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As above, let u and fu denote the per-site rates at which effectively neutral mutations
arise at silent and replacementssites, so that 4, = fun, and ps = pun, are the total rates for the
replacement and silent sites in our sample (where n, and n; are, respectively, the number of
replacement and silent sites). Under neutrality, the expected numbers of effectively neutral
substitutions for each class are D, = 2u,t and D, ,, = 2u,t. Now suppose there are 7,
additional replacement substitutions fixed by positive selection, giving the total number of

replacement substitutions as D, = D, » + 1. = 2pat +1,. Ideally, we would like to estimate

both the number, 7,, and the fraction, & = 7,/D,, of replacement substitutions that are
adaptive. To estimate 7,, note that the expected number of segregating sites for category z
is given by 6,a, (Equation 9.21a), yielding P, = 4u,N.a, and P, = 4p,N,a,, where the
latter assumes that the vast bulk of segregating sites are neutral (adaptive mutations are

assumed to be both rare and also fixed quickly, and hence make little contribution to P,).

First note that N
Dy - = 2yt ‘f = it (10.72)



From above, this last expression is simply the expected number of neutral replacement
substitutions, D, ,,, and because 1, = D, — D, », our estimate of the number of adaptive
replacement substitutions becomes

- Pq
Na = Dq — Ds 2 (10.7b)
as obtained by Charlesworth (1994b), Fay et al. (2001, 2002), and Smith and Eyre-Walker
(2002). This immediately suggests an estimator for the fraction, o, of replacement substitu-
tions that are adaptive,
g=Ta _y_DiFa
D, D, P,

Note that a positive estimate of a requires a neutrality index < 1. Using the data from
Example 10.6 for noncoding regions on the X chromosome in D. melanogaster, & = 1 — 0.906
= 0.094 using all polymorphlc sites, and @ = 1 — 0. 764 = 0.236 1f smgletons are 1gnored
Hence, betwee i 3

be adaptive. Slrmlarly, Kousathanas et al. (2010) obtamed estlmates of around 10% adaptlve
substitutions in the immediate up- and downstream regions around protein-coding genes
in the house mouse (Mus musculus castaneus).

=1-NI (10.7¢)




While Equations 10.7b and 10.7c can be applied to single genes, individual-gene es-
timates of « are expected to have a large sampling variance and low power. If the actual
fraction of adaptive substitutions is small, the modest increase in the number of substitu-
tions will often not be large enough to be significantly different from its neutral expectation,
and the resulting estimate of o will not be significantly different from zero. For example, if
five substitutions are expected at our focal gene given the ratio of silent to replacement poly-
morphisms, an observed value of eight substitutions is unlikely to be excessive enough to be
declared significantly different from five. However, if three of the eight substitutions were
indeed driven to fixation by positive selection, then oo = 0.375, which is quite substantial.

Despite low power for estimating o at any single locus, considerable power can be
obtained by estimating the expected value, E[a] = @, over a number of loci. To accomplish
this task, Fay et al. (2001, 2002) suggested the estimator

Qpay =1 — % (%) (10.82a)

where the bar implies the average of that quantity over all sampled genes, e.g., D; is the
average number of silent substitutions over all the sampled genes. Note that we use & when

referring to a single gene, @ for its expected value over a set of genes, and @ as an estimate
of a.



The estimator given by Equation 10.8a has two potential sources of bias, both of which
can lead to an overestimation of @ (Smith and Eyre-Walker 2002; Welch 2006). Let p and
f 1 denote the effectively neutral per-site substitution rates for silent and replacement sites
within a gene, where f is allowed to vary over genes. Following Welch (2006), one can show

that B .
D,] ms 1 1 7\t @ 1 o,

Bl5|=m (Blma)) *mmml-a-c@l  cosy
where n, is the average number of sites of type x over all genes, E|[-] is the expectation over
all sampled genes, and o%(a) = E[a?] — (E|[a])? is the among-gene variance in the fraction
of adaptive substitutions (), with the last approximation following from the delta method
(LW Equation A1.3). Equation 10.8b shows that when there is among-locus variation in o

(so that o%(a) > 0), @ is overestimated by Equation 10.8a.
A more subtle bias occurs if f and 4N, u are negatively correlated over genes, as

(5 -  (ane L)

s

as obtained by Smith and Eyre-Walker (2002) and Welch (2006). Hence, Equation 10.7d
underestimates f, and therefore results in an overestimation of @, if 4N,u and f are negatively
correlated (and underestimates @ if they are positively correlated). Smith and Eyre-Walker
(2002) noted that a negative correlation is biologically reasonable, as the effective population
size can vary over the genome (Chapters 3 and 8), and regions with smaller N, are likely
have higher f values (Figure 10.1), as more mutations become effectively neutral.




To reduce bias from correlations between f and N,_, Smith and F:yre-Walker (2002)

suggested the estimator

~ Dy ( P,

aspw =1— D. (Ps " 1) (10.9a)
where the second term is the average of the quantity P,/(Ps + 1) over the sampled genes.

Provided that the number of polymorphic silent sites in the sample is modest (five or

greater), this adjusted polymorphism ratio is unbiased by correlations between f and N,
with

E [ESEW] ~ @+ 0%(a) (10.9b)

A potential concern with Equations 10.8a and 10.9a is bias due to the Yule-Simpson
effect. Recalling Equations 10.7c and 10.6¢ suggests that the estimator

Z DszPaz/( sz+Dsz)
Z PszDaz/( sz+Dsz)

is perhaps the most robust approach to this problem. While Stoletzki and Eyre-Walker (2011)
found very close agreement between @7¢ and @y, over the data sets they examined, all of
the above considerations suggest that the most prudent estimator is a;¢. We will refer to

estimators of o that use departures from the expectation under neutrality in a DPRS table
collectively as MK estimators (Equations 10.7c, 10.8a, 10.9a, and 10.9¢).

arg=1-NIpg=1- (10.9¢)



While the above sources of bias (among-locus variation in @ and correlations between
f and 4N.p; Equations 10.8b and 10.8c) are generally modest and in a predictable direc-
tion (overestimation of @), the presence of mildly deleterious alleles provides a major bias,
which can be either positive or negative (Eyre-Walker 2002; Bieren and Eyre-Walker 2004;
Welch 2006; Charlesworth and Eyre-Waker 2008; Eyre-Walker and Keightley 2009; Halli-
gan et al. 2010; Schneider et al. 2011; Keightley and Eyre-Waker 2012; Messer and Petrov
2013b). Estimates of o are downwardly biased by the presence of low-frequency deleteri-
ous alleles that contribute to P, but not D,, thus inflating the polymorphism ratio relative
to the divergence ratio (Eyre-Walker 2006; Eyre-Walker and Keightley 2009). As with MK
tests, one approach is to count only “common” polymorphisms for P, and P;. However,

Charlesworth and Eyre-Walker (2008) noted that while this approach is “better than doing
nothing,” estimates of  still tend to be downwardly biased even after making this correction

unless the true «a is fairly substantial. Further, the bias is a function of the complex distribu-

tion of fitness effects (Charlesworth and Eyre-Walker 2008; Welch et al. 2008; Eyre-Walker
and Keightley 2009; Schneider et al. 2011; Keightley and Eyre-Waker 2012).



Messer and Petrov (2013b) suggested that one simple solution is to estimate @ using
different cutoff levels for rare polymorphisms, with @(z) denoting the estimate that ignores
polymorphisms whose derived allele frequency is below z. Note that @(z) could be based
on any of our previous MK estimators (e.g., Equations 10.8a, 10.9a, and 10.9¢) simply by
ignoring polymorphisms below this threshold. Recalculating this statistic for increasing
values of z, an exponential regression of the form a(z) = a + bexp(—cz) is fit to the data,
and the asymptotic value (the projected value at z = 1) is given by the Messer-Petrov
asymptotic estimate of o

ayp = a+ bexp(—c) (10.9d)



Maximum-likelihood (ML) estimators of & have been proposed that attempt to account
for segregating deleterious mutations (Bierne and Eyre-Walker 2004; Welch 2006; Boyko et
al. 2008; Eyre-Walker and Keightley 2009; Schneider et al. 2011; Keightley and Eyre-Waker
2012). This is done by assuming a standard form (such as a gamma) for the distribution of
deleterious fitness effects, and then using site-frequency spectrum data to estimate the pa-
rameters of this distribution. We sketch the basic outline of this approach in the next section
(in the context of Poisson random field models). While it is elegant and powerful when the
model assumptions are correct, the concern is that this approach is highly dependent on the
assumed functional form (e.g., gamma, normal, or other) of the unknown distribution of
fitness effects for the slightly deleterious mutations. Indeed, Kousanthanas and Keightley
(2013) found that these models perform poorly when the distribution of fitness effects is
multimodal, and they suggested using nonparametric approaches for such cases.



How Common Are Adaptive Substitutions?

The general observation for Drosophila is that estimates of @ for amino acid substitutions
are high, averaging around 50%, with estimates of the fraction of adaptive changes in
noncoding regions also approaching 30% in some cases. High @ values for replacement
sites are also observed for the mouse, bacteria, and three plants (Populus, Helianthus, and
Capsella), while very low levels are seen in other plants (Table 10.1 and Figure 10.2). Low
levels in Arabidopsis thaliana were originally attributed to the high levels of selfing in this
species (Bustamante et al. 2002), but a close outcrossing relative (A. lyrata) similarly shows
very low levels of & (Foxe et al. 2008). The case receiving the most interest is humans, where
an initially rather high estimate of 0.35 by Fay et al. (2001) for a small set of genes was
followed by several studies showing much lower values (Table 10.1).

ne trend that has been suggested is that @ increases with effective population size
(Eyre-Walker 2006). While intriguing, there are also apparent counterexamples. For exam-
ple, Bachtrog (2008) found that D. miranda, which is thought to have a low effective pop-
ulation size, has a similar value of @ as Drosophila species thought to have a significantly
larger values for N,.



Organism a Method Reference
Mus musculus castaneus (mouse) 0.57 ML Halligan et al. 2010
Oryctolagus cuniculus (rabbit) 0.60 MK, ML  Carneiro et al. 2012
Gallus gallus (chicken) 0.20 MK Axelsson and Ellegren 2009
Drosophila simulans 0.45 MK Smith and Eyre-Walker 2002
0.43 ML Bierne and Eyre-Walker 2004
0.41 ML Welch 2006
D. melanogaster 0.44 ML Bierne and Eyre-Walker 2004
0.95 PRF Sawyer et al. 2007
0.85 ML Schneider et al. 2011
D. miranda
Total 0.48 ML Bachtrog 2008
X chromosome 0.33 MK Haddrill et. al. 2010
0.14 ML
autosomal 0.00 MK
0.00 ML
D. pseudoobscura
X chromosome 0.44 MK Haddrill et. al. 2010
0.70 ML
autosomal 0.59 MK
0.87 ML
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Ingvarsson 2010
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Zhang and Li 2005
Bustamante et al. 2005
Gojobori et al. 2007
Arbiza et al. 2013



Drawing a clear conclusion from these initial data is problematic for several reasons.

First, even in the same species, different genes may be used or different populations may
be chosen as the polymorphism benchmark. The effect of the latter is especially prominent
in Figure 10.2, with the same divergence data between two sunflower species (Helianthus
annuus versus H. petiolaris) showing a significantly positive estimate of mean o when us-
ing Helianthus petiolaris as the polymorphism reference population, but a negative (but not
significant) estimate when using H. annuus as the reference population (reminiscent of Ex-
ample 10.9). Differences in N, values between the two species being considered can inflate
or deflate estimates of a (Equation 10.10). Second, different studies used different methods,
ranging from simple MK-type estimators (Equations 10.8 and 10.9) to much more sophisti-
cated, ML-based estimators that attempt to account for both changes in N, and the presence
of segregating deleterious alleles (Bierne and Eyre-Walker 2004; Welch 2006; Eyre-Walker
and Keightley 2009). While they are certainly powerful when the modeling assumptions are
correct, the robustness of these ML approaches against model misspecification is unclear.
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population sizes in the divergence and polymorphism phases. Only the comparison involving
sunflowers (polymorphism data from Helianthus petiolaris, divergence between petiolaris and
annuus) had an estimated average o that was significantly positive. Surprisingly, the com-
parison using polymorphism data from H. annuus and the same divergence (petiolaris versus
annuus) gave a negative estimate of average a (but was not significantly different from zero).



Close North American relative,
the tarweed Carlquistia muirii
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of adaptation? One surprising taxon that shows a very low estimated & is the Hawaiian
silversword plant genus Schiedea (family Caryophyllaceae), a group with rapid (and dra-
matic) morphological evolution over a very recent time window (Gossmann et al. 2010). One
possible resolution to this apparent disconnect is that most current studies have focused
on the estimation of a in coding sequences, whereas considerable adaptation (especially
over short time scales) may occur at the level of gene regulation. Based upon the estimated
a values in noncoding regions, Andolfatto (2005, Wright and Andolfatto 2008) suggested
that the number of adaptive substitutions in noncoding regions in Drosophila could be far
greater than the number of adaptive replacement substitutions. Given that Drosophila has a
compact genome relative to humans and many other metazoans and land plants, the bulk
of adaptive variation may not reside in the coding regions that are the focus of most current
estimates of @. An alternative, and not necessarily exclusive, explanation for the Schiedea
data is that only a few key genes underlie most of the morphological change, resulting in
very little change in the genomewide value of @.




Estimating the Rate, A\, of Adaptive Substitutions

A quantity that prominently appeared in expressions in Chapter 8 on the effects of recurrent
sweeps was ), the per-generation rate at which adaptive substitutions occur. While it might
seem that estimates of A (the number of adaptive substitutions per site divided by the total
time of divergence, 2¢) would be very difficult to obtain, fortunately this is not the case, as
they follow almost directly from estimates of o (Smith and Eyre-Walker 2002; Andolfatto
2007). If d, = D,/n, denotes the per-site number of replacement substitutions between
two species that separated ¢ generations ago, then an upper bound for X is simply d,/(2t).

The use of D, to compute d, involves the assumption that all substitutions have been
observed, so that no corrections for multiple substitutions at the same site are needed,
which is not unreasonable when comparing two closely related species. With an estimate
of o, the number of adaptive replacement substitutions is just aD,, yielding Andolfatto’s
estimator (2007),
T ad,
2t

for the per-site, per-generation rate of adaptive substitutions.

(10.11a)




In order to ‘appi’y Equation 10.11a, one must have an estimate of the divergence time,
t. This can be estimated (scaled as 7 = t/(2N.) generations) from the ratio of D,/P;, as
follows. From Equations 10.12a and 10.12b,

E[D,] 1 1 1
— — 4+ = 10.11b
E[P;] Qm + Qn (T T m + n) ( )

where m and n are the sample sizes for the two populations and the sample size feature, a,
is given by Equation 4.3b. Substituting the observed values of D, and P; for their expected
values and rearranging provides a simple method-of-moments estimator for the scaled
divergence time

-~ D, 1 1
T = (am +an) Fs —_ (a + ﬁ) (1011C)

Using this estimate yields ¢ = 2N, 7, and substituting into Equation 10.11a yields

ad,

A= 9N,

(10.11d)

)

y
based on structural changes, namely, the adaptive rate of amino acid replacement substitu-

in-coding genes. A more inclusive estimate would also account for regulatory

adaptations, which are expected to be at least on par with protein structural adaptations
(Chapter 9).




Example 10.12. The estimated amino acid divergence between human and chimpanzee
proteins is d, = 0.008 (Chimpanzee Sequencing and Analysis Consortium 2005), with a
divergence time of roughly 7 million years. If we take o = 0.10 (10% of replacement substi-
tutions are adaptive, the rough average for human studies in Table 10.1), then from Equation
10.11a, our estimate of the rate of adaptive replacement substitutions per site, per generation

is
0.10 * 0.008 —~11 .
A= 4,106 — 5.7-10" " per site, per year
Assuming a generation time of 25 years, this corresponds to a rate of 2.3 10712 per site, per
generation.
As a point of comparison, Andolfatto (2007) contrasted X chromosome genes in Drosophila
melanogaster (for polymorphism data) and D. simulans (as the outgroup for divergence). The

estimated o was 0.5, while d, = 0.028, and ¢t = 107 generations, yielding
~0.50-0.028
- 2.107

Hence (for these data), Drosophila have a 12-fold higher per-site adapation rate than humans.

= 7.0 - 10 '? per site, per generation



Poisson Random field (PRF) models

e Sawyer and Hartl suggested using an ML
method applied to MK data to estimate the
— Scaled mutation rates
— Scaled strength of selection

— Fraction of deleterious, neutral, and advantageous
mutations
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THE SAWYER-HARTL POISSON RANDOM FIELD MODEL

Another approach for extracting information from DPRS tables on the nature and amount of
selection is the Poisson random field (PRF) model of Sawyer and Hartl (1992). Their initial
version assumed that all sites within a region evolve independently and that the strength

of selection on all replacement sites was the same. Strongly deleterious mutations were

allowed to occur, but the assumption is that these do not contribute to either polymorphism

(observed segregating sites) or divergence, and they are accounted for by simply reducing

the mutation rate to exclude such mutations. Under this model, the observed counts (Ps,
Dy, P,, and D,) in a DPRS table follow independent Poisson distributions, whose expected
values are functions of four parameters (6., 8, 7, and 7). With four observations (the DPRS
entries) and four unknowns, we can estimate these parameters, but we cannot assess how
well the model fits the data. Two of the parameters are the scaled total mutation rates,
0, = 4N u, and 0, = 4N pu,, while the third parameter is the scaled divergence time,
T = t/(2N.). Of most interest is the fourth parameter, the scaled strength of selection,
v = 2N,s. Sawyer and Hartl assumed there was additive fitness, so that a new mutation
has a fitness of 1 + s as a heterozygote and 1 + 2s as a homozygote. In contrast to MK
approaches, the PRF model does not estimate the fraction, ¢, of adaptive substitutions
directly, but knowledge of +y can allow one to do so indirectly (Example 10.13).



n
m~—1 1 n—1 1
BP) =0, 3 2+ 5| =0a(am+an)
j=1 J j=1 J

where

P = [ (A (120

1 1 — 6—27(1_2)
G n, — / xn-l ( ) dzx
() ; 29(1 - )

(10.12a)

(10.12b)

(10.12c)

(10.12d)

(10.13a)

(10.13b)



Thebasic similarities, and fundamental differences, between MK estimators (e.g., Equa-
tions 10.7-10.9) and the PRF approach can be easily obscured by the imposing nature of
the PRF equations. The similarity is that both approaches use the same data, the four val-
ues in a DPRS table. However, the two approaches estimate different quantities and have
different underlying model assumptions. MK estimators make no assumption about the

nature or strength of selection on replacement sites, but instead estimate f, the reduction in

the effectively neutral substitution rate at replacement sites, and «, the fraction of replace-

ment substitutions at a gene that are adaptive. The effect of purifying selection enters only

through f, while the effects of positive selection enter only through a.
In contrast, the PRF equations estimate 6, and 6,, the scaled total mutation rates over

all sites of the two categories within the gene. The ratio of 8, /0, (suitably corrected for the

number of sites within each category; see Equation 10.7d) is not an estimate of f, as the
PRF model does allow for slightly deleterious alleles to be segregating (i.e., the estimate of
v = 2N,.s might be negative). The original Sawyer-Hartl model was very restrictive, with
only a single fitness class for replacement sites (which is approximately treated as an average
selection coefficient over mutations). Extensions (discussed shortly) remove this restriction,
allowing for neutral, deleterious, and advantageous classes, with either constant values of
v within each class, or (more generally) class-specific distributions of -y values. Thus, the PRF
model does not estimate a directly, but given estimates of v, we can compute the expected

fraction of substitutions that are fixed by positive selection (Example 10.13 and Equation
10.16c¢).



The original Sawyer-Hartl analysis equated the observed entries in a DPRS table with
their corresponding expected values (Equations 10.12a-10.12d), and then solved for the
unknowns of interest (the ratio 6,/6s = pa/us, the scaled average strength of selection
v = 2N.s, and the scaled time of divergence 7 = t/[2N,]). A value of y significantly different
from zero implies selection on replacement sites, withy > 0 implying positive selection and
v < 0implying negative selection (the latter applies only to mildly deleterious alleles, as the
PRF model treats very deleterious alleles by lowering the mutation rate: these are assumed
to be not seen as either polymorphisms or divergences). This original model, which only
assumes a single selective class with silent sites being neutral, can be placed in a likelihood
framework by recalling that each observed entry in a DPRS table is an independent Poisson
random variable. The probability that the count X in a specific category is z, given its
expected value ¢, follows from the Poisson distribution,

Prob(X =z |() = (* exp(—()/z!, where (= E[X]

The likelihood of the data in the DPRS table for gene i is thus given by

= (¢ exp(=Gij)
L= TT [ > ' 10.15
jgl ( (@i,5)! (1045

where z; ; denotes the observed DPRS table values for category j in gene i, with

i1 =P, Tio=PFai, Tiz=D;;, iq4=D,;



and (; ; are the corresponding gene-specific expected values,
Gii = E[Ps;), Ci2=FE[Pai), €Ci3=FE[Ds;i), Cia=E[Daq,

Note from Equations 10.12a-10.12d that ¢; ; through (; 4 are functions of the unknown
parameters (6, ;,0s ;, i, 7) that we wish to estimate by ML. A numerical search over all
possible values of these parameters for the combination that maximizes Equation 10.15
given the data (treating the z; ; as fixed constants) yields the ML solutions (LW Appendix
4). Under the assumption of independence across genes, the combined likelihood over k

genes becomes
k
L=]]L
i=1

where 0,,0s, and v can potentially vary over the genes, while the divergence time, 7, is
shared by all. Hence, for M genes, there are 3M + 1 unknown parameters.



As noted, this basic model can be expanded by considering more realistic fitness mod-
els. For example, Nielsen et al. (2005a) allowed three fitness classes for replacement sites:
neutral, deleterious, and beneficial (advantageous). While fitness is assumed to be the same
within each class, this is a significant improvement over the original Sawyer-Hartl model.
The resulting likelihood now has four parameters for selection (as opposed to one, 7). These
are py, po, and pg, the frequencies of beneficial, neutral, and deleterious mutations (where
p, = 1 — py — py), and 7, and v, the scaled selection coefficients for the beneficial and
deleterious alleles (which are assumed to be the same over all genes). Nielsen et al. applied
their method to a set of 50 human genes with prior evidence for possible positive selection.
The resulting ML estimates were p; = 0.748,po = 0.172, and p;, = 0.080 as the fraction
of deleterious, neutral, and advantageous mutations, and v = —34.96 and v, = 267.11
as the scaled strengths of selection of deleterious and advantageous mutations. Note that
even in this case where genes were ascertained as likely to be under positive selection, most
mutations were still deleterious. A similar analysis of two Drosophila melanogaster data sets
by Schneider et al. (2011) found that ~1.5% of all replacement mutations were adaptive (i.e.,
py» ~0.015), but with a much smaller scaled strength of selection, +;, ~10.




While the PRF model does not directly estimate the fraction of adaptive replacements
(a), this can be obtained from the estimates of v and the fraction, p, of advantageous
mutations as follows. The expected rate of effectively neutral substitutions at replacement
sites is upo (the neutral mutation rate), whereas the expected number of favorable mutations
arising in each generation is 2N up,, where pp, is the favorable mutation rate. For large v,
each favorable mutation has a fixation probability of 2sN. /N (Chapter 7), for an expected
per-generation substitution rate of favorable alleles of

A~ (2Nppy)(2sNe/N) = ppp(27y) (10.16a)

The fraction of adaptive substitutions is the rate of adaptive substitutions divided by the
total rate of substitutions (adaptive plus neutral),

B A
A+ ppo

o (10.16b)

Substituting Equation 10.16a yields

2y py 2y
- - 10.16¢
2vupy + upo 27y + (po/pe) ( )



Example 10.13. Whatis the estimate of « for the subset of human genes considered by Nielsen
et al. (2005a) that was previously discussed (immediately proceeding Equation 10.16a)? Here
Py = 0.08,p9 = 0.172, and y, = 267.11. While only 8% of all new replacement mutations
were deemed to be advantageous, « is considerably larger than 0.08, as Equation 10.16c yields

o — 2-267.11-0.08 — 0.996
(2-267.11-0.08) +0.172

The reason for this high value is that the estimated advantageous mutation rate (0.08y) is just
slightly below half of the estimated neutral rate (0.172y), while the fixation probabilities for
advantageous mutations are over 500 times greater. If we lumped the neutral and deleterious
mutations rates together and assumed these were all effectively neutral (i.e., replacing 0.172
by 1 — p, = 0.920), our estimate of o would still be very high (0.980). It is also important to
recall that Nielsen et al. focused on a highly biased set of genes, which were chosen to be
enriched for positive selection. It is thus likely that the p;, 7y, and a estimates based on this set
of loci are larger than those for typical human genes.

Now consider the Schneider et al. (2011) values for Drosophila melanogaster (pp ~ 0.015,
b ~ 10). If we assume that all of the remaining mutations are neutral (pyg = 1 — pp = 0.985),
Equation 10.16c yields

B 2y B 20
2y +(po/ps) 20+ 0.985/0.015
If we assume that 50% of all new mutation are deleterious (pg = 1 — pp — 0.5 = 0.485), then

o = 0.38. A key point of this example is that o can be quite substantial even when p, is very
small.

o = 0.23



Equation 10.16c relates the selection estimates p, and « from a PRF model with the selection
estimate o from an MK approach. Inspection shows that small p;, (or more precisely a small
value of p;/pp) does not mean that « is small, as & > 0.5 when 2y > pg/ps. One final result
emerges from Equation 10.16a. Because pp; is the rate of beneficial mutation, which (in
keeping with our notation from Chapter 8) we denote by p;, Equation 10.16a becomes

A = 2y (10.16d)

which immediately suggests the Bachtrog estimator (2008),

A
Wy = o (10.16e)

Doris Bachtrog




One critical difference between PRF and MK analyses is the contribution of information

from silent sites (e.g., P,, D,), a point stressed by Li et al. (2008). Estimates of selection under
an MK analysis are in the form of estimates of o, which are critically dependent upon P
and D, (e.g., Equations 10.8a and 10.9a), in addition to D, and P,. Conversely, under the

PRF model, positive selection is estimated only through . An examination of Equations
10.12c and 10.12d shows that estimates of ¥ depend only on D, and P,, and that information
from silent sites (Ps and D,) does not enter into them. As a consequence, the control for

demographlc eftects on £, prov1ded by s does not enter, and over- oOr under-inflated

estimates of P, from population structure can significantly bias estimates of ~. Further,

Equation 10.14a (from which the PRF equations follow) is an equilibrium model, which
assumes that the population size has been stable for sufficient time to reach the mutation-
selection-drift equilibrium. Chapter 9 was littered with the bodies of tests that critically
depend on this same assumption.

In contrast, because MK estimates involve the ratio of P, / P, recent demographic effects
influencing polymorphism levels are accounted for, and there is no assumption about the
population being at an equilibrium value for the current amount of genetic variation (see the
discussion following Equation 10.5d). Thus, while both MK and PRF approaches face bias
from differences in population size between the divergence and polymorphism phases,
PRF approaches have additional bias introduced by any nonequilibrium patterns in the
polymorphism data. As noted by Li et al. (2008), tests of selection using PRF theory (i.e.,
7 significantly greater than zero) are closer to an HKA than an MK test, as the former
compares the P/D ratio over different genes and lacks the internal control of comparing
polymorphism levels from two different classes within the same gene.




Bayesian extensions

P(0|d) = Constant™® L(d|0) p(0)
Essentially an extension of the ideas of ML
— See WL Appendix 2 for a full introduction

MCMC methods allow straightforward
calculation of draws from the posterior

* See WL Appendix 3

An extremely flexible framework for dealing
with complex models



Bayesian Extensions

More fined-grain variation in the fitness of replacement mutations was allowed by Busta-
mante et al. (2002) and Sawyer et al. (2003) in the form of Bayesian models (an approach
discussed more fully in Chapter 19 and in great detail in Appendices 2 and 3). Instead of

returning a point estimate, ¢, for an unknown parameter, 6 (or vector of parameters, @), a
Bayesian analysis returns the full distribution (the posterior), ¢(6 | x), for that parameter,
given any previous information (the prior for ©) and the likelihood given the data, x.

Bayesian analysis of PRF data typically uses a hierarchical model, the motivation for
which comes from random-effects models (Chapter 19). Suppose we have p parameters of
interest. Treating the parameters as fixed effects requires p degrees of freedom, but often
there are more parameters than observations (p >> n). In some settings, we can treat these
p quantities as random effects: draws from some unknown distribution, such as a normal,
with unknown mean and variance. Because all draws (realizations) are assumed to come
from this common distribution, we can borrow information across observations to estimate
the distribution parameters, using (for the case of a normal) only two degrees of freedom
(estimation of the unknown mean and variance).



Bayesian hierarchical models take this idea a step further. Consider data structured
into a number of categories (say, genes), with multiple observations (draws) from each
category (say, new mutations in a particular gene). Assuming that the draws from a given
category are all from the same distribution (say, a normal with a category-specific mean
and variance), then when the number of categories is large, so too is the parameter set (all
of the category-specific means and variances). A hierarchical model reduces the number
of parameters to estimate by assuming that the mean (and/or variance) for each category-
specific distribution is itself a draw from a second distribution. Once each draw is made,
these parameter values are fixed for that category. This reduces the estimation problem to
one of simply estimating the parameters in the second distribution.

An example of this approach was presented by Bustamante et al. (2002), who assumed
that all new replacement mutations at gene ¢ have the same selection value, v;, but allowed
these gene-specific values to vary among loci. This was done by assuming each v; to be
a random variable drawn from a normal distribution with a mean of u. and a variance
of 0'27' both estimated from the data. In other words, this model allows selection to vary
over loci (but not between replacement mutations in the same gene) as a function of just
two parameters (j,,02). Formally, the selection coefficient associated with the jth new
replacement mutation at locus ¢ is

Yi,j =Y, where; is a single draw from a N (u,,0?) (10.17a)

Because the divergence time, 7, is a common factor over all genes, this allows information
to be borrowed across loci (i.e., all loci contribute to the estimation of 7), improving power,
while only loci with sufficient polymorphism and divergence information (a rough rule of
thumb is P, + D, > 4) are likely to be informative about +. Figure 10.3 shows an example of
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Figure 10.3 Bustamante et al. (2002) examined 12 genes from Arabidopsis thaliana (using a
single allele from A. lyrata to compute divergence) and 34 genes from D. melanogaster (with a
single allele for D. simulans). This figure plots the resulting posterior distribution for 7y for each
gene (i.e., the locus-specific value, 7y; from Equation 10.17a). The circle represents the mean,
and the vertical lines denote the 95% credible intervals (the shortest span of the posterior
distribution containing 95% of the probability; Appendix 2). These are plotted by rank order
within the two species, with Arabidopsis plotted first (open circles) and D. melanogaster second
(filled circles). If the vertical line is entirely below zero, selection on mutations at this locus is
significantly negative (i.e., purifying selection). For lines entirely above zero, selection on new
variants is significantly positive. Half (6 of 12) of the Arabidopsis genes are significantly neg-
ative, while none are significantly positive. Conversely, no Drosophila genes are significantly
negative, while 9/34 are significantly positive.




Sawyer et al. (2003) extended the Bustamante et al. (2002) approach by allowing each
new mutation (j) at locus ¢ to potentially have a different fitness value, ~; ;, with 7; ; ~
N(p. i, 02). Hence, each new mutation has a fitness value drawn from a distribution with
a locus-specific mean, p. ;, and a variance, o2, that is common over all loci (allowing us to
share information over genes). This is a two-stage hierarchical model, where (as in Equation
10.17a) the mean fitness effect, u~ ;, for locus ¢ is drawn from a normal distribution with a
mean of ., and a variance of o2. Once the locus-specific mean fitness effects are assigned,
the fitness of a new replacement mutation at gene 7 is drawn from a second normal, with this
locus-specific mean, p. ;, and a variance, o2, assumed to be common over all loci (again
allowing us to share information over genes). This model can be more compactly written as

Yij ~ N(tiy,i,05), where i ; ~ N(py,03) (10.17b)

which has three distribution parameters to estimate: f.,,02, and o2. Comparison with
Equation 10.17a shows that each replacement mutation at a given locus is now a random
draw (as opposed to all having the same value), and that (as before) the locus-specific mean
also varies. This increased flexibility comes at the cost of only a single additional parame-
ter, 02, the variance in gene-specific 7y values about their mean (under the assumption of
homoscedasticity).



Example 10.14. Sawyer etal. (2007) applied their 2003 model (Equation 10.17b) to a sample of
91 genes from an African population of D. melanogaster, using a D. simulans sequence to assess
divergence. After ignoring very strong deleterious mutations that are unlikely to contribute
to polymorphisms, they found that approximately 95% of all new replacement mutations are
deleterious (estimates of 7y; ; < 0), with an estimated 70% of all replacement polymorphisms
observed in the sample being deleterious. Conversely, they estimated that over 95% of the
fixed differences at replacement sites are due to positive selection (7y; ; > 0), albeit it was
fairly weak. Within this class of replacement substitutions with estimated positive values,
46% were estimated to have y; ; < 4, 85% have ; ; < 8, and 99% have 7, ; < 14.




The parameters of adaptive
evolution

* How are the various parameters discussed
above connected?
* Advantageous mutation rate, u,
* Fraction of advantageous substitutions, a
* K, to K, ratio, w
* Rate, A, of adaptive evolution
* Strength, vy, of selection



Table 10.2 Summary of the key parameters of adaptive evolution and their connections. Chapter 8
first introduced several of these (¢, 7y, and ), while w and f were introduced in this chapter.

The fraction of substitutions that are adaptive

The scaled strength of selection, 2N.s

The total per-site mutation rate

The effectively neutral per-site mutation rate at silent sites (usually assume pg =~ )
The adaptive (benefical) mutation rate

The fraction of new mutations at a site that are advantageous, pp, = pyp

The rate of adaptive fixations, A = 27y,

The fraction of neutral mutations

The amount of constraint on a site (relative to some standard, typically silent sites)
The ratio of the replacement- to silent-site substitution rates

2
w=f+2ypp = %pb (Equations 10.25a and 10.25c¢)
w—f  w—po .
= = Equation 10.25b
Y 2py 2py (Eq )
A 2y ~ 29py

o (Equations 10.16b, 10.16c, and 10.25c)

T Atupo 2y+po/pe w



We can connect these parameters as follows. Assume that silent sites are taken as the
neutral benchmark, so that (as a first approximation) their per-site mutation rate, p; is also

the actual mutation rate, p. Two types of mutations contribute to the rate of replacement
substitutions: a fraction f (notationally interchangeable with p, as f = po) that is effectively
neutral and a much smaller (perhaps zero) fraction p; that are favored. Effectively neutral
substitutions accrue at a rate of fu,, while (Equation 8.24a) beneficial substitutions accrue
atrate A = (2Np;,)(2sN,/N) = 2(2N,.8)pup = 2y = 27yppts. Hence

Ka 8 + 2 8
W = 7 fh p TPobs _ [+ 2vpy = po + 2vps (10.25a)

so that very strong, or frequent, selection (yp, > 1) is required for w > 1. Similarly, we can
rearrange this equation to solve for v,

_w—f w-po

10.25b
2py 2pp ( )

7

If f = 0.5 and p, = 0.01, so that half of the mutations are effectively neutral and 1% are
favored, v = 25 is required for w = 1, while w = 3 requires v = 125. If p, is 0.001, a value
of v = 400 only gives w = 1.3, which is a sufficiently small deviation to avoid detection in
many cases. Finally, to connect o and w, from Equations 10.16b and 10.25a, we have

_ 2ypy 29py
a = —
2vpy + Po w

(10.25¢)



