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Divergence-based tests

* Population-based divergence tests. Contrast the levels
of polymorphism within a reference population with
the level of divergence between populations or species

— different classes of sites within the same gene (the McDonald
-Kreitman, or MK, test)

— different genes (the Hudson-Kreitman-Aguade’, or HKA, test)

* Phylogeny-based divergence tests. Contrasts the rates
of evolution at different sites within a gene over a
number of species in a phylogenetic context.

— K, to K, ratios

— Codon models



A History of Selection Alters the Ratio of Polymorphic to Divergent Sites

Population-based tests contrast the patterns of within-species polymorphism and between-
species divergence to see if they are in concordance with their neutral expectations. Under
the equilibrium neutral model, two standard measures of polymorphism under the infinite-
sites model are functions of 4N, u (where p is the per-site mutation rate): the nucleotide
diversity, m, and the number of segregating sites, S. These have expected values of E[r| =
4N p and E[S] = 4N,p a,, where a,, is a constant that depends only on the sample size, n
(Equation 9.21a). Under the assumptions of the equilibrium neutral model, the relationship
between polymorphism (measured by nucleotide diversity, 7) and the between-population
divergence (D) for the ith gene being considered is

My = 4Ncliz‘, D,‘ - 2t/-‘z' (10.1&)
where N, is the effective population size, and ¢ is the divergence time in generations. Hence,

m _ ANep; _ 2N,
Di N 2t[1,1‘ - t

(10.1b)

Because the gene-specific mutation rates cancel, under the equilibrium neutral model, the
/D ratio at all loci should be roughly the same, namely 2N, /t (subject to random sampling).
When polymorphism is instead scored as the number of segregating sites, S, then

Sz' . 2Ncan

10.1
D, ; (10.1c)




Example 10.1. McDonald and Kreitman (1991a) examined the Adh (alcohol dehydrogenase)
locus in the sibling species Drosophila melanogaster and D. simulans. Within this gene, they
contrasted replacement (nonsynonymous) and silent (synonymous) sites. At the DNA level,

a replacement-site mutation results in an amino acid change, while a silent-site mutation still
codes for the ancestral amino acid. Equation 10.1c indicates that, under neutrality, the ratio of
the number of segregating sites to the number of fixed differences should be the same for both
categories of sites. This results in a simple association test, and significance can be assessed
using either a x? approximation or the (much better) Fisher’s exact test, which accommodates
small numbers in the observed table entries. Of the 24 fixed differences between the two species
seen by McDonald and Kreitman, 7 were replacement-site mutations and 17 were silent-site
mutations. The total number of polymorphic sites segregating in either species was 44, 2 of
which were replacement and 42 of which were silent. The resulting association table becomes

Fixed Polymorphic
Silent 17 42
Replacement 7 2

Fisher’s exact test gives a p value of 0.0073, indicating a highly significant lack of fit to the
neutral equilibrium model. Based on the ratio of 42:2 silent/ replacement polymorphisms, the
expected number, x, of replacement fixations is 17/x =42/2, or x = 0.81, i.e., ~1 replacement

polymorphism is expected under neutrality. Because 7 were seen, this suggests roughly 6
adaptive substitutions, or that 86% (6/7) of the Adh amino acid substitutions between these
species are adaptive.



A History of Positive Selection Alters the Ratio of
Silent- to Replacement-site Substitution Rates

Phylogeny-based divergence tests do not require polymorphism data, but rather simply
contrast the divergence rates at silent versus replacement sites. Silent sites are treated as
proxies for neutral sites, although we have seen that they may be under (at least) weak
selection (Chapter 8). Mutations at replacement sites are generally viewed as being under
much stronger selection, most of it purifying. The primary evidence that such negative
selection (removal of new deleterious mutations) is widespread is the observation that
silent-site substitution rates are almost always much higher than those for replacement sites,
when averaged over an entire gene. This pattern is expected if a higher fraction of mutations
in replacement sites is deleterious relative to that in silent sites. However, there are cases
where, for a limited region within a gene, the replacement-site substitution rate exceeds
that for silent sites, suggesting the presence of adaptive fixation (i.e., positive selection).

While there are several variant notations in the literature, we use K, to denote the
per-site silent substitution rate and K, to denote the per-site replacement rate between
taxa (the subscript 2 indicating a change in an amino acid); K, and K, are also used in
the literature to denote replacement-site (i.e., nonsynonymous) substitution rates. A value
of K,/K, > 1 indicates a long-term pattern of positive selection at replacement sites. As
Example 10.2 illustrates, even if this is occurring at specific regions within a gene, when
averaged over anentire gene, K, / K isusually < 1. Thus, while an observationof K, /K, > 1
is almost universally accepted as a signature of a long-term pattern of multiple episodes
of positive selection, such inflation is almost never seen if the entire gene is taken as the
unit of analysis. Phylogeny-based methods (examined below) accommodate this concern
by taking the codon as the unit of analysis, first placing genes within a phylogeny and then
using codon-evolution models to test whether K, /K, > 1 for some subset of codons.
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Example 10.2. One of the classic examples of using sequence data to detect signatures of
positive selection is the work of Hughes and Nei (1988, 1989). They examined the major
histocompatibility complex (MHC) Class I and Class II loci of mice and humans, highly poly-
morphic genes involved in antigen recognition. A large number of prior studies on other genes
had found that an excess of silent substitutions is almost always the norm, implying that most
replacement changes are selected against. Indeed, when one looks over an entire Class I (or 1)

MHC gene, this pattern is also seen. The insight of Hughes and Nei was to use data on protein
structure to specifically focus on the putative antigen-binding site and to compare this region
with the rest of the gene as an internal control.

Hughes and Nei compared the ratio of silent- to replacement-site nucleotide substitution
rates in the putative antigen recognition sites versus the rest of the gene. For both Class I and
Class II loci, they found a significant excess of replacement substitutions in the recognition
sites and a significant deficiency of such substitutions elsewhere. If both types of substitutions
were neutral, the per-site rates should be roughly equal. If negative selection is acting, the
expectation is that the silent-site substitution rate would be significantly higher (reflecting the
removal of deleterious replacement mutations). However, if positive selection is sufficiently
common among new mutations, one expects to find an excess of replacement substitutions.
The observed patterns for both Class I and II loci were consistent with positive selection within
the part of the gene coding for the antigen recognition site and purifying selection on the rest
of the gene.



Divergence-based Tests are Biased Toward Conservative Sites

A major (but subtle) distinction between most methods in this chapter and those in Chapter 9
are that the latter usually have very little restrictions on the kinds of sequences being scanned
for selection. In contrast, most divergence-based tests were built (at least initially) around
analyses of protein-coding sequences (HKA is an exception), such as contrasts between

silent and replacement sites or the substitution patterns at a codon (or set of codons) over a

phylogeny. In such settings, these methods focus almost exclusively on detecting structural

adaptations, namely, adaptive changes in the amino acid sequence. As we saw in Chapter

9, regulatory changes are thought to be at least as important as structural changes for short-
term adaptation.

One reason for the focus on protein-coding regions in divergence-based tests is that
one must be able to align homologous sequences. Because they accept relatively few in-
sertion or deletion mutations, long open-reading frames allow one to align homologous
coding sequences, even over fairly substantial periods of evolutionary time. By contrast,
this is often not the case for regulatory sequences, especially when considering that we still
have a limited (albeit improving) ability to detect the full universe of such sequences. As
shown in several examples below, divergence-based approaches have been applied to highly
conserved regulatory regions, which offer a better opportunity for comparing homologous
sequences over evolutionary time. However, this also biases these tests toward regions un-

der strong functional constraints. Thus, the very interesting question of whether structural

changes may be more important than regulatory changes for long-term adaptation cannot
be fully addressed by divergence-based data alone, as these have a bias toward detection in
highly conserved regions, whether structural or regulatory. Extensive regulatory changes
in less-conserved regions may be entirely missed by most divergence-based tests. Despite
these isses, there are hints starting to emerge of at least as many adaptive substitutions in
noncoding regions as there are in coding regions (as we detail below).




What Fraction of the Genome is Under Functional Constraints?

The amount of metazoan DNA that codes for proteins and structural RNAs (the so-called
coding DNA) is usually just a fraction of their total genome. The role of the remaining (and
usually majority) component of the genome, the noncoding DNA, has been the subject of
numerous debates as to its evolutionary role and function. This raises a central question
of just what fraction of the genome is under some sort of functional constraint (and there-
fore, selection). Chiaromonte et al. (2003) denoted this fraction by a.;, which is somewhat
unfortunate notation given the widespread use of o for the fraction of adaptive substitu-
tions (to be covered in detail shortly). One obvious approach for estimating as; is from
the amount shared conserved sequences between two divergent taxa. For example, early

studies searched for regions first shared between mice, humans, and dogs, and later over

a wider range of mammals, arriving at the result that around 6% of the human genome
is conserved over such time scales (Lindblad-Toh et al. 2005, 2011). This is six-fold more
than the 1% of the human genome that codes for proteins (~33 MB out of a total of ~3100
MB; Church et al. 2009). Andolfatto (2005) estimated a much higher value of a,.;, between
40% and 70%, for Drosophila melanogaster, with about twice as many constrained sites in
noncoding, as opposed to coding, regions. Such comparisons, especially when based on
widely-divergent taxa, are simply lower bounds, as sequences under functional constraints
can still turnover through time, escaping detection (Dermitzakis and Clark 2002). Indeed,
Pheasant and Mattick (2007) suggested that the functional portion of the human genome
may exceed 20%, basing their argument on the fact that rapidly evolving regions will not
be detected through sequence conservation studies.




Further insight into a,,; can be gained by examining how the amount of conserved
sequences shared between species pairs changes with their divergence times. This approach
was used by Meader et al. (2010), who found that the fraction of shared conserved sequences

among mammals decreased over time, and used the rate of this decrease to estimate that

between 200 and 300 MB (6.5% to 10%) of the human genome is under functional constraints.
A more refined estimate arrived at a value of around 8% (Rands et al. 2014). Hence, roughly
88% (7/8) of human constrained sites are found in noncoding regions. Meader et al. also
used their approach on Drosophila melanogaster, finding an o, value of between 47% and
55%. Given around 22 MB for coding DNA and their estimate of 3545 MB of constrained
noncoding DNA, roughly two-thirds of the constrained sites are in noncoding regions.

These estimates of the amount of constrained noncoding DN A raise a number of impor-
tant evolutionary questions (beyond the obvious one of their functional role). How strong
is selection in noncoding regions? How often do adaptive mutations arise from these non-
coding regions? What fraction of segregating deleterious mutations are attributable to these
regions? While unbiased answer to these questions remain elusive, preliminary estimates
based on conserved noncoding regions and on transcription factor binding sites suggest
that noncoding DNA is likely a rich source of adaptive substitutions.




HKA test

* Hudson, Kreitman, and Aguade” (1987)
proposed the first approach to jointly use
polymorphism and divergence data.

— Their HKA test

* Unlike many of the other divergence-based
tests, HKA can be applied to any type of
sequence data (not just a contrast between
replacement and silent sites).
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The Hudson-Kreitman-Aguadé (HKA) Test

Hudson, Kreitman, and Aguadé (1987) proposed the first approach to jointly use polymor-
phism and divergence data. Unlike many of the other divergence-based tests, their’s can
be applied to any type of sequence data (not just a contrast between replacement and silent
sites). Their HKA test is formulated as follows. Consider two species (or very distantly re-
lated populations) A and B, which are both at mutation-drift equilibrium with effective pop-
ulation sizes of N4 = N, and Ny = JN,. Further assume that they separated r = t/(2N,)
generations ago from a common population of size N} = (Na + Ng)/2 = N.(1 + 6)/2,
the average of the two current population sizes. Suppose ¢ = 1,---, L unlinked loci are
examined in both species. We allow the neutral mutation rate, y;, to vary over loci, but
assume (for a given locus) that it has been the same in both species, and hence unchanged
during divergence. The expected number of neutral segregating sites at locus i is a func-
tion of ; = 4N.p; in species A, and 4Npu; = 4(6N.)u; = 60; in species B. The expected
divergence between A and B is 2tu;, which we can express as

t
2N,

2t/.Li = 2 2Nc[1,1' = ’Tgi
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Equations 10.3a and 10.3b follow from the infinite-sites model (Equations 4.3a and 4.4a,
respectively). Equation 10.3c follows if we rewrite

146 t 1+6 N.(1+9
0, (T+L)=4Ncui( * )=2uit+4mc(—+)=2mt+4N:,u,;

2 2Nc+ 2 2



More formally, the HKA test statistic, X2, is given by

L
X?=> "X} (10.2a)
1=1
where

+ (10.2b)

The HKA test statistic is approximately chi-
square-distributed with 3L — (L + 2) = 2L - 2
degrees of freedom, given the 3L observations
and L+2 parameters (61 ...0, T, 0) to estimate



Example 10.3. Hudson et al. (1987) partitioned the Adh gene into two regions, silent sites and
4-kb of the 5’ flanking region, corresponding to a test using L = 2 loci. (The careful reader
might be concerned that these loci are linked, while the HKA test assumes independence
across loci. The high recombination rates in Drosophila result in LD generally being over only
very small distances.) A sample of 81 Drosophila melanogaster alleles was examined, along with
a single allele from its sibling species D. sechellia. Based on sequencing data, the divergence
was 210 differences in the 4052-bp flanking region and 18 differences in the 324 silent sites,
amounting to roughly equal levels of divergence per base pair between the two “loci.” Based
on restriction-enzyme data, within melanogaster, 9 of the 414 5 flanking sites were variable,
while 8 of 79 Adh silent sites were variable. Thus, while the per-site divergence was roughly
equal, there was a four-fold greater polymorphism level at silent sites.

The test static value as 6.09. Because Pr()(1 2> 6.09) =
0.014, the test indicates a significant departure from
the equilibrium neutral model.



Example 10.4. Ingvarsson (2004) examined chloroplast (cpDNA) diversity in two plants in
the genus Silene (family Caryophyllaceae). A standard HKA test contrasting four noncoding
regions of the chloroplast (treated as a single locus) and two unlinked autosomal genes between
S. vulgaris and S. latifolira gave a highly significant value, with most of the signal (using
Equation 10.2b) coming from the cpDNA region. However, the estimated F'g value (Chapter
2) for cpDNA was 0.546 versus 0.056 for nuclear genes, showing strong population structure
at the organelle-gene level but only modest structure for nuclear genes. Ingvarsson attempted
to correct for these between-gene differences in the amount of structure as follows. Under an
island model of migration (Chapter 2), to a first approximation, population structure increases
the amount of segregating sites and decreases the divergence, both by a factor of 1 — Flg.
Ingvarsson thus corrected the observed number, S, of segregating sites by using S, = (1 —

Fsr)S and the divergence by D. = D/(1 — Fsr). Applying these corrections to both
the cpDNA and nuclear genes and using the S; and D, values in the HKA test yielded a

nonsignificant result. Thus, the apparently strong signal of selection appears to simply be an

artifact generated by nuclear and organelle genes having different population structures.

Note: The entire coDNA or
mMtDNA genome is considered
as a single locus under the HKA
test




The McDonald-Kreitman (MK) Test

* One of the most widely-used tests

* Requires a polymorphism sample from one
species and a divergence sample between
species

* Robust to demography, provided that the effectively

neutral mutation rate is the same during the
polymorphism and divergence phases

* Contrasts the amounts of polymorphism and
divergence between two categories of sites
within a single gene

— Typically silent vs. replacement sites



The McDonald-Kreitman (MK) Test: Basics

One of the most straightforward, and widely used, tests of selection was proposed by
McDonald and Kreitman (1991a), who contrasted the amounts of polymorphism and di-
vergence between two categories of sites within a single gene (Example 10.1). Typically,
these categories are silent versus replacement sites, but the basic logic can be extended to
other comparisons. Under the neutral theory, deleterious mutations are assumed to occur,
but to then be quickly removed by selection, thus not contributing to either polymorphism
or divergence (Figure 7.1). In the standard neutral-theory expressions for the amount of

polymorphism (4N, u) and divergence (2tu), u is the effectively neutral mutation rate, which
is the rate at which effectively neutral (4N, |s| < 1) mutations arise. While most mutations
at silent sites may often be effectively neutral, a much smaller fraction, f, of new mutations
at replacement sites are neutral, resulting in a lower effectively neutral mutation rate, f.
Given that f is the fraction of replacement mutations that is effectively neutral, 1 — f is a

measure of functional constraints, with values of 1 — f near one (f ~ 0) implying that most
new mutations are not effectively neutral (i.e., they are deleterious). A minor bookkeeping
detail is that the silent and replacement mutation rates in the MK test refer to the sum over
all sites, so that yu, = ung and p, = pfn, are the total neutral mutation rates over the
collection of n; silent and n, replacement sites in the gene of interest (generally n, > 2n,
as all second-base and many third-base positions within codons are replacement sites).




As before, under the eciuilibrium neutral model, the expected number of substitutions
(D;) in site class i is 2t p;, while the expected number of segregating sites (S;) in a sample of n
sequences is a,,0; (Equation 9.21a). Because S; is a measure of the amount of polymorphism,
we denote it by P; to conform to the standard notation for MK tests. Thus, under neutrality,

D, 2tp, 2tupfn, Ng P, S, a,0, 4N.pufn,

D,  2tu, 2tun, / ng’ P, S, a,0, 4N.,un,

=f Z—: (10.5a)

where the subscript a denotes replacement (amino-acid changing) sites, and s denotes silent
sites. Hence, under the equilibrium neutral model, we expect that, on average,

Do/Ds = P, /P, (10.5b)

If some replacement sites are under positive selection, because of their rapid sojourn times

relative to drift, these will generally contribute very little to the within-species polymor-
phism (Kimura 1969; Smith and Eyre-Walker 2002; Figure 7.1), but they will result in an
excess of replacement substitutions, so that D,/D, > P,/P;. Similarly, note that

P, ayb, a,4N.ufn, a,2N, P,  a,0, ay2N,
D, 2tp,  2tpufn, — t D, 2tps

(10.5¢)

and thus, under neutrality, we also have

P,/D, = P,/D, (10.5d)



McDonald and Kreitman provided a more general derivation of the polymorphism
ratio in Equation 10.5a, replacing 4N, (the equilibrium value) by T}, the total time on all of
the within-species coalescent branches (Chapter 2). By considering the ratio of the number
of polymorphic sites in the two categories, the common term T3, cancels, so that any effects
of demography also cancel. Hence, provided the effectively neutral mutation rates remain
unchanged, the MK test is unaffected by population demography (Hudson 1993; Nielsen

2001). Because the coalescent structure that determines the amount of polymorphism is
explicitly removed by using the P, / P; ratio, there is no assumption that the allele frequencies
are in mutation-drift equilibrium nor any assumption about constant population size. This
is a very robust feature not shared by most other tests of selection.

Thus, while Zhai et al. (2008) found that the HKA test was more powerful than the
MK test when the equilibrium assumptions hold, the robustness of the MK test (and lack
of robustness of the HKA test) when demographic issues are present favors the use of the
former. However, as we will see shortly, the MK test is by no means foolproof, as changes

in the effective population size can influence the effectively neutral mutation rates (the rate

at which alleles with 4N, |s| < 1 arise), which can bias some of the comparisons used by
the test. Another complication is that mildly deleterious alleles can contribute to within-
species polymorphisms, but not to between-species divergence, and thus their presence
inflates the polymorphism ratio over the divergence ratio, reducing the power to detect
positive selection.




The MK test is performed by contrasting polymorphism and divergence data at silent
and replacement sites for the gene in question. Given that these two ratios are expected to
be equal under neutrality, the test uses a simple 2 x 2 contingency table (Example 10.1).
The presentation of the data required for the MK test is often referred to as either an MK
table or a DPRS table, the latter based on the (clockwise order) of the table’s four cat-
egories: Divergence (number of substitutions), Polymorphism (number of segregating
sites), Replacement, and Silent (or Synonymous):

Divergence  Polymorphism
Silent D, P,
Replacement D, P,

Example 10.1 presented the original data used by McDonald and Kreitman, while Example
10.5 shows how their test can be modified to examine different regions within the same
gene.



Example10.5. Le Correetal. (2002) examined the FRIGIDA (FRI) gene in Arabidopsis thaliana, a
key regulator of flowering time. European populations show significant variation in flowering
time, with potentially strong selection for earlier flowering having arisen following the end of
the last ice age. For the data below, fixed differences (divergence) were obtained by comparing
A. thaliana with A. lyrata, while data on numbers of segregating sites are based on A. thaliana
populations.

Entire coding region Fixed Polymorphic

Silent 59 7

Replacement 68 21 Fisher test p = 0.056
Exon 1 Fixed Polymorphic

Silent 30 2

Replacement 38 16 Fisher test p = 0.013
Exons 2 and 3 Fixed Polymorphic

Silent 29 5

Replacement 30 5 Fisher test p = 1.000

The FRIlocus clearly shows heterogeneity in patterns of selection when contrasting exon 1 with
the remaining exons, and detecting such within-gene heterogeneity may provide important
clues for a putative region under functional selection.



These data could be interpreted simply as a reduction on functional constraints in exon 1,
resulting in a smaller fraction of segregating replacement mutations being deleterious. In prin-
ciple, this could occur because of a shift in the selection pressures or for purely demographic
reasons, such as a recent reduction in the effective population size increasing the effectively
neutral mutation rate. However, there is a nice internal control in that exons 2 and 3 do not
display a decrease in the ratio of fixed to polymorphic replacement sites relative to silent sites,
which appears to rule out a reduction in effective population size in thaliana accounting for
the reduction in constraints. The authors noted that roughly half of the replacement polymor-
phisms in exon 1 are loss-of-function mutations, which result in early flowering. Hence, it
appears that the excess number of replacement polymorphisms in exon 1 likely results from
selection for early flowering in some populations. Further, because a nonfunctional copy of FRI
results in early flowering, there are a large number of mutational targets to achieve this phe-
notype (and hence a high effective mutation rate), which likely explains the large number of
replacement polymorphisms. In effect, these data appear to show an ongoing multiple-origins
soft sweep (Chapter 8).




A McDonald-Kreitman test will be significant when P, /D, is significantly different
from P;/D, (Equation 10.5d). Because it is assumed that the silent-site ratio is unchanged
by selection, a significant MK test can occur either through an excess of replacement poly-
morphisms (P, too large relative to D, and P,/D,) or through an excess of replacement
substitutions (D, too large relative to P, and P;/D;). The neutrality index of Rand and
Kann (1996),

_ Py/Dy _ Py D,
- P,/D,  P,D,

indicates which of these two scenarios occurs. Note that NI is simply the odds ratio for the
MK contingency table (Jewell 1986). A value greater than one indicates more polymorphic

NI

(10.6a)

replacement sites than expected, while a value less than one indicates an excess of replace-
ment substitutions. Values less than one suggest that some of the substitutions are adaptive,
while values greater than one are suggestive of weakly deleterious segregating alleles.




Example 10.7. Consider Le Corre et al.’s data on the FRI gene (Example 10.5). For exon 1,
the neutrality index is

P./D.  16/38
NI = =
P,/D,  2/30

showing that the significant result is due to an excess of segregating replacement sites. Con-
versely, for exons 2 and 3

= 6.42

5/30
NI = 5/29 0.97
suggesting a good fit to the neutral model, with neither an excess of polymorphic site nor of
fixed replacement sites.

Our interpretation of the signal in exon 1 was as a sign of ongoing selection of alleles
for earlier flowering (Example 10.5). However, the NI value is also consistent with an excess
of slightly deleterious alleles in this region, thus inflating the levels of replacement polymor-
phisms. The lack of such a signal in exons 2 and 3 argues against this, but it remains a formal
possibility that slightly weaker selection in exon 1 (relative to exons 2 and 3), coupled with a
genomewide reduction in V., could account for the excess polymorphism in exon 1. However,
evidence for a recent population expansion argues against this.




Peter Andolfatto Carlos Bustamante



Example 10.6. Andolfatto (2005) examined 35 coding and 153 noncoding fragments from a
Zimbabwe sample of 12 D. melanogaster X chromosomes, with a single D. simulans X as an

outgroup. The numbers of observed polymorphic and divergent sites were then lumped into
various classes as follows:

Polymorphisms Fisher Test p value
Mutational Class  Fixed All sites  Minus singletons All sites Minus singleton:
Silent 604 502 323 N —
Replacement 260 115 52 47-1077  43.1071°
Noncoding 3168 2386 1295 14-107% 52.107°
5 UTRs 328 160 71 27-107%  1.7.1071°
3" UTRs 143 86 36 33.1072 82.10°°

Given the small sample size (n = 12 chromosomes), polymorphism data are reported
both as the total number of segregating sites (all sites) and the total number of segregating sites
minus the singletons. The logic for removing singletons is the concern that slightly deleterious
alleles can contribute to segregating sites (although they will be rare) but are unlikely to be-

come fixed, and if retained in the analysis, will result in the polymorphism ratio overpredicting

the number of fixed sites. Using the silent class as the neutral reference, McDonald-Krietman

tests were performed against each of the four remaining categories (replacement, noncoding,
5 UTR, and 3’ UTR), and computed separately using either all polymorphisms or only poly-
morphisms that were not singletons. The exclusion of singletons (“Minus singletons” column
above) decreases the p values (increasing significance) in all cases. Even after correcting for

multiple tests, all of the comparisons based on polymorphisms minus singletons were highly
significant.



Example 10.8. Bustamante et al. (2005) sequenced roughly 11,600 genes in 39 humans and
contrasted the results with human-chimp divergence at these same loci. Summing over all
sites, the resulting DPRS table (where SNPs denote polymorphic sites) was

Divergence  SNPs
Silent 34,099 15,750
Replacement 20,467 14,311

As in Example 10.6, this analysis differs from a standard MK test, as the values for a large
number of loci are aggregated into a single table. The resulting p value, < 10~%, was highly
significant, meaning that the neutral model is rejected.

What is the source of the discrepancy? Equation 10.6a gives the neutrality index as

vy Pa/Da _ 14,311/20, 467

_ — — 1.514
P,/D,  15,750/34,099

showing that the lack-of-fit to the neutral model is driven by an excess of replacement poly-

morphisms (SNPs). The authors suggest that these polymorphisms are mainly deleterious, a

view echoed by Hughes et al. (2003). Consistent with this conclusion, in an analysis of ~47,500
replacement SNPs in a sample of 35 humans, Boyko et al. (2008) used the site-frequency spec-
trum to estimate that 27-29% of these SNPs were effectively neutral, 30-42% were moderately
deleterious, and nearly all of the rest were highly deleterious (we will discuss how such values
are obtained shortlv). This large fraction of segregating deleterious alleles significantly lowers
the power of MK tests. Indeed, Charlesworth and Eyre-Walker (2008) noted that because of
excessive replacement polymorphisms, MK tests in humans are very underpowered.



One potentially significant advantage of the MK test is that it does not assume constant
population size or that mutation-drift equilibrium has been reached, and hence is rather
robust against many of the demographic concerns that plague other tests. Balancing this
advantage are two subtle (but serious) problems, both relating to how the distribution of
fitness values for new alleles impacts the observed data (polymorphisms and substitutions).

First, the MK framework assumes that deleterious mutations are strongly deleterious and

make essentially no contribution to either the number of segregating or fixed sites. In fact, how-

ever, weakly deleterious mutations (i.e,, —10 < 4N.s < —1) can contribute to segregating
polymorphisms (especially because the MK test uses the number of polymorphic sites, not
their frequencies), but they are highly unlikely to become fixed (Figure 7.1). Such mutations
are overrepresented in polymorphic sites relative to fixed sites, which reduces the power
of the MK test to detect an excess of replacement substitutions (and hence a signature of
positive selection). We assume that the impact from any overrepresentation of selected poly-
morphisms at silent sites (our neutral proxy) is small, as these are either neutral or under
very weak purifying selection. Conversely, overrepresentation is potentially a significant
problem at polymorphic replacement sites. One proposed correction for this problem is to

drop “rare” polymorphisms, but this is a rather subjective endeavor. Dropping singletons
(Templeton 1996) as in Example 10.5 provides one simple correction, while other authors
(e.g., Fay et al. 2002; Smith and Eyre-Walker 2002; Gojobori et al. 2007) have suggested
including only “common” polymorphisms in the analysis, such as those with minor-allele
frequencies above 0.10. We return to this issue shortly.



The second concern is even more problematic. At the heart of the MK test is Equation
10.5a. Under the neutral hypothesis, the ratio of polymorphic sites and the ratio of substitu-
tions both estimate the same quantity, f (scaled by the sample-size correction factor n, /ns),
the ratio of effectively neutral mutation rates for the two categories. Recalling (Chapter 7)
that any mutation for which 4N, |s| < 1 behaves as if it were effectively neutral, the caveat
is that the effectively neutral mutation rate, fp, changes with N,.Itis important to stress that the
total mutation rate, y, remains unchanged, but the fraction, f, of these mutations that are
effectively neutral can decline with increasing N,, resulting in a decline in fu. Figure 10.1
shows that estimates of f do indeed decrease as the effective population size, N,, increases,
as the amount of constraint, 1 — f, increases with N,. For the same distribution of selection
coefficients, one can raise (or lower) f (and hence the effectively neutral substitution rate)

by decreasing (or increasing) the effective population size. If the effective population size
is significantly different during the divergence phase (when substitutions were fixed) than
in the current phase (which generates the observed number of polymorphisms), then these
two phases could have different fractions of mutations that are effectively neutral. Because
the ratios D, /D, and P, /P, estimate the f values for these two different phases, they can
have different expected values.
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Figure 10.1 The estimated constraint, 1 — f, on replacement sites as a function of effective
population size, where f is the ratio of effectively neutral mutation rates (the fraction of new
mutations that efficiently behave as neutral alleles) at replacement versus silent sites. As N,
increases, more deleterious mutations move from the effectively neutral class into the strongly
deleterious class (f decreases), reducing the effectively neutral mutation rate and increasing
the amount of constraint on a gene. (After Wright and Andolfatto 2008.)



Example 10.9. An example of some of the potential difficulties in interpreting the results of a
McDonald-Kreitman test was seen in a study of the human melanocortin 1 receptor (MCIR), a
key regulatory gene in pigmentation (Harding et al. 2000). In comparing the canonical MCIR
haplotype in humans with a sequence from chimpanzees, these authors found 10 replacement
and 6 silent substitutions. An African population sample revealed no replacement and 4 silent
polymorphisms, giving the MK table as

Fixed (Human-Chimp) Polymorphic (African)
Silent 6 4
Replacement 10 0

Fisher’s exact test gives a p value of 0.087, close to significance. Taken at face value, one might
assume that these data imply that the majority of the replacement substitutions between hu-
man and chimp were selectively driven. However, the authors also had data from populations
in Europe and East Asia, which showed 10 replacement and 3 silent polymorphisms, resulting
in a new MK table:

Fixed (Human-Chimp) Polymorphic (Europe/ East Asia)
Silent 6 3
Replacement 10 10

with a corresponding p value of 0.453. The authors suggested that the correct interpretation
of these data is as very stringent purifying selection due to increased functional constraints
in African populations (due to selection for protection against high levels of UV exposure),
with a release of constraints in Europe and East Asia. Asians in Papua New Guinea and India
(populations living in high-UV environments) also showed very strong functional constraints
(few replacement polymorphisms), consistent with a model of selection for UV protection.
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PHYLOGENY-BASED DIVERGENCE TESTS

Finally, we briefly consider divergence tests that examine the pattern of substitutions over
a known phylogeny. These tests are designed to detect a rather different pattern of selection
than was assumed in Chapter 9 (single events) or earlier in this chapter (multiple substitu-
tions over an entire gene between two populations or species). While multiple substitutions
are also required for a signal in phylogeny-based divergence tests, these must be at the
same site (typically a codon) within a gene. Single substitutions over a number of different
codons across a gene may leave very little signal for these tests (unless very few silent sub-
stitutions have occurred). As such, phylogenetic tests are biased toward detecting sites that
undergo repeated evolution, and are likely to miss many, indeed perhaps most, adaptive
substitutions (Hughes 2007). Given this restriction, these methods may work well in so-
called “arms race” scenarios, in which trait values between two interacting species escalate
to increasingly extreme values (Bergelson et al. 2001), such as the interactions between hosts
and parasites.



The required input for phylogeny-based tests is a set of aligned DNA sequences and
a predetermined phylogenetic tree for the sampled species. The assumption is that all se-
quence differences are the result of fixation events. Thus, if a site is segregating in one (or
more) of the taxa from which a single sequence is drawn, one may incorrectly infer that it
is a substitution event. The taxa must also have the correct amount of divergence, as either
too little or too much, will result in very low power. With too little divergence, there are not

enough substitutions, and hence there is little power to detect small percentage differences

in silent versus replacement changes at particular sites. Further, if little true divergence has

occurred, even a few segregating sites incorrectly called as substitutions can significantly
inflate the divergence. Conversely, with too much divergence, multiple substitutions at sin-
gle sites may occur between lineages, and adjustments for such multiple hits can introduce
substantial bias if an incorrect statistical model is used to account for these.



The K, to K, ratio, w

The basis for divergence-based tests is w = K,/K,, the (per-site) ratio of replacement
(nonsynonymous) to silent (synonymous) substitution rates, which Miyata and Yasunaga
(1980) referred to as the acceptance rate and which also appears in the literature as the width
of the selective sieve. For sites under the standard neutral model (deleterious mutations
can arise, but are quickly removed), the expected value of w at a site (or gene) isw = puf/pu =
f < 1, where f is the ratio of the effectively neutral mutation rates. Thus, in the absence
of positive selection, we expect w < 1. Moreover, if adaptive mutations are absent (or very
rare), then 1 — w is a direct measure of the amount of constraint (1 — f) on a site. Conversely,
w > 1 is usually taken as an unmistakable signature of selection (Kimura 1983). Even if a

demographic change results in a lowering of the effective population size (increasing the
effectively neutral mutation rate at replacement sites), such a change (in the absence of
positive selection) only brings K, /K closer to, but still likely leaves it smaller than, 1.0.



There are cases where w > 1 is not a signal for positive selection. Ratnakumar et al.
(2010) noted that a resolution of heteroduplex DNA during gene-conversion events often
results in a bias toward G and C bases (also see Galtier et al. 2001, Webster and Smith
2004; Lassalle et al. 2015). Given that replacement-codon positions often have lower GC
content than synonymous sites, there can be more opportunities for A/T at these sites to
be changed to G/C, resulting in replacement substitutions and potentially inflating the
K, /K, ratio (Berglund et al. 2009; Galtier et al. 2009). Ratnakumar et al. analyzed a dataset
of roughly 18,000 human genes compared against their orthologs in at least two other
mammalian genomes. They found that genes giving divergence-based signals of selection

e ; o ; ias. They
estimated that >20% of elevated w values in this dataset could be the result of biased gene

conversion. A second factor is mutational bias. McVean and Charlesworth (1998) and Lawrie
et al. (2011) found the counterintuitive result that weak selective constraints that oppose a
mutational bias can actually accelerate the rate of evolution over that of a neutral site. In the
words of Lawrie et al., this occurs because

Common mutations drive substitutions away from the fitter states despite purifying selection,
whereas selection favors fixation of uncommon mutations resulting in faster back substitutions

to the fitter states. This allows for greater overall flux between states and thus a higher rate of
substitution at the constrained sites compared with the neutrally evolving sites.



A final factor that can upwardly bias estimates of w is the presence of strong selective

constraints on silent sites, was found in Drosophila by Lawrie et al. (2013). Chamary et al.

(2006) reviewed some of the evidence that silent sites may still be subjected to constraints
(beyond any weak ones from codon usage bias; Chapter 8) because they affect mRNA sta-
bility, splicing, or microRNA binding. A cautionary tale is offered by the work of Hurst and
Pal (2001), who examined constraints on the breast cancer BRCA1 gene. A sliding window
of roughly 300 nucleotides, allowing for average regional estimates of K, and K, was used
to scan across this gene in two pairs of comparisons, human-dog and mouse-rat. The win-
dow around position 200-300 showed a relatively normal level of K, (relative to the rest
of the gene), while K plummeted dramatically, especially in the human-dog comparison.

The result was an w value significantly greater than one, not due to an elevation in the
replacement-substitution rate, but rather to a decrease in the silent-substitution rate. Wolf
et al. (2009) found that an upward bias in w from reduced K values can be especially prob-
lematic when using closely related taxa, as a small value of D, causes excessive stochastic
variation in the denominator of a K,/ K ratio. Pond and Muse (2005) noted that if variation
in K, occurs over the gene, failure to include this heterogeneity in the model can easily re-
sult in false positives (estimated w > 1 for particular codons). Thus, while w > 1 is usually
taken as a gold standard for positive selection, a little more humility in its use may be in
order.




While conceptually straightforward, the operational problem in using w is that while
one or a few sites may be under repeatedly strong directional selection (w > 1 at these
residues), most sites in a protein are expected to be under some selective constraints (w < 1),
so that the average over all sites yields w < 1. Indeed, a meta-analysis by Endo et al. (1996)
found that only 17 out of 3595 proteins (from a wide range of species comparisons) showed
w > 1. There were, however, a few early success stories. Example 10.2 discussed the work
of Hughes and Nei (1988), who used the three-dimensional (3-D) protein structure of the
major histocompatibility complex to suggest potential sites to examine (those amino acids
on the surface in critical positions). Within this set of residues, w > 1, while w < 1 when
averaged over the entire gene. Unfortunately, most proteins lack this amount of detailed
biological knowledge for an investigator to draw upon. Because amino acid residues in
close proximity on the 3-D structure of a protein can be scattered all over the primary (i.e.,
linear) sequence, grouping sites for analysis by their position in the primary sequence can
be very ineffective, and even misleading. The key is to base tests of w values on a codon-by-
codon basis, so that codons, rather than genes, become the unit of analysis. The limitation
for this approach is the need for sequences from a sufficiently dense and well-supported

phylogeny.



Two general approaches have been suggested to estimate w. Both require a phylogeny,
and issues such as the correct multiple-sequence alignment as well as errors in the assumed
tree potentially loom in the background. Parsimony-based approaches reconstruct the an-
cestral sequence at each node in the tree, and then use these to count up the number of silent
and replacement substitutions for each codon. Likelihood approaches (LW Appendix 4) are
on a much firmer statistical footing, but they are computationally intense and can be rather
model-specific. Both approaches allow for tests of whether a protein is under positive selec-
tion and, more specifically, tests of positive selection at specific sites in that protein. As with
extensions to PRF models, more recent tests are being built around Bayesian approaches
that extend the ML models (Appendix 2), which allow for the management of uncertainty
in very complex statistical models.



First, it is well known that transitions (A < G, C < T) can occur at different rates than
transversions (e.g., A < T, etc.), and (at third-base positions) transitions are more likely
to give synonymous changes. Failure to incorporate these rate differences can result in an

overestimation of the number of replacement substitutions (Yang and Nielsen 2002). Second,
any codon usage bias (Chapter 8) must be accommodated. Third, when divergence times
are modest to large, to avoid undercounting the number of the actual substitution events
one must correct for the possibility of multiple substitutions between lineages at a site. All

of these issues can have a highly significant effect on estimates of w (Yang and Bielawski
2000). Finally, given that the ancestral states are likely estimated with error, parsimony
analysis has no formal procedure to take this uncertainty into account. Bayesian posterior
distributions can account for these errors, but this requires moving from a parsimony to a
likelihood framework. For these reasons, most analyses use likelihood-based approaches
(and their Bayesian extensions), wherein one explicitly allows the model to account for
transitions vs. transversions, codon usage bias, and multiple substitutions.
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ML methods require a specific probability model for the movement among the 64
different codons. They start with a vector representing the 61 different nonstop codon states
(stop codons are assumed lethal). At any point in time, a codon can mutate to one of nine
other codons following a single base change (Figure 10.4). The model given by Goldman
and Yang (1994) defines the following relative rates for movement between codons i and j,

(0 if i and j differ at more than one position
Uy for a silent transversion
Qij = { km;  for asilent transition for1 <i,j <61  (10.18)

wr;  for a replacement transversion

\ wrm; for a replacement transition
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Figure 10.4 The various possible state changes and their rates under the codon evolution
model (Equation 10.18) for the nine new codons that are within a single nucleotide change
from the target codon (here AAC). Asterisks denote a replacement change, where the rate
is a function of selection, and hence w. Because transitions (denoted in the figure by t) and
transversions (v) may occur at different rates, setting the transversion rate as the baseline, kK
denotes any transition rate correction (with k£ = 1 if the two rates are equal). All changes are
a function of 7, the equilibrium frequency of the mutant codon, j. Performing these same
calculations over all 60 other nonstop codons generates the full transition matrix , Q.




Tests for directional selection on a gene are accomplished by using this codon model
superimposed on the phylogenetic tree to run the likelihood calculation (over all codons)
to find the ML solutions for the Q matrix parameters. This allows for a direct test that
w > 1 using the likelihood-ratio approach (LW Appendix 4). The key to these likelihood
calculations is that P(¢), the codon state matrix at time ¢, is related to the instantaneous rate
matrix, Q, by

P(t) = exp(Qt) (10.19)

The corresponding elements of the 61 x 61 matrix P are
P;;(t) = Pr(codon =i attimet|codonis j at time ¢ = 0) (10.20)

The matrix exponential, exp(Qt), is computed by diagonalizing the Q matrix by writing
Q = UAU’, where A is a diagonal matrix, whose ith diagonal element is the eigenvalue
Ai of Q (Equation A5.10a), and U is a matrix of the eigenvectors of QQ (Equation A5.10c).
With this transformation, Equation 10.19 now becomes

exp(Qt) = Uexp(tA)U”

where
etAl 0 Y 0

0 tha ... 0
exptd)=| . ° .. (10.21)



The base model (Equation 10.18) assumes that all codons within a given gene have the
same w value, which is not only unreasonable but also destroys most of the power of this
approach, as it returns an estimate of w based on a gene-wide average. Given that w < 1 for
most codons, the signal from the majority of codons then masks the signal from any small
fraction of codons where indeed w > 1 (e.g., Example 10.2). Nielsen and Yang (1998) and
Yang et al. (2000) extended the base model by assuming a mixture-model (LW Chapter 13),
with the codons in a sequence being drawn from one of several selection categories, each
with different w values. For codons from selection category k, Equation 10.18 becomes

(0 if i and j differ at more than one position
Tj for a silent transversion
Q,(-;-C) = { KT for a silent transition (10.22a)

w®r;  for a replacement transversion

\ w®kr; for a replacement transition



The simplest version of biological interest has three selection classes, with codons either
being neutral (with probability py), deleterious (with probability p,), or advantageous (with
probability p, = 1 — p,, — pa). Within each class there is a fixed selective value, with

0 deleterious class
wh =¢ 1 neutral class (10.22b)
w > 1 positively selected class

The parameters py, py, and w are estimated from the data by maximum likelihood (LW
Chapter 13 examines ML on mixture models). The idea is that one fits a base model (allowing
only neutral and deleterious classes), and then fits the full model (Equation 10.22b or other
extensions), using a likelihood-ratio test to see if the fit is significantly improved. If so, this
is taken as support for a history of repeated positive selection on a subset of codons in the
gene of interest.



While Equation 10.22b is clearly an improvement over models assuming a single value
of w for all replacement mutations, assigning all codons in the deleterious class anw value of 0
(i.e., no substitutions) is clearly too restrictive, as is assigning all codons in the advantageous
class the same w value. Nielsen and Yang (1998) and Yang et al. (2000) further expanded
Equation 10.22b by taking

w@ ~ (0,1) deleterious class
wh =<1 neutral class (10.23)
w(®) ~ (1,00) positively selected class

where now the fitness values, w®), for any particular codon in class k are random draws
from some specified distribution (as opposed to Equation 10.22b, which assumed they are
unknown constants) whose parameters are again estimated by maximum likelihood. This
is exactly the approach used previously to allow 7 to vary over genes in the PRF model
(e.g., Equations 10.17a and 10.17b). A number of candidate distributions for w are possible,
depending on whether we wish to restrict values to between (0, 1) or to (1, o), for codons in
the deleterious and positively selected classes (respectively). For example, Nielsen and Yang
(1998) and Yang et al. (2000) used either a beta or truncated gamma distribution (restricted
to returning values of 0 < w < 1) for the deleterious class and a truncated gamma (restricted
to returning values of w > 1) for the positively selected class (Appendix 2 reviews the beta
and gamma distributions). Again, a model-fitting approach is used where one first fits a



Bayesian Estimators of Sites Under Positive Selection

Suppose there are k classes, with each class having a different associated w. The poste-
rior probability that a specific codon is in fitness class i is

Pr(D |classi)Pr(classi)  Pr(D|w;)Pr(w;)
Pr(D) Y% Pr(D|w;) Pr(w;)

where D is the pattern of codons for that site in the tree, and the prior Pr(class i)—the values

for po, py, and pg —is estimated by maximum likelihood. The case of interest is whether the
codon belongs to the class of advantageous sites, Pr(w > 1| D),

Pr(D|w > 1)py

Pr(advantageous | D) = Pr(D|w < 1)pg+ Pr(D|w=1)pg+ Pr(D |w > 1)ps
This approach allows us to directly assign probabilities of selective classes to any particular
site. Anisimova et al. (2002) found that large w values and a modest to large number of
sequences are required for this approach to have reasonable power. A number of technical
issues that arise when applying Equation 10.24a were examined by Huelsenbeck and Dyer
(2004), Newton et al. (2004), Scheffler and Seoighe (2005), Yang et al. (2005), Aris-Brosou
(2006), Guindon et al. (2006), and Anisimova and Liberles (2007).

Pr(class i | D) = (10.24a)

(10.24b)



Example 10.15. Bishop et al. (2000) examined the class I chitinase genes from 13 species
of mainly North American Arabis (tower mustards), crucifers closely related to Arabidopsis.
Chitinase genes are thought to be involved in pathogen defense, as they destroy the chitin in
cell walls of fungi. Many fungi have evolved resistance to certain chitinases, so these genes
are excellent candidates for repeated cycles of selection (i.e., an “arms race” scenario). Codon-
evolution models estimated that between 64 and 77% of replacement substitutions are dele-
terious, with 5-14% being advantageous (analyses using phylogenies estimated by different
methods all yielded similar results). These favored sites had an estimated value of w = 6.8.
Using the criterion of a posterior probability of membership in the advantageous class in
excess of 0.95 (i.e., Pr(advantageous class | D ) > 0.95), 15 putative sites were located (using
Equation 10.24b). Seven of these sites involved only one substitution type, which evolved
multiple times over the phylogeny. The authors had access to the 3-D structure of chitinase,
which shows a distinctive cleft thought to be the active site. Mapping putative sites of positive
selection showed a significant excess of these sites clustered at the cleft.

Balancing this apparently successful application of these methods to detect selected sites is
the work of Yokoyama et al. (2008). These authors examined the evolution of dim-light vision in
vertebrates, which is determined by the wavelength of maximal absorption of rhodopsin. This
can be directly measured in the lab, allowing the authors to experimentally determine the role
of particular substitutions in dim-light adaptation using 11 engineered ancestral rhodopsin
sequences. They found that most of the change in maximal absorption can be accounted for
by 12 sites. In contrast, Bayesian methods predicted a total of 8 positively selected sites, none
of which corresponded to sites shown by mutagenesis to have adaptive roles.
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