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Uniformity 

 

Inherited variability 

Uniformity 

Can we change phenotypic variability by 

means of breeding? 

? 
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Opportunities to change variability 

• In the classical framework 

– P = A + E 

 

• When variability is a heritable trait in itself 

– Var(E) = A + E’ 

Opportunities within the classical frame work 

• P = A + E 

–  Var(P) = Var(A) + Var(E) 

–  Var(E) is not a heritable trait 

–  Changes in Var(P) have to come from changes in Var(A) 

 

• (1-Heritability) presents a limit to what can be achieved  

– Lowest possible std of trait E = (1-h2) P 

– E.g. h2 = 0.3  0.7 = 0.84  we cannot reduce the std by more 

than 16% 

 

• Opportunities within the classical framework are limited 
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Using Inbreeding 

• Problems when using inbreeding at the population level 

– F    Var(A)     response to selection  

– Inbreeding depression 

• Problems when using inbreeding as a mating strategy 

– Fmax = 0.25  the effect is very small 

• h2 = 0.3  

 

– Inbred individuals are more sensitive  Var(E)  

• Conclusion: inbreeding is not promising 
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Using an inbred parent 

• Concept: Inbred parents have lower Mendelian sampling 
variance  less variability among offspring 

 

 

 

• Use single fully inbred sire  

 

 

 

• Using an inbred parent is not promising 
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Using in- & outbreeding 

• Concept: outbred individuals show lower Var(E) 

– The effect is not very well known 

• Use inbred but unrelated parents to produce an F1 

• Theoretical maximum: Var(Aparent) = Var(MS) = 0 

• Effect:  

 

 

• Some reduction is possible, in particular when Var(E) 

also decreases 

• Problem: How to get fully inbred sires and dams? 
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Use compensatory mating 

• Concept: use opposite sires and dams 

• Theoretical optimum: Corr(ASire,ADam) = 1  Var(ASire + 
ADam) = 0 

• Effect:   

 

• Problem 1: not feasible for multiple traits 

• Problem 2: Corr(ASire,ADam) = 1 requires 100% accuracy 
of EBV 

• Not promising 

• Compensatory mating is unimportant 
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Conclusions for the classical model 

• Since h2 ≈ 0.3, the maximum reduction equals 1-0.7 = 

16%, which is small 

• Even this 16% is difficult to achieve 

• There are trade-offs with response to selection and 

inbreeding depression 

• Real effects must come from reducing Var(E) 

Heritable variability 

Treating Var(E) as a heritable trait 
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Var(E) as a heritable trait 

• What do we mean? 

–  Classical: Var(A)  genetic variance in the mean 

trait value of a genotype 

– E.g. a difference among sires in the mean trait value 

of their offspring 

– VarA(E
2)  genetic variance in the (environmental) 

variability of a genotype 

– E.g. differences between sires in the variability among 

their offspring 

Simplest possible case: clones  

• Variation within a cloned genotype 

• P = A + E, Var(Aclone) = 0  Var(Pclone) = Var(E) 

– E.g compare 1000 individuals of each of two genotypes 

– Var(Pclone1) ≠ Var(Pclone2)  clones vary in Var(E)  genetic 

variance in variability 

 

• Genetic variance in Var(E) does not necessarily mean 

heritability of Var(E) 

– Heterozygous genotypes may show lower Var(E) than 

homozygous genotypes  dominance effects 
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Key Question 

1. Does         occur? 

 

2. Is this genetic variability in Var(E) heritable? 

 

 

If the answer is YES, then we can breed for 

uniformity  

0)( 2 EgVar 

Modeling heritable variance in Var(E) 

• The additive model (Hill and co-workers) 

– (the standard deviation model; briefly) 

 

• The exponential model (SanChristobal et al.) 
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The additive model 

• Additive effects for the mean trait value, Am 

• Additive effects for the variability of trait value, Av 
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 Am,i = breeding value of i for mean 

Av,i = breeding value of i for residual variance 

E
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 Bivariate model: 

Two normally distributed traits 

that are correlated 

This is an additive model because the breeding value is added to the mean var(E) 

The additive model 

• This model can also be written as 

 

 

 

 

• Conceptual problems with the additive model 

– “Heritability” of Var(E) is 100% 

 

 

• This is only an issue with repeated observations on the same 

individual, otherwise Ev and  are fully confounded 

– Var(Ei) can become negative if Av,i is strongly negative 

• Probably unlikely for practical cases 
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The standard deviation model (briefly) 

• This model specifies the breeding value on the SD 

instead of the variance (Garcia et al., 2009)  

 

 

 

 

• Conceptual problems with the standard deviation model 

– SD(Ei) can become negative if Av,SD,i is strongly negative 

• Probably unlikely for practical cases 

– The average residual standard deviation does not equal  

 

– Part of the genetic variance in SD ends up in the mean 

residual SD.  
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The exponential model 

• The exponential model specifies an additive breeding 

value on the log-scale 

 

 

• Hence, Av,i is an additive breeding value for the log of the 

variance  

 

• Taking the exponent  

 

• Since ex > 0, this model avoids the problem that Var(Ei) 

can become negative 
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The exponential model 

• The factor ½ comes from taking the square root of Var(Ei) 
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For example: 9 = 32 = (32)½ = 32x½ = 3. 

How to interpret the exponential model? 

• The breeding value in the exponential model is a multiplication 
factor 

– Av = 0.1  Var(e) is 10% increased 

• The exponential model is additive on the log scale 

• The exponential model is multiplicative on the observed scale 
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e.g. e0.1 ≈ 1.1 

First-order Taylor series 
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How to interpret the exponential model? 

approximation exp(Av) = 1+Av
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The approximation is quite good 

 

Multiplicative interpretation is OK 

A conceptual problem of the exponential model 

• The mean environmental variance does not equal Var(E) 
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This hampers comparison of studies 

and interpretation of genetic trend 
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Relationship between both models 

• Additive model:  

 

 

• Exponential model: 

 

 

•  Relationship: 

 

 

• Breeding values differ approximately by a factor Var(E) 

 

• Genetic variances differs approximately by a factor Var(E)2 
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Exact relationships between both models 

• Breeding values 

 

 

 

• Genetic variances 
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In addition to a multiplication factor, there is a (small) difference in mean 
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Conclusions on models 

• Results from both models can be converted into each 

other 

 

• Both models have conceptual issues 

– The exponential model is statistically more correct 

– The additive model better fits within the usual animal breeding 

framework 

 

Interpreting the magnitude of Varg(E) 

• Coefficient of variation: CV = / 

–  Standard deviation as fraction of the mean 

–  Expresses variability relative to the mean 

 

• Genetic coefficient of variation: GCV = A /  

– Evolvability (Houle, 1992, Genetics 130: 195) 

– For classical breeding traits: GCV ≈ 3 - 10% 

 

• Application to heritable variance in the additive model 

–  = mean environmental variance = Var(E) 

–  = genetic std in environmental variance = A,v 
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Why evolvability makes sense 

• Response to selection: 

 

 

 

• Relative change in mean trait value equals: 

– - the strength of selection (i) 

– - times the correlation between the criterion and the BV (rIH) 

– - times the GCV (A/). 

 

• Evolvability expresses the (biological) opportunity for 

response to selection, relative to the mean trait value  
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Interpreting the magnitude of Varg(E) 

The additive model: 
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The ratio of the standard deviation in environmental variance 

and the mean environmental variance 

The GCV of the residual variance (GCVv): 
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Interpreting the magnitude of Varg(E) 

The standard deviation model (Garcia et al. 2009): 
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The ratio of the standard deviation in environmental standard deviation 

and the mean environmental variance,  

multiplied by a factor of 2. 

The GCV of the residual variance (GCVv): 

Interpreting the magnitude of varg(E) 

The exponential model:  
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In the exponential model, the standard deviation of the residual variance 

is an estimate of the genetic coefficient of variation 

So you don’t need to divide by the mean environmental variance 

The GCV of the residual variance (GCVv): 
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Interpretating the magnitude of varg(E) 

• Are we interested in the variance or in the standard 

deviation of the trait? 

• Issue: on the SD scale, the CV is only half as large! 
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It matters a lot (50%) for the interpretation of the importance  

of genetic variation in uniformity! 

This ½ holds irrespective of the model 

The Evidence 

Does Varg(E) exist? 

 

 

Estimates of heritable variance in Var(E) 
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The evidence: “livestock” 

Estimated GCV are quite high  suggests good prospects for improvement 

The evidence: Drosophila 

• Drosophila bristles and the nature of quantitative genetic variation 

– Mackay and Lyman (2005) Phil. Trans. R. Soc. 360: 1513 

 

• ~300 inbred lines 

 

• Crosses between those lines (uniform F1’s, i.e. heterozygous clones) 

 

• Model: CV = sex + line + sex*line + e 

 

• Var(line) > 0  genetic variance in var(E) 

– Not necessarily heritable variance! 
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These results show large genetic variance in Var(E) 
Largely due to recessive effects 

More evidence 
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Genetic variance in micro-

environmental sensitivity laying 

hens/broilers 
 Species Trait varav 

GCV 

ve 

GCV 

sd 

GCV 

vp 

GCV 

sdp 
h2v 

Laying hens Egg color purebreds 0.08 0.28 0.14 0.11 0.05 0.01 

Egg color crossbreds 0.07 0.26 0.13 0.13 0.07 0.01 

Egg weight  0.10 0.32 0.16 0.17 0.09 0.03 

Broilers Body weight males 0.10 0.32 0.16 0.26 0.13 0.03 

Body weight females 0.14 0.37 0.19 0.30 0.15 0.04 

Body weight males 0.24 0.49 0.25 0.36 0.18 0.05 

Body weight females 0.32 0.57 0.29 0.36 0.18 0.05 

Genetic variance in micro-

environmental sensitivity pigs 

 Species Trait varav 
GCV 

ve 

GCV 

sd 

GCV 

vp 

GCV 

sdp 
h2v 

Pigs Piglet birth weight LW 0.04 0.19 0.09 0.15 0.07 0.01 

Piglet birth weight LR 0.04 0.21 0.10 0.16 0.08 0.01 

Carcass weight P 0.08 0.28 0.14 0.17 0.09 0.03 

Carcass weight Spain 0.12 0.34 0.17 0.15 0.08 0.01 

Litter size Denmark 0.09 0.31 0.15 0.23 0.12 0.03 
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Genetic variance in micro-

environmental sensitivity dairy cattle 

 

Species Trait varav 
GCV 

ve 

GCV 

sd 

GCV 

vp 

GCV 

sdp 
h2v 

Dairy cattle milk NL 0.03 0.19 0.09 0.04 0.02 <0.01 

milk Sweden 0.05 0.22 0.11 0.07 0.03 0.01 

SCS Sweden 0.05 0.21 0.11 0.10 0.05 0.01 

SCS Robustmilk farms 0.08 0.28 0.14 0.08 0.04 0.01 

milk Belgium 0.03 0.17 0.09 0.06 0.03 <0.01 

SCS Belgium 0.03 0.16 0.08 0.08 0.04 <0.01 

SFA Belgium 0.01 0.12 0.06 0.04 0.02 <0.01 

UFA Belgium 0.02 0.12 0.06 0.08 0.04 <0.01 

C18:1 cis-9 Belgium 0.02 0.12 0.06 0.09 0.04 <0.01 

Genetic variance in micro-

environmental sensitivity fish 

 Species Trait Varav 
GCV 

ve 

GCV 

sd 

GCV 

vp 

GCV 

sdp 
h2v 

Fish Salmon 0.17 0.42 0.21 0.26 0.13 0.03 

Tilapia Harvest weight 0.18 

length 0.12 

width 0.17 

Depth 0.17 
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Genetic correlation phenotype and 

micro-environmental sensitivity   

 
Analysis se 

Egg color purebreds -0.06 0.09 

Egg color crossbreds 0.48 0.11 

Piglet birth weight LW 0.62 0.12 

Piglet birth weight LR 0.55 0.14 

Carcass weight 0.13 0.16 

Dairy cattle milk 0.74 

Estimates tend to be positive: higher trait values go together with more variation 

Heritability of Var(E) 
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Heritability of Var(E) 

• Consider the additive model: 

• Classical heritability as a regression coefficient 

– Heritability is the regression coefficient of breeding value on 

phenotype 

– “Realized heritability” 

– E(A|P) = h2(P-Pavg) 

– h2 = Cov(A,P)/Var(P) = Var(A)/Var(P) 

 

• Extension to the variance scale 

– Observation on the variance scale: P2 

– hv
2 is the regression of Av on P2 

– Reflects opportunities for changing the variance by selecting 

on P2 

Selection on P2 

 
Truncation selection against P2 

Heritability of the variance relates to the change in variance with disruptive 

or stabilizing selection 

 

Realized heritability of the variance: hv
2 = Rv /Sv for selection on P2 
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Heritability of Var(E) 

• Consider the additive model: 

• Classical heritability as a regression coefficient 

– Heritability is the regression coefficient of breeding value on 

phenotype 

– E(A|P) = h2(P-Pavg) 

– h2 = Cov(A,P)/Var(P) = Var(A)/Var(P) 

• Extension to the variance scale 

– Observation on the variance scale: P2 

– Heritability: regression of Av on P2  
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Heritability of Var(E) 

• The accuracy of mass selection on P2 
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You can do this  

because hv
2 is defined  

as a regression coefficient 
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Interpretation of hv
2 

• hv
2 refers to 

–  Inheritance of P2 from parent to offsping 

–  Accuracy of selection on P2 

• hv
2 does not refer to 

–  the proportion of variance in Var(E) that is heritable 

 

 

 

 
• hv

2  is a measure for response and accuracy of mass selection 
on P2 

• GCVv is a measure for genetic variability in variance 
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Estimates of hv
2 

These values are quite low  accuracies of mass selection on P2
  ≤ ~0.2 

Mass selection is not a powerful tool to increase uniformity  
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Conclusions on genetic parameters for variance 

• Estimated GCVg is high 

– Substantial genetic variance in var(E) 

– In principle, substantial improvement is possible 

– On the SD scale, differences are half as large! 

• Estimated hv
2 is low 

– Response and accuracy of mass selection on P2 are low 

 

• Hence: there is large genetic variation, but this is difficult 

to use because of low accuracy 

– We need something better than mass selection on P2  

– Lectures Han Mulder 


