of sites
|

— Watterson distribu

Excess of low & high frequency sites



TESTS BASED ON SITE-FREQUENCY SPECTRUM STATISTICS

Under the infinite-sites model, a sequence is treated as a series of L sites, with each new
mutation assumed to occur at a new site (Chapter 4). At mutation-drift equilibrium, most
features of this model, including the site-frequency spectrum (SFS), are fully specified by
the population-size-scaled mutation rate, § = 4N, p. Depending on the nature of the data,
an observed frequency spectrum is viewed as either folded or unfolded (Chapter 2). An
unfolded spectrum considers the frequency of the derived allele (Equation 2.35a), and such
data are said to be polarized (typically using an outgroup to distinguish between ancestral
and derived, or mutant, alleles). The folded spectrum (Equation 2.35b) uses the minor-allele
frequency, ignoring whether the rarer allele is ancestral or derived. To distinguish between
these different spectra, we use the notation that (; denotes the number of sites that contain
exactly 7 derived alleles (1 < i < n — 1), yielding the observed unfolded SFS as the vector

(C1y+++yCn—1). Similarly, n; denotes the number of sites with exactly ¢ copies of the minor
allele (1 <4 < [n/2]), with (ny, - - -, 7}, /2)) being the observed folded SFS, where

n/2 for n even

/2] = { (n —1)/2 for n odd

The 7; and (; are simply related by
i =G+ Ci for 1<i<[n/2]



While S and IT have the same values for polarized and unpolarized data, the number
of singletons can be slightly different. All of these summary statistics yield estimates of ¢
for a region of interest, with
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n

(9.21a)

wherea, = 377 ' 1/j (Equation 4.3b). These four expressions correspond (respectively) to:
the Watterson estunator (Equation 4.3a, which is also commonly denoted by 6y); Tajima’s

estimator (Equation 4.1); our previous singleton estimator, 01, using unfolded data (Equa-
tion 4.6a); and the corresponding singleton estimator, 6., using folded data. The sampling

variances for these estimates are given by Equations 4.4a (55), 4.2 (51 1), and 4.6b (51). These
expressions for the variance are functions of both 6 and 62, and are typically (e.g., Tajima
1989) computed by replacing

S(S —1)

§ by S/a, and 6° by 2+

(9.21b)

where b,, = Z;.:ll 1/42 (Equation 4.4b).



Test Contrast Spectrum Signal
Tajima’s D 53 VS. 51 I Folded < (: Excess of rare alleles
Sweep or population bottleneck
> 0: Excess of intermediate-frequency alleles
Balancing selection or population structure
Achaz's Y™ ) S_p, VS 511_,” Folded Same as for Tajima’s D
Achaz's Y 53_ o V8. §1 I, Unfolded Same as for Tajima’s DD
Fuand Li's D ) g VS. 51 Unfolded  Same as for Tajima’s D
Fu and Li's D* 53 VS. é\l- Folded Same as for Tajima’s DD
Fu and Li's F' 61 [ VS. 51 Unfolded Same as for Tajima’s D
Fu and Li's F™* 51 [ VS. 51- Folded Same as for Tajima’s DD
Fay and Wu's H Or1 vs. Op Unfolded < 0: Excess of high-frequency derived alleles.
Sweep or allelic surfing
Zengetal's E 51 [ VS. 51, Unfolded < 0: Excess of low- vs. high-frequency derived

alleles. Signal of a recent past sweep



The idea behind site-frequency tests of neutrality is to compare two different estimates
of # based on information from different regions of the site-frequency spectrum. When the
infinite-sites model holds and the population is at mutation-drift equilibrium, these esti-
mates should be within the sampling error of each other, while they can be significantly
different when the neutral equilibrium model does not hold. Table 9.1 summarizes the
various site-frequency test statistics discussed here, all of which have the form

LA (9.21c¢)



Example 9.11. As we now illustrate, all of the tests summarized in Table 9.1 follow from a
general family of estimators of 6 based on the discrete Watterson distribution (Equation 2.35).
For a sample of n sequences with L sites, the expected number of segregating sites with ¢
copies of the derived (unfolded, ;) or of the minor (folded, 7;) allele are

E(C,-)=§ for 1<i<n-—1
(9.22a)
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where 6 = 4N, is the scaled mutation rate for the entire region.
Hence, a method-of-moments estimator for # using only the number in the ith class from
either SFS is simply

(i ¢ copies of the derived allele 1 <i<n-—1

)

>

~.
|

.
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Nawa and Tajima (2008) suggested that a plot of §; versus i can be helpful for visualizing
departures from the neutral SFS, although values for large ¢ may be more problematic as the

variance of 671 dramatically increases with i.
Following Zeng et al. (2006), consider any summary statistic, g, of the unfolded site-
frequency spectrum of the form

n—1
g=>y_ cié (9.23a)
i=1
From Equation 9.22a
n—1 0 n-—1 Ci
E(g) =) c¢;~ =0h(n) where h(n)=) - (9.23b)
; 7 ; )
1=1 i=1
Thus, a family of estimators for # based on an arbitrary vector (cl, vre Cpe 1) of weights is
given by
7 — 9
0, = h(n) (9.23c)

where h(n) is a function of the sample size n and the chosen weights ¢;, and g is the observed
value of the statistic.



The choice of weights allows one to tailor statistics to use different parts of the frequency
spectrum when estimating 6. Taking ¢; = 1 yields g = S and h(n) = a,, recovering the

Watterson estimator, g = S/a,,. Taking ¢; = i(n — 1)

n—1

h(n) =Y i(n—1)/i=mn(n—1)/2

yielding

which is simply the average pairwise difference, II. As with .S, IT is symmetric with respect
to 2 and n — 4, so that both folded and unfolded data return the same estimate. Taking
¢, = 1,¢; -, = Oyields g = (; (the number of derived singletons) and h(n) = 1, recovering

the 6, estimator.



Similarly, for a folded frequency spectrum,

[n/2] n/2]
— M 0 = — n)= Ci - - 9.23d
9= i§=1 CiT 9 f(n) f( ) 1=Zl 2(7?,—2) ( )

Consider the estimator using only folded singletons, ;. Here, ¢y = 1, ¢; = O for4 > 1, and

hence f(n) = n/(n— 1), giving 0, (n — 1) /n as an estimator of §, which recovers 8, .. Achaz
(2009) provided general expressions for the variance of any estimator of the form given by
Equations 9.23c or 9.23d, providing all of the machinery to develop general tests in the form
of Equation 9.21c using any feature of interest in the SFS.



Fumio Tajima



Tajima’s D Test

The first proposed, and most widely used, site-frequency spectrum test is Tajima’s D (1989),
which contrasts 6 estimates based on the number of segregating sites (S) and average
pairwise difference (II),

911 _ 95

D = -
vVapS + BpS?

(9.24a)

A negative value of D indicates that there are too many low
-frequency sites, while a positive value of D indicates that there
are too many intermediate-frequency sites.

Expressed another way, D is a test for whether the amount of
heterozygosity per site is consistent with the number of

polymorphic sites expected under the equilibrium neutral
model.

Under selective sweeps (and population expansion),
heterozygosity should be signitficantly less than is predicted
from the number of polymorphisms



Fay and Wu'’s H Test
The first test to use the full power of the unfolded frequency spectrum was proposed by Fay

and Wu (2000), who noted that a hard sweep results in an excess of sites with high-frequency
derived alleles (Figure 8.5). Although the signature is rather fleeting (Figure 9.4), this excess
forms the basis for their H test. Their idea is to disproportionately weight sites containing
derived alleles at high frequencies, and they chose to do so using the weights ¢; = 2. From
Equation 9.23b, these weights imply h(n) = n(n — 1)/2, and Equation 9.23c yields

- 9 n—1
0y = 2 ¢ 2
H n(n_l);z ¢ (9.27a)

The H test is the scaled difference between Fay and Wu'’s estimator for § and that based on
average pairwise differences,

O

==

(9.27D)

~— - - Lo\



SFS Power quickly dissipates
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H loses power very quickly as high-frequency alleles
following the sweep are fixed.



Zeng et al.’s E Test

A variant of the H test was proposed by Zeng et al. (2006), who noted that the most powerful
contrasts between regions of the unfolded frequency spectrum following selection should
involve high- versus low-frequency sites. However, most contrasts involve a comparison
w1th 011, which is a measure of 1nterrned1ate frequency alleles. To rectlfy this, Zeng et al.

frequency sites than 99 (but not as much asHH) For these welghts Equatlon 9 23b 1mphes

h(n) = n — 1, and hence Equation 9.23c yields

0 = —— Z e (9.28a)

Zeng et al.’s E test contrasts the high- and low-frequency regions of the frequency spectrum,

01, — 05

b= o(E)

(9.28b)



Adjusting the Null to Account for
Nonequilibrium Populations

Using the empirical distribution of test
statistics from a set of genes in the sample
(the outlier approach)

Using coalescent simulations with marker
-based estimates of demographic parameters

Using the empirical site-frequency spectrum
at reference locations as the null.

Support via a preponderance of evidence,
considers the joint signatures from a number
of different tests



(A)
36 ~
27 |- | »
I A
I _
4 ,' I’ \
/ \
§ 18 - ‘}_ = 'I mu 1\
—
! “r’ —Lw
,' N
9 1 / " / \k
: HTINE
K / / \ \
_ 441 O ol
0, - 1 | Ll . — ——
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
Tajima’s D Tajima’s D

For African-Americans, the mean D is negative, while it is
positive for European-Americans. A gene whose negative D

value is significant under the equilibrium neutral model is
ikely to be even more significant in this European-American

oopulation (given this population’s trend toward a positive
D), but is problematic in this sample of African-Americans




The final approach is to use the empirical site-frequency spectrum vector, p, from a

reference set—as opposed to the Watterson distribution—as the null (Nielsen et al. 2005b,
2009). Here p; is the fraction of sites in the reference set with i copies of the allele (derived
or minor, for the unfolded and folded spectra, respectively). A standard goodness-of-fit
test (such as the G-test; LW Appendix 2) is then used to assess whether the spectrum
ni,- N1 ina candidate region is consistent with the multinominal probabilities given by
p. One can also compare different parts of the spectrum, such as searching for an excess of

low-frequency alleles, or high-frequency derived alleles, relative to this standard. Nielsen et
al. (2009) used this approach for their MWU-low and MWU-high tests, respectively, where
MWU stands for the Mann-Whitney U test (a common nonparametric test for comparing two
groups, e.g., Conover 1999). One major reservation with these nonparametric approaches is
the choice of the reference set of sites for the neutral background spectrum. Even if these site

are neutral, local effects such as differences in the mutation rates (and hence in #) and the
background recombination rates that influence the levels of standing variation (Chapter
8) can result in the target sites (even if strictly neutral) differing from the distribution at
reference 51tes If one assumes background selection as the appropnate null the 51tes used

values of gene den51ty to recombination rates as the tested region.




Support via a preponderance
of evidence

* Composite of multiple signals, CMS
(Grossman et al. 2010, 2013)

e Many test are correlated, not
independent

e An unusual (but random under drift)
genealogy will give rise to a number of
different signals for that region



Others have advocated meta-analysis approaches, combining the significance values
over multiple tests (Appendix 4). This can be accomplished in several ways. Utsumomiya et
al. (2103) proposed meta-SS, using Stouffer’s Z score (Equation A4.2) to combine p values for
different tests applied in a particular region to obtain a single overall p value for that region.

Randhawa et al. (2014) used a slightly different approach, their composite selection signals
or CSS. Here, for a given test, a standardized rank score, Ry /(n+ 1), is computed for each of
the n SNPs (Ry, is the rank, from lowest to highest, of the p value of the test). The resulting
scores (for a given test) for each SNP range from 1/(n + 1) to 1 — 1/(n + 1), which are then
probit-transformed (Equation 14.2) and averaged over all of the tests to obtain a Z score for
each particular SNP. Again, such meta-analysis p values are only approximations, as they
assume the p values for different tests are uncorrelated, which is usually not true. Their
utility is largely as a convenient summary statistic for evidence of selection in a particular

region, rather than as a definitive probability statement.




~ Ma et al. (2015) proposed a simple measure to deal with test correlations, their de-
correlated composite of multiple signals, or DCMS statistic. Let p; , denote the p value for
test k for site ¢, and let r; be the empirical correlation among the values of the test statistics
for tests k and j over all of the scored sites, so that 7xx = 1 and 7,; = 0 when tests k£ and j
are uncorrelated. Ma’s DCMS statistic for site i is given by

t
DCMS; = ( )Z ln( p”“) , where W =>"|ry (9.29a)
k=1

Di.k

The terms in the sum are the odds ratio for each test (which Ma et al. used in place of
Bayes factors with equal prior weight on the null and alternative; see Equation A2.10b). The
weighting term (W) ranges from 1 (none of the tests are correlated, so that W = r;; +0 = 1),
to the case were all of the tests are perfectly correlated, so that W = ¢. In the former case, the
composite measure is simply the sum of the odds ratios, while in the latter it is the average
of the odds ratio. Ma at el. found in their simulations that DCMS had higher power than
either meta-SS or CSS under most settings.



A final class of composite measures are multivariate outlier metrics. Just as the outlier
approach is widely used to highlight sites that have exceptional values in a given single
test statistics, one can also consider outliers from a collection of test statistics. Assuming
all the tests have a mean of zero under the null, the total Euclidean distance of a vector
of test statistics from the mean value under the null (0) would be one approach. However,
different test statistics have different variances, and further they are correlated. One standard
approach in such cases is to transform all of the tests statistics to have the same variance
and to be uncorrelated, which leads to the Mahalanobis distance (Equation A5.19),

D} =t X' t (9.29b)

where t is the vector of test statistics for site ¢ and X} is the empirical variance-covariance
matrix for the vector of test scores over all of the sites. Lotterhos et al. (2017) used this metric
and a variant replacing the vector (t) of test statistics with a vector whose elements were
based on the ranks of the p values for a given site (along the lines of Randhawa et al. 2014).
They then took the negative log of these rank-based p values as the elements of t for the
Mahalanobis distance. This approach goes by the compact name of Mahalanobis distance
based on negative-log rank-based p-values, or Md-rank-P. They found that this approach
worked the best of the composite measures they tested, followed by DCMS.



Recombination Makes Site-frequency Tests Conservative

A final comment on frequency-spectrum tests is that, ignoring demographic concerns, they

are likely conservative in many settings. In particular, Wall (1999) noted that site-frequency
spectrum tests all assume that there is no recombination within the region of interest. While
recombination does not bias the expected values for various statistics, it does reduce their
variances (Rozas et al. 1999: Wall 1999), as the observed values represent the average
across several genealogies (Depaulis et al. 2003). As a result, when recombination does oc-

cur within a region, tests are conservative, with the true p value being smaller than the

zero-recombination values tabulated by the original authors of the various tests. As a result

of this conservative nature of SFS tests under recombination, they are often significantly
underpowered, using more stringent critical values than necessary. Wall found this effect to

be significant when the rate of recombination is on the order of the total regional mutation
rate, as is often the case (Table 4.1). Coalescent simulations allowing for recombination can
significantly improve the power of tests by obtaining more accurate p values. As discussed
in Chapter 4, the four-gamete test (Hudson and Kaplan 1985) can be used to detect recom-
bination in the coalescence history of the sample, and the R, statistic suggested by these
authors estimates the minimal number of recombinants in the sample, which can then be
incorporated into an appropriate coalescent simulation (e.g., Depaulis et al. 2005).



SFS tests: Summary

* Tajima’'s D
— Negative values (excess of rare alleles) following a
sweep

— Problem: changes in population size also
generates this

e Fay and Wu's H

— Test for excess of high frequency derived alleles



Haplotype-based tests

 Allele frequency spectrum
— Ewens sampling formula
— Number of alleles, heterozygosity
* | D signals (soft and hard sweeps
different signals)
e Age of alleles
— Long haplotypes
— Inconsistent estimates



Defining and Inferring Haplotypes

If one considers a sufficiently long stretch of DNA, every sequence is a unique haplotype, so
just how are haplotypes defined? The answer depends on both the test being used and the
features of LD that are of interest. If we are interested in number and diversity of haplotypes
in an infinite-alleles framework, the unit of analysis is a sufficiently small region, ideally
with no recombination observed in the sample. The four-gamete test of Hudson and Kaplan
(1985) can be used to detect recombination in the sample (Chapter 4), helping to define the
size of a region (for example, by setting the size of a sliding window moving through a
larger region). Practically, one may be constrained to find regions with sufficient haplotype
diversity for analysis given either the marker density or background levels of variation, so
that small amounts of recombination within the defined region may appear in the sample.
For tests based on the average pairwise disequilibrium among all sites within a region,
one actually wants some (but not too much) recombination. Finally, tests based on long
haplotypes require a core haplotype (either a single SNP or a set of a few tightly linked
SNPs) to define distinct allelic classes, with the disequilibrium patterns within each class
(i.e., as one moves away from the core) forming the basis of tests. Again, recombination
(outside of the core) is critical to these tests.



Overview of Haplotype-based Tests

As reviewed in Table 9.2, a number of haplotype features can be used as the basis for tests
of ongoing selection. Strong haplotype structure occurs when there are fewer haplotypes

than expected given the number, S, of segregating sites within a region. This underdispersion
of haplotypes is a signature of excessive LD within a region. Strong haplotype structure
also results in a deficiency in haplotype diversity, H (the probability that two random

haplotypes from the sample are different, analogous to IT under the infinite-sites model),
and an excess of high-frequency haplotypes (roughly analogous to Fay and Wu’s H test;
Equation 9.27b). Such signatures are created by any process generating a coalescent with
long internal branches (relative to the equilibrium neutral model; see Figure 8.3), such as a
partial sweep (the favorable allele is not yet fixed), recovery from a moderate bottleneck,
balancing selection, or population structure. Conversely, we can have the opposite pattern

(overdispersion of haplotypes), with an excess of haplotypes, excess haplotype diversity, and

an excess of rare-frequency haplotypes. Such signals are generated by a star-like coalescent

genealogy, as would occur near the conclusion of a hard sweep, or the recovery from an

extreme population bottleneck. However, in these overdispersed settings, LD summary
statistics typically have low power, as S is small (most of the variation is removed), so that
while haplotype overdispersion occurs, its signal is often weak.



Table 9.2 Haplotype-based signals of positive selection under different types of sweeps.

Completed or Nearly Completed Hard Sweep
Overdispersion of haplotype structure relative to S
Excess number of haplotypes
Excess haplotype diversity
Excess of high-frequency haplotypes
LD structure
High LD on either side of selected site, little across site

Partial Sweep or Recent Balancing Selection
Strong haplotype structure
Deficiency in number of haplotypes
Deficiency in haplotype diversity
Excess of low-frequency haplotypes
LD structure
Alleles with long haplotypes at excessive frequencies
Allele age
Alleles with long haplotypes at excessive frequencies

Soft Sweep
Moderate haplotype structure
A few dominant haplotypes
LD structure
High pairwise LD across entire region



Infinite alleles: Ewen'’s
sampling formula

* Number of alleles, k, in a sample of size
N

Sk gk
Sn(0L)

Sn(0L) =00, +1)(0L +2)--- (0, +n—1)

Pr(kl@b,n) =



Ewen’s (cont)

e Prob. Monomorphic
(n—1)!

Pr(k=1) = 6, +1)0,+2) (6, +n—1)

e Mean and variance in k

1 X j
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Ewens-Watterson test

Ewens suggested using the following summary statistic of the frequency spectrum,

I=—gni (%)m(%) (9.30a)

His motivation for this statistic was its use as a general measure of dispersion (information)
in the data. Watterson (1977, 1978) showed that the sample homozygosity

h = z:; ni (%)2 (9.30D)

was a better choice for improved power to detect departures under weak overdominance
(the selection model du jour of the time). Comparing the statistic given by Equation 9.30b
with its value under the equilibrium neutral model is known as the Ewens-Watterson test
(also the Watterson test or homozygosity test). Watterson proposed to assess significance
by taking a large number of draws from Equation 2.33b (using the observed number, &, of

alleles in the sample) to generate a null distribution of h values to compare against its value

in the original sample. The same approach can also be used for the Ewens statistic (Equation
9.30a).



Other Infinite-alleles Tests: Conditioning on 6

Watterson-type tests use the conditional allele-frequency spectrum, where the observed num-
ber of alleles, k, is used in Equation 2.33b to generate the null distribution. What about tests

based on k itself, such as whether there are too many, or too few, alleles based on some other

diversity measure? Such tests use the sampling distributions given by either Equation 2.30a

or Equation 2.33a, and require an estimate of 6. Fu (1996, 1997) used this approach to test
whether a sample contains too many, or too few, alleles (haplotypes) relative to the neutral
equilibrium model. His W test (1996) used the Ewens sampling formula (Equation 2.30a)

with 6 replaced by the Watterson estimator, fs (Equation 4.3a), and it returns the probability
of seeing k (or fewer) alleles in the sample as

k @i, [p.1i
W = Pr(K < k) = ZPr —i|§s,n)=zs'; ([gs)] (9.32)
i=1 ~n\US

where S;! is the coefficient on (65)* in the polynomial

Sn(8s) =05 (0s +1)(8s+2)-+- (s +n—1)



Fu's Fg test (1997) is the compliment of W, as it tests for an excess of rare alleles/haplotypes.
It starts by computing the probability of seeing k or more alleles / haplotypes in a sample,

nooqQi 9‘ i
S,:Pr(KZk)‘:an [AH]
% Sn(fn)

(9.33a)

but now using A1, the estimator of # based on average number of pairwise differences
(which is more sensitive to sites with intermediate allele frequencies). Fu noted that S’ is

not an optimal test statistic because its critical values are often too close to zero. Because of
this, the test uses the transformation

S/
Fs=In ( — s') (9.33b)

As with W, this is also a one-sided test. Fs is negative when there is an excess of rare
alleles /haplotypes (as would occur with a selective sweep or population expansion), with
a sufficiently large negative value serving as evidence for selection or population expansion.
Fu (1997) showed that Fs is more powerful that Tajima’s D and the Fu-Li D* and F* tests
(Table 9.1) for detecting selective sweeps or population expansion following a bottleneck.



Depaulis and Veuille (1998) also used conditioning on S and developed two tests. Their
haplotype number, or K, test is essentially Fu’s W test (Equation 9.32), but using 65 (and

hence conditioning on S) rather than 8y;. Their haplotype diversity, or H, test, uses the
statistic

k
H=1- Z p; with p; = frequency of the ith haplotype (9.34a)
i=1
namely, the haplotype heterozygosity, which is compared toits expected neutral equilibrium
value given S. A comparison with Equation 9.30b shows that the H test is essentially the
Ewens-Watterson test, but with its significance assessed by conditioning on S rather than

k. Note that the range on H is

2(n—1)
n2

<H<1- (9.34b)

l
n
with the lower bound set by the sample consisting of just two haplotypes, one with n — 1
copies and the other a singleton (n,-; = 1,n; = 1), while the upper range is set by all
of the haplotypes being present as singletons (n; = n). Critical values for these statistics

(conditioned onn and S) generated from coalescent simulations were tabulated by Depaulis
and Veuiue (1998).



Garud et al.’s H,, and H, Tests

A number of tests are built around haplotype homozygosity (HH), the probability that
two randomly chosen haplotypes are identical. This is given by the complement of the
Depaulis-Veuille H (haplotype heterozygosity) statistic (Equation 9.34a),

k
H=1-H=) p (9.35a)

1=1

where p; is the frequency of the ith haplotype in the sample. To adjust for sampling, some
variants of this statistic replace p? with [p; + (1/k)]?, where k is the number of haplotypes
(e.g., Kemper et al. 2014). As mentioned in Chapter 8, Garud et al. (2015) showed that a
simple modification of this statistic results in a test that can detect both hard and soft sweeps.

Their H;, test statistic combines the two largest haplotype classes into a single one,

Hyp = (p1 + p2)* + pr = H) + 2p1p2 (9.35D)
i>3



The logic is that a soft sweep results in not one, but several, dominant haplotypes. If the
sweep is not too soft, then the first two haplotypes, both presumably harboring the favored
allele, will together comprise most of the haplotype variation. In the case of a hard sweep,
the second-most frequent haplotype will be sufficiently rare that H,, ~ H,. The authors
applied this approach to Drosophila, looking at windows with a fixed number of SNPs and
adjusting for the local recombination rate and then used coalescent simulations to generate
values under the null of neutrality.

Garud et al. considered a second modified HH statistic, namely, the homozygosity with
the largest class removed

o= Y7 (9.35)
i>1
Under a hard sweep with its single dominant haplotype, H, should be considerably smaller
than H,, while under a soft sweep the drop-off in value from H; to H, should be much less
dramatic. Based on this observation, the ratio H,/H, forms the basis of a test as to whether
a detected sweep is hard or soft, with moderate values suggesting soft sweeps and very
small values suggesting hard sweeps (Garud et al. 2015; Garud and Rosenberg 2015).




Summary of tests based on the
allele-frequency spectrum (AFS)

Tests based on the allele-frequency spectrum AFS(k):

Ewens-Watterson Test: Observed allelic homozygosity vs. expected homozygosity under AFS(k)
Slatkin’s Exact Test: Observed AFS(k) vs. expected AFS(k)

Innan et al.’s HCT: Observed AFS(k) vs. expected AFS(k) conditioned on observed S

Hudson’s HP Test: Frequency of most common haplotype given S

Fu’s W: Test for deficiency of rare haplotypes given S

Fu'’s F,: Test for excess of rare haplotypes given 01 (average pairwise difference estimator)
Depaulis & Veuille’s K: Observed number of haplotypes given S

Depaulis & Veuille’s H: Observed haplotype diversity given S

Garud et al.’s H;2: Observed haplotype diversity combining the two most frequent classes
Garud et al.’s Hy: Observed haplotype diversity ignoring the most frequent class



Test based upon LD measures



Distribution of LD around a hard sweep
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At start, LD through sweep site. At fixation, strong LD
on either side, but not through, a sweep site



LD-based sweep tests

Kim and Nielson’s w statistic: LW with vs. across a
test region
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Strong test for hard sweeps, little power for soft sweeps

Kelly's Z, ¢ Statistic: Average pairwise LD through a
region
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Strong test for soft sweeps, little power for hard sweeps



Tests based upon allelic age

* The frequency of a neutral allele can be
used to estimate its age

— Can contrast this age estimator with
others (STR variation, recombination, etc)
e Key idea: under drift, a common allele
is an old allele

— Hence, "long haplotypes” should not be
found for common alleles



Tests based on frequency estimates of age vs. allelic-diversity estimates of age:

Age estimated by decay of LD between allele and a linked marker

Age estimated by number of segregating sites S within an allelic haplotype class

Age estimated by copy-number variance at tightly linked STRs in the allelic class

Age of a mobile element insertion estimated by divergence from its consensus sequence

See Chapter 9 for examples and methods



Long haplotype tests



Starting haplotype

freq /

time
Common alleles should have short haplotypes under
drift -- longer time for recombination to act

Common alleles with long haplotypes --- good signal

for selection, rather robust to demography 19



T[ ME Person of the Year

Dr. Pardis Sabeti, 38

Geneticist who sequenced the Ebola genome from the outbreak




Extended haplotype homozygosity (EHH)

Recall our previous discussion on the definition of an allele, namely a core SNP or
set of very tightly linked SNPs that define alternate classes. For alleles defined by a single
biallelic SNP, this generates two classes (sequences carrying the alternative SNP alleles).
The haplotype structure within each allelic class is examined by looking at shared variants

as one moves away from the core. The standard metric for the length of an allele is based on
its haplotype homozygosity (HH), the probability that two randomly chosen chromosomes
containing the same SNP variant (or core set of SNPs) are identical (homozygous) for all
markers within a specified region. Sabeti et al. (2002) defined extended haplotype homozy-
gosity (EHH) as the length of a region around the core allele (SNP) where HH has a value

of 5% or greater, namely, the length around the core where there is a 5% or greater chance

that any two random haplotypes of that allele are identical at all markers (Figure 9.6).
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Figure 9.6 Haplotype homozygosity (HH) is defined as the probability that two randomly
chosen chromosomes containing the same core SNP variant (used to define allelic classes) are
identical (homozygous) at all markers within a defined window. In the figure, HH is computed
at a series of SNP markers moving away from the core (allelic-defining) SNP. The open and
filled circles correspond to the HH values at a given SNP in the two allelic classes, namely,
the probability that random draws of chromosomes from the same allelic class are identical
within the region between the core SNP and the marker SNP. The relationship between HH
and distance from the core is usually summarized using one of two statistics. (Left) The
extended haplotype homozygosity (EHH) for an allelic class is the length of the region around
the core where the HH value is > 5% (above the dashed line). The allele corresponding to the
filled circles has a larger EHH value, and thus a longer haplotype. (Right) A potentially more
informative measure is given by the integrated EHH score, iHS, the total area under the HH
curve over the region spanned by the EHH for that allele. For ease of presentation, only the
values corresponding to the allele with the larger EHH value (filled circles) are plotted.




While alleles with excessive values of EHH are produced by partial sv:r’eeps, simply
scanning for sites with large EHH values will not serve as a sufficient indicator of selection, as
alocalized decrease in the recombination rate inflates the EHH value. The formal use of EHH
as a selection-detecting statistic thus requires an internal control. Sabeti et al. (2002) proposed
considering the relative extended haplotype homozygosity (rEHH) of a particular allele

(SNP variant), defined as the ratio of the EHH value for that allele divided by the average
EHH value for all other core alleles at the focal locus. For allele 4, this is given by

EHH;

rEHH; = ave(EHH;) for j # i

(9.40)

where ave(EHH;) denotes the average EHH values for all SNPs at the allelic-defining site.
For the biallelic case (an allele defined by a single SNP, as opposed to a collection of tightly
linked SNPs), rEHH is simply the ratio of the EHH values for the two alleles. By contrasting
different alleles at the same site, most concerns about local variation in the recombination
rates are ameliorated. However, if there are haplotype-specific recombination rates (e.g., the
insertion of a mobile element reducing local recombination rates; Macpherson et al. 2008),
then this test may be compromised. One consequence of comparing different alleles at a site
is that as one allele approaches fixation, the power of the test disappears, as there are too
few individuals in the comparison class to produce a meaningful statistic. As a result, the
rEHH test has a rather narrow time window for the detection of a sween: a roueh rule is
that the frequency of the favored allele must be 0.7 or less. Within such a time window, this
test is among the most powerful for detecting selection. Nonetheless, a large YEHH value
is not sufficient for suggesting selection, as some rare alleles (potentially being very young,
and hence with reduced time for recombination) are expected to have large rEHH values. To
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Figure 9.7 As a proof-of-concept of the rfEHH method, Sabeti et al. (2002) looked for signa-
tures of selection at two loci, G6PD and the CD40 ligand gene (TNFSF5), that carry segregating
alleles that are strongly suspected of increasing resistance to malaria. Standard site-frequency
tests (Taijma’s D, Fu and Li's D*, and Fay and Wu's H; see Table 9.1) were all nonsignificant.
However, recall from Chapter 8 that site-frequency spectrum signals are weak when the fa-
vored allele is at a modest frequency. The figure displays rEHH versus allele frequency for
the candidate alleles (solid squares) along with values for alleles at other randomly chosen
autosomal loci (open circles). The curves (from top to bottom) correspond to the empirical
95th, 75th, and 50th percentiles, respectively, of the cumulative distribution. (After Sabeti et
al. 2002.)



Integrated EHH score (iHS)

Variant tests based on the length of shared haplotypes have been proposed by a number
of researchers (e.g., Toomajian et al. 2003, 2006; Hanchard et al. 2006; Wang et al. 2006); see
Table 9.3. Perhaps the most powerful modification is from Voight et al. (2006), who extracted
more LD information than simply the size of the EHH and corrected for differences in the
local recombination rate and the target-allele frequency. One potential advantage of this
approach is that while the EHH test has high power when the correct SNP is chosen to define
alleles for the haplotype-length comparisons, its power falls off dramatically if the choice
is off by even one polymorphic site (Zeng et al. 2007a). Voight et al.’s more comprehensive
statistic may avoid this problem. Their approach used polarized data, with p denoting the
frequency of the derived (D) SNP and 1 — p denoting the frequency of the ancestral (A) SNP.
To extract more information, they computed an integrated EHH score (iHS), the area under
the curve drawn by connecting the adjacent values for the SNPs within the EHH (Figure
9.6). They defined the (unstandarized) integrated EHH score (iHS,,,) as the log of the ratio
of the iH S score for the ancestral allele to that for the derived allele

: B itHS 4
itHS,, =1n (iHSD) (9.41a)




iHS:ln('gﬁzﬁ) > [ (53)] (9.41b)

SD, [1n ({732 ]

The expectation (E,) and standard deviation (SD,) are subscripted by p to highlight that
these statistics are computed over all i 1 S,,, values in the genome for SNPs whose derived
allele frequency is p. Standardizing the score with respect to p automatically incorporates
any relationship between the iH S,,, score and the allele frequency (and hence the age for
a neutral allele). The authors noted that this approach seems fairly robust to demographic
departures from the equilibrium neutral model, especially at extreme values of the stan-
dardized score. Despite this, Voight et al. correctly did not assign significance values to
individual i H S values, but rather used large (absolute) scores as a screening method for
potential sites under selection.




Number of segregating sites by length (nSL)

Ferrer-Admetlla et al. (2014) proposed a statistic that is very similar in form to :H S
but counts length variation differently. Their number of segregating sites by length (nS;)
statistic replaces the average area under the i H S curve by the average number of consecutive

segregating sites shared by two randomly sampled chromosomes around a specific SNP

variant. This average statistic for the ancestral and derived alleles replaces i HS 4 and iH Sp
(respectively) in Equation 9.41b. Ferrer-Admetlla et al. noted that this simple change in
the metric results in a test that is significantly more robust to recombination and slightly

more robust to nonequilibrium departures than the i H S statistic. When applied in a human
genome scan, the method did not yield the large enrichment of significant scores in regions
of low recombination typically seen when other (more recombination-sensitive) tests are
used (e.g., O'Reilly et al. 2008). Further, their simulations found that n.S;, has reasonable
power to detect ongoing sweeps, even those from standing variation.



Singleton density score (SDS)

Another variant of this basic idea was recently suggested by Field et al (2016). Their
singleton density score (SDS) measures the length of haploggges by calculating the distance

to the nearest singleton from a candidate site (looking on either sides). This distance can be
turned into an estimate of the mean branch length in the coalescent tree for that allele, and

the estimates for the ancestral and deviate allele at a target site are contrasted. Specially, the
test statistic is

SDS =1In (tf‘) (9.42)

tp

where 7 are the estimated coalescent times from the singleton distance. As with several of
the above test, the contrast the two alleles at a site controls for local variation in recombi-
nation and mutation rates. Under recent selection, the average branch lengths for an allelic

class should be much shorter, resulting in longer distances to singletons. As with other

haplotype-based approaches, comparisons are made over classes with the same derived
allele frequencies. Field et al found that their SDS test had power to detect very recent
selective events (within the last ~100 generations), a time scale usually too short for other
haplotype-based methods (e.g., iHS) to show a strong signal. Further, they showed that with
a sample size of 3000 individuals (and a derived allele frequency of 0.7), that they could
detect ongoing events with a 2% selective advantage.




Tests contrasting haplotype lengths of alternative alleles in the same population:

Sabeti et al.’s rEHH: Ratio of the haplotype lengths (EHH ) of two alternative alleles

Wang et al.’s LDD: Rate of linkage disequilibrium decay, modification of EHH

Hanchard et al.’s nHS: Haplotype diversity of the derived allele relative to the ancestral allele

Voight et al.’s iHS: Ratio of area under the EHH curve for ancestral vs. derived alleles

Ferrer-Admetlla et al.’s nS;,: Very similar to 1HS, with the number of consecutive shared
polymorphic sites replacing the area under the EHH curve

Field et al.’s SDS: Distance to nearest singleton, yielding an estimated mean allelic branch length

Barreiro et al.’s DIND: Ratio of nucleotide diversity in derived vs. ancestral allele

Tests contrasting haplotype lengths of the same allele in two populations:

Sabeti et al.’s XP-EHH , Tang et al.’s In(Rsb): Ratio of area under the EHH curve in
different populations

Kimura et al.’s rHH vs. rMHH plot: Ratios of overall HH to HH based on
most frequency haplotype

Lange and Poll’s xpp test: Contrast of pairwise haplotype sharing between populations



Summary: Tests Based on Haplotype/LD Information

As summarized in Table 9.2, different kinds of sweeps (hard, partial, and soft) leave different
haplotype signals. Given the diversity of such signals, it is not surprising that there are a
number of haplotype-based tests to detect these different features (Table 9.3). LD-based
tests are generally regarded as the most powerful for sweeps that are currently underway. Site-
frequency spectrum tests often perform poorly under a partial sweep, as the distortion in
the frequency spectrum is often not sufficiently powerful. Signatures from both a recently
completed partial sweep, and a currently ongoing hard sweep, include long haplotypes at
excessive frequencies, alleles that are at too high a frequency given other estimates of their
age, an excess of one or a few haplotypes, and a reduction in haplotype diversity.

In addition to their unique role in detecting partial sweeps, LD summary statistics can
also offer significant power to detect just-completed sweeps. Under a hard sweep, the unusual
pattern of high LD on either side of, but not across, a selected site can be detected using
Kim and Nielson’s w statistic (Equation 9.37). However, this statistic has no power to detect
a soft sweep. Conversely, Kelly’s Z,,, statistic (measuring average pairwise LD throughout
a region; Equation 9.36b) can detect a recently completed soft sweep but has no power to
detect a just-completed hard sweep.

As with almost all the tests discussed in earlier sections, haplotype-based tests can also
generate false positives for neutral alleles in nonequilibrium populations. The standard ap-
proach of using outlier analysis to suggest regions of interest and coalescent simulations
(using marker-based demographic estimates) can also be used here, with the same caveats.
As mentioned, both outlier analysis and coalescent simulations use corrections based on
genome-wide patterns and thus do not adjust for allelic surfing. This is especially trouble-
some, for as outlined below, the species most surveyed for recent selection—humans, the
cosmopolitan human commensal Drosophila (melanogaster and simulans), and Arabidopsis—
are all known to have undergone massive spatial expansions over the last 100,000 years,
making them prime candidates for surfing.




