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Learning outcomes

® To understand and calculate the response to mass
selection in mean and variance

® To calculate economic values for mean and variance

® To understand and calculate the response to index
selection in mean and variance using information of
relatives

WAGENINGEN
UNIVERSITY & RESEAR 3

Effect of mass selection on Ve
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Response to selection in normal cases

® Mass selection = selection on phenotype
® Aa = bAx = bS

® Aa = selection response

" Ax = S= selection differential

® b = regression coefficient of Aa on Ax =
® Aa = bAx = h?S

® For directional truncation selection

cov(ax) _ ;2

var(x)

® Aa = bAx = h?S = ih?0p — breeders equation
® General breeders equation: Aa = iryo,
" r,y = accuracy of selection

WAGENINGEN
UNIVERSITY & RESEARCH 5

Quantitative genetic model: the additive
model

P=u+A+E=pu+A; +Z\/G§+Aw
(:J~N((8J,G®AJ G:L(;f‘:mv Ci’imV}
2 ~N(01)

A, = breeding value of i for mean
A breeding value of i for environmental variance

V, i

o2 = the mean environmental variance

WAGENINGEN
UNIVERSITY & RESEARCH
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Single phenotype, stochastic simulations

Mulder et al. 2007; Genetics

A 0 B 0207 175:1895-1910
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If we want to predict A, and A,
from a single phenotypic
m observation, then it makes sense to
® P2 relates nearly linearly to A, use an index of P and P2

When r, = 0, then

® P relates nearly linearly to A

Z

Estimation of breeding values and selection
responses

B Start simple: only a phenotype is available, e.g.
mass selection

" E(AM|P)=h*(P-Pyean)

" E(AV|P2)=b * (PZ - szean)

Mulder et al. 2007; Genetics
175:1895-1910
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Single phenotype, selection index with P
and P2

Info: X =P—u, X,=(P-u)®—(P-pu)?

X= = 2 b N2
X | [((P-w)—(P-p)
Use both info sources for

~ 2 2
Index: Amzbm,l(P_ﬂ)"'bm,Z[(P_ﬂ) ~(P-4) } both traits, because A,

and A, can be correlated

A =B,1(P- ) +b,| (P~ 2 - (P )|
Selection index in matrix-vector notation

L é{/&m]{bm,l me P_”—}B-X
A/:[bvl b\/z]XZb'X A\I bV,l bvyz (P—ILI)Z—(P_#)Z

WAGENINGEN
UNIVERSITY & RESEAR Mulder et al. 2007; Genetics 175:1895-1910 0

Single phenotype, selection index with P
and P2 = multiple regression

® Solve the index weights
e B = P'1G, P = Var(x), G = Cov(x,a)
e Use moments of the normal distribution —

; 3 Cov(xq, Cov(xy,
P=Val‘(X): GP AGAmv 5 G :COV(X,a): ( 1 Am) ( 1 A\/)
3o, 205430, Cov(x,, A,) Cov(x,, A)
_ O-im O Ay
Try  Th

Mulder et al. 2007; Genetics 175:1895-1910

- This allows you to estimate breeding values for mean and variance when you

know the phenotype of the individual
- From those selection index equations, you can also derive the accuracy for each trait

29/01/2017
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Monte Carlo simulation

" To evaluate goodness of fit

2 ~ 2 -
hp=03 52-1 ¢2,=005 Tr,=05
1.0 - 0.4 4
08 - 03 4
0.6
0.4 021
g 0.1
L)
1 2 3
4 3 ] 0 1 2 3
61| = expectation 0.1 1 + expectation
8 from MC 02 - from MC
1.0 4 | — prediction p |— prediction
P from MR from MR

Mulder et al. 2007; Genetics
175:1895-1910 11
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Intermezzo, The Moment Generating
Function (MGF)

® The MGF is a function that allows you to derive
“moments” of distributions

® First moment: E(X) = mean
® Second moment: E(X2)

e Variance = E(X2) - mean?

nth moment: E(X")

Really handy for derivations of variances and covariances
® For the nt» moment:
e Take the nth derivative of My(t) with respect to t

e Calculate its value fort = 0
gWAGE\‘I\:II.N‘?iEN E(X")=Mx (t=0)=

dt”X t=0

12
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Moments of the normal distribution

Or, if you don’t like derivatives, look-up the moments at Wikipedia

Number Raw moment Central moment
0 1 1

1 g 0

2 “z +o° o

3 p3 + 3u02 0

4 p4 + 6p202 +3¢" 30"

5 p5 + 10;.1302 + 15;.104 0

6 p° +15u°0° + 45°6" + 150° 150°

7 p’+21p°%6° + 105p%" + 105p0° 0

8 p® +28p°%° + 210u%0" + 420p°6° + 1056° 1056°

WAGENINGEN Those things are used in the derivations in Mulder et al.

13

Single phenotype, selection index with P
and P2

® Response to selection in mean and variance
e a = B'x > Aa = B'Ax

e If you know the selection index weights in B, and the
selection differentials in x, you can calculate response

® Directional truncation selection on P

e Selection differentials in mean and variance (e.g. Tallis,
1961)

A, = AP =io,

Se|eCtI0n IntenSIty Directional truncation selection
for the variance

AX, = A(P - p)* - o} = (X)o7}

where X is the standardized truncation point

Selection for the mean also generates a positive

trait value

selection differential in the variance! 14




Response to directional mass selection

h=03 42-1 03,=005 1,=0

p | AA, | AA, | of Ratio
AA, I AA,,
20% | 0.42 | 0.03 | 0.73 | 0.06
5% | 0.60 | 0.08 | 0.78 | 0.13

1% | 0.73 | 0.14 | 0.84 | 0.20 4s 2012 3

X

Animals with larger variance have larger probability of selection

— Directional mass selection increases the environmental
variance

WAGENINGEN
UNIVERSITY & RESEAR Mulder et al. 2007; Genetics 175:1895-1910
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Single phenotype, selection index with P
and P2

® Can we increase uniformity using info on a single
phenotype?

" Try stabilizing selection e seeeten
® Again we can use Aa = B'Ax o

A¥, = AP =0

A%, =AP—p)? =1 - 2p" VX" 11~ 2p") |02 -

where p” is the proportion in one of the tails
Mulder et al. 2007; Genetics 175:1895-1910

Doing those calculations tells us whether we can select for uniformity

by taking a group of average animals .

29/01/2017



Single phenotype, selection index with P

and P2

® \What selection differentials are feasible for P2 ?

Standardized selection differentials ofP_ffor directional, stabilizing, and disruptive selection by truncation on a
normal distribution corrected for the expectation of P* (= 1) for different selected proportions ()

Selecred prop orrion l'p)

Type of selection 0.80 0.40 0.20 0.10 005 0.01 0001
Directional —0.29 0.24 1.18 2.25 3.39 6.20 10.41
Stabilizing —0.56 —0.91 —0.98 —0.99 —1.00 =1.00 =1.00
Disruptive 0.24 1.18 2,25 3.39 1.58 745 11.70

You can select strongly for greater P2, but not for smaller P2 ®

The selection differential limits the potential to reduce variability with
mass selection. Stabilizing selection on own performance is not

promising

The usual directional selection has the effect to increase variability! 6?7

Response of A, to mass selection

Directional selection

Stabilizing selection

04,

Disruptive selection

he=03 52=1 0¢4,=005 1=0 o2,=070

p Directional | Stabilizing Disruptive
20% 0.03 -0.02 0.05
5% 0.08 -0.02 0.11
1% 0.14 -0.02 0.17

WAGENINGEN

UNIVERSITY &

RESEARC

Mulder et al. 2007; Genetics 175:1895-1910
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Heritability of environmental variance

® In analogy of the normal heritability of the
mean

®  Regression of Av on P2
h? =b, o =Cov(A,,P?)/Var(P?)
h! = oy, IVar(P?)
2
(o)
hv2:2 2 & 2
op +30,

" Accuracy of BV = ,/h?

v

WAGENINGEN
UNIVERSITY & RESEAR Mulder et al. 2007; Genetics 175:1895-1910
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Conclusions mass selection

® Opportunities to change the variance with info on
single phenotypes is limited

e Accuracy is low (/h2)

e The selection differential for stabilizing selection is
small

® Traditional truncation selection has the tendency
to increase variability

gWAEENINGEN
UNIVERSITY & RESEAR

20
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Response to selection using information
of relatives

WAGENINGEN
UNIVERSITY & RESEARCH
21

Selection based on relatives

® Use a group of relatives of a single sire and/or dam
e E.g. progeny

® Within family variance is a measure for A,
e HS-Progeny of a single sire —
® Vary, = %Var(A) + [ Var(E) + 2A, g ]

® E.g. find the sire with the most uniform progeny, using 100
progeny per sire

® This yields much higher accuracies than own performance info

® The procedure is the same, but ...

® The mathematics becomes more tedious (Mulder et al., 2007)

WAGENINGEN
UNIVERSITY & RESEARCH Mulder et al. 2007; Genetics 175:1895-1910 »

29/01/2017
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Accuracy of selection based on relatives

B Selection based on the within family variance
e Variance within a group of sibs or progeny

® Exact expression is complex — approximation

® Classical expression for selection on relatives

n a = additive genetic relationship between
"y =ah m candidate and group of relatives
t = intraclass correlation among the relatives

t = a,h?, a, = additive genetic relationship
among the group of relatives

WAGENINGEN
UNIVERSITY & RESEARCH Mulder et al. 2007; Genetics 175:1895-1910

Hill and Mulder, 2010; Genetics Res. 92:381-395 >

Accuracy of selection based on relatives

® Expression for selection on the variance (VEBV)

n
| | ~ —_
TIHvEBY =~ ah ’1+(n—1)t

e g = additive genetic relationship between candidate and
group of relatives

e t = intraclass correlation among the relatives

® ¢ =q,h?, a, = additive genetic relationship among the
group of relatives

® This is the same as for classical traits
e Limiting accuracies are 0.5 for HS, 0.71 for FS and
1 for progeny

WAGENINGEN
UNIVERSITY & RESEARCH
24

29/01/2017
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Comparison approximation with simulation

Table 6. Realized (MC) and predicted accuracy of A, for different numbers of half-sib
progeny per sire and O'f\m using either the exact prediction (MR exact) or the approximate

prediction (MR approx)a'b. Mulder et al. 2007; Genetics 175:1895-1910

Accuracy A,

Number of progeny

10 100
gim MC MR exact MR approx MC MR exact MR approx
0 0.235 0.235 0.235 0.607 0.607 0.607
0.1 0.236 0.236 0.235 0.615 0.615 0.607
0.3 0.243 0.244 0.235 0.633 0.633 0.607
0.6 0.251 0.260 0.235 0.648 0.663 0.607

25

Accuracy of VEBV

hi=03 o2=1 h?=0023 1,=0

Number of records Mass FS HS progeny
Own phenotype 0.15 - -

10 - 0.25 0.24

50 - 0.47 0.50
100 - 0.55 0.63

® With phenotype only, accuracy is small and relies on the mean
whenr, # 0

® Using 100 progeny yields meaningful accuracies

WAGENINGEN
UNIVERSITY & RESEAR Mulder et al. 2007; Genetics 175:1895-1910

26

29/01/2017

13



Numerical results for accuracy

TABLE 7

Predicted aceuwracy of A., based on a single phenotype or different numbers of fullsibs or halfsib progeny

for different values of (ri and ry

g =0 ¥y = 0.5:

2 2

Ta, Ay
Information No. of progeny 001 0.05 0.10 0.01 .05 010

Predicted accuracy A,

Phenornype —_ 0.070 0.152 0.209 0.279 0.299 0.519
Fullsibs 10 0123 0.252 0.527 0.299 0.548 0588
50 0.267 0.468 0.544 0.5394 0.505 0.560
100 0.355 0.553 0610 0.442 0.570 0.617
Halfsib 10 0.115 0.244 0.325 0.346 0.5386 0.424
Progeny 50 0.257 0.499 0618 0,490 0.597 0.671
100 0353 0.633 0.745 0.545 0.693 0.972
1000 0.768 0.033 0.962 0.798 0.936 0.965

af =03 0% =07 08 =03 +o} =10 hv2 = 0.5%, 2.5% and 5%

® With phenotype only, accuracy is small and relies on the mean

when r, # 0

® Using 100 progeny yields meaningful accuracies

Mulder et al. 2007; Genetics 175:

1895-1910

27

The accuracy of VEBV (approximation)

[any

heritability = 0.03
—0—0—0—0—0—0—5

© oo oo
oo N

o
>

accuracy VEBV

o oo
[N S

o

T T 1

0 200 400 600 800 1000

Number of relatives

== clones
== full-sibs
half-sib progeny

WAGENINGEN

UNIVERSITY & RESEARCH
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The accuracy of VEBV (approximation)

heritability = 0.01
——0—0—0

0.9 -
0.8
> 0.7 +
)
W 0.6 -
305 -
o
é 0.4 -+
© 0.3
0.2
0.1

) / =@=Clones

== full-sibs

half-sib progeny

0 200 400 600 800 1000
Number of relatives

Large number of clones or half-sib progeny needed to approach
accuracy = 1.0

29

Selection to increase uniformity expressed in
standard deviations

® Selected proportions: 5% in sires, 20% in dams
® sires progeny tested, dams sib tested

n o4, h2  acc sireacc dam %SDE %SDP
50 0.05 0.3 0.36 0.18 -5.45 -3.78
100 0.05 0.3 0.48 0.24 -7.18 -4.97
200 0.05 0.3 0.61 0.31 -9.06  -6.25

® %SDE = change (%) in environmental standard deviation
" %SDP = change (%) in phenotypic standard deviation

Large families needed!!!

gWAEENINGEN 2
UNIVERSITY & RESEAR

29/01/2017
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Selection to improve uniformity expressed
in standard deviations

® Selected proportions: 5% in sires, 20% in dams
® sires progeny/sib tested, dams sib tested

% SDE %SDP

n 012;‘, h2 sib  progeny sib progeny
100 0.05 0.1 -5.40 -8.48 -4.85 -7.60
100 0.05 0.3 -4.56 -7.18 -3.17 -4.97
100 0.05 0.5 -2.58 -5.54 -1.28 -2.73

- Progeny testing gives larger response
- More response for traits with low heritability

WAGENINGEN
UNIVERSITY & RESEAR! 31

Summary response to selection

® With info on relatives we can reach high accuracies
despite low heritability
e Limiting accuracies are the same as in classical theory

e Clones would be ideal system to study genetics of Ve

® Combined with the high GCV, this yields high
potential response to selection A
— =1y
H H

B Selection to reduce Ve is promising, especially for
traits with a low heritability of the phenotype

QWAEENINGEN
UNIVERSITY & RESEAR

32
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Some extensions

WAGENINGEN 33
UNIVERSITY & RESEAR

Some extensions

® What is the heritability of the log-variance/standard
deviation of repeated observations?

e Within-litter variance of birth weight

® Log-variance of repeated records for egg color/egg
weight/milk yield

® Response to selection with the exponential model
e Relationship response and GCV

gWAEENINGEN
UNIVERSITY & RESEAR
34

29/01/2017
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Heritability litter variance

® We can use the classical equation

nh?

™ _
’," el —
il 1+(n—-1r

" r = repeatability
® If r = h2=0.01 and n=15 piglets:

" hg,litter =0.14

WAGENINGEN
UNIVERSITY & RESEARCH

35

Heritability repeated observations

® Egg color in purebred laying hens
® h2=0.01 and r=0.046

0.1

0.09 4
0.08 _—
0.07 /

g 0.06 //

5 005

g «

> 0.04 =& Seriesl
0.03
0.02
0.01

0

heritability of within-individual

5 7 9 11 13 15

number of repeated observations

WAGENINGEN
NIVERSITY & RESEARCH Mulder et al. 2016; GSE 48:39

36

29/01/2017

18



Response to selection with exponential
model

® Remember: average Ve depends on genetic variance in
Ve

m 2 _ 52 2
OF = OFexp exp(O.SaA,,)
" Aa, = iryoyy

" AcE = of(exp(Aa,) — 1)

" O-Ez,t+1 = O-Ez,t + Aabg = JEZ,t(eXp(Aav))

WAGENINGEN
UNIVERSITY & RESEARCH
37

Response under additive and exponential
model

0.8
0.7
06
05

804
03 -
02
0.1

04 ‘ ; !

0 10 20 30 0 10 20 30

generation generation

220 +
—4—additive model

~-exponential model

® Response to selection approximately the same in the
first generations

® Additive model can be considered as a linear
approximation of the exponential model

" No biological evidence which model is better

WAGENINGEN
UNIVERSITY & RESEARCH
38
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Response to selection: use of GCV

" In exponential model: GCV,z = 0gy

Aa o
m 2 __ av . i
=17 = L yOo,
cfé IHO'zr IHY av

" The response in the exponential model is the proportion
of change in Ve

WAGENINGEN 39
UNIVERSITY & RESEARC

Selection response in standard deviations

[uy

"GOV, = > Oav

1

[ ] ~ =
GCVg, = 50y
m Aay

g,

O N[BTy

Q
S

. 1
= Uy E Oqv

|

g

]

9k _

® Example: i = 1.0, r;y = 0.6; 02, = 0.05; —~=07
P
® Aa, =1.0%0.6*v0.05=13%

-%ﬁ=10*06*VQO £0.5 = 6.7%

E
m2%_ 4 040.6%0.05 %05 *0.7 = 2.3%

op
gWAEENINGEN
UNIVERSITY & RESEARC
40
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Summary

® Classical equations can be used to calculate accuracy of
selection using heritability of Ve

® Many offspring/sibs needed to obtain reasonable
accuracy

® The additive model is easier for selection response than
the exponential model

® Genetic coefficient of variation parameters are easy
parameters to know the change in standard deviation or
variance

WAGENINGEN
UNIVERSITY & RESEARC
41

Breeding goal and deriving economic
values

gWAEENINGEN
UNIVERSITY & RESEARC
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When do we want to select on variance?

® Optimum traits: bring population close to the optimum
" How could we determine it more precisely?
® Take the derivative with respect to the variance

dM
VAV =7 3 * . .
dos e M=profit equation

® Only non-zero economic value for non-linear profit
equations!!!

AWAEENINGEN Mulder et al. Genet. Sel. Evol. 40:37-59.

43

Different cases of non-linear profit

® Quadratic profit equation
® Age at first calving
e Some conformation traits in cattle

® Animals between thresholds orofi=0 | profic | proft=0
e Carcass weight in pigs
e pH of meat in pigs /\
e Egg weight in laying hens Optinum \
range

WAGENINGEN
pnERSTY s RRsRAme Mulder et al. Genet. Sel. Evol. 40:37-59.

44
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Non-linear profit: Risk aversion

Eskridge, K. M. and B. E. Johnson.
1991. Expected utility maximization
and selection of stable plant cultivars.

® Risk aversion Theor. Appl. Genet. 81:825-832.

® Higher profit
increases utility less
than lower profit u)
decreases utility

U(¥+e)

E(U(Y)

UTILITY

BU=1-exp(—aY)
"Y is yield

U(¥-e)—

Y-e ¥ ¥ Vse

gWF\EENINGEN YIELD
VERSITY & RESEAR .

Fig. 1. Utility function of a risk-averse plant breeder

Case non-linear profit: derivation of economic
values (quadratic profit)

= Animal level M =a,(P-0)*+a,

" Population level KﬁzfﬂMNPNPzaMﬂ—unO+qOZ+%+ap§

® Economic values dM
Vi, =g~ = 28:(u~0)

Mulder et al. Genet. Sel. Evol. 40:37-59

gWAEENINGEN :
UNIVERSITY & RESEAR
46
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Case non-linear profit
derivation of economic values (thresholds)

_ 1
_ ZI Zu _ E(thl B Zutu)
Va, = Va = =2
Op Op
*—Am profit=0 profit=1 profit=0
—o0— Av
- = = = threshold
0.5 . .
S 03 :
© Optimum
& 014 M range
€ Y . . ‘
2-01; 3 2 1 0 1 2 3
3 P
g 0.3
-0.5
Population Mean
QWF\EENINGEN
R Mulder et al. Genet. Sel. Evol. 40:37-59.  ,
Case non-linear profit
mean and phenotypic variance
—%— quadratic —¥— quadratic
~— two thresholds —— two thresholds
0.0 X 911
c
5 8 1.0
-0.5 A S
z 0.9
c 5_
3 -1.0 4 >08
= 207
< .
-15 - 2
D— 0.6 T T T T T 1
203 o 1 2 3 4 5
Generation Generation
AWAEENINGEN Mulder et al. Genet. Sel. Evol. 40:37-59.

29/01/2017
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Multi-trait selection on mean and variance

WAGENINGEN
UNIVERSITY & RESEARCH
49

Multi-trait selection: selection index theory

A
"H=vmAm +vapdy =Va Vv =[Vam Va];a= [Ar:]

® Suppose we have information on the mean performance
and the within-family variance of half-sibs (either as sibs
or as offspring of selection candidate)

" | = b P+ byvarW =b'x b’ =[b; by];x= [vaf‘W]

®" b =P 1Gv index weights to maximize genetic gain in H

var(P) cov(P,varW)

BP=var(x) = _
var(x) [cov(P,varW) var(varW)

'G=[ cov(4,,, P) cov(A,, P) ]
cov(Apy, varW) cov(A,, varW)

WAGENINGEN
UNIVERSITY & RESEARCH
50
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Response to selection

" AA =[AA,, AA,] = %

= /b'Pb = standard deviation of index

® Use classical equations for P and G and hZ and additive
model for Ve (approximation)

i : selection intensity;

ap- Vir(ls) cov(P,varW) _
cov(P,varW)  var(varW)

L [[67 (1 + (n — Dar®)]/n [(3 + a(n — 3)}covgmyl/n
symmetric [(2oy+304,)(1 + (n — 1)ah)]/n
® a = additive genetic relationships between family
members

WAGENINGEN
UNIVERSITY & RESEARCH

51

Response to selection

- =[ cov(Am, P) cov(4,, P) ]= A4j0em  ACOVamy
cov(Apy, varW) cov(A,, varW) a;COVgmy aja,f,,

® a; = additive genetic relationship between the animal to
be evaluated and the group of relatives

e 0.5 parent-offspring
e 0.25 when selection candidate is a half-sib

B Exact elements in Mulder et al. Genet. Sel. Evol. 40:37-
59.

WAGENINGEN
UNIVERSITY & RESEARCH
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What does nature say with respect to
selection on variance?

WAGENINGEN
UNIVERSITY & RESEARCH

What is the relationship between fitness
and Ve?

® What is the best Ve from a fithess point of view?
" Are there any trade-offs of a high or low variance?

® What is the regression of fitness on trait values or on
within-family variance?

® We performed an analysis in Great Tits at the Veluwe, a
nature reservation close to Wageningen

WAGENINGEN
UNIVERSITY & RESEARCH

54
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Fitness and Ve in Great Tit

0.12 0.90 -
~ 0.0 - + g O80
§ + 5 070
_.gu 0.08 + 9 060 -
& 006 - ! ! + ® 050 {
s Il 71
E 004 £ G40
5 Z 030 - }
o &
3 00 ! - {

0.00 : : : , 0.10 : : : :

12 14 16 18 20 25 A5 05 05 15
Fledging weight (g) Vw Fledging weight

c D (log-variance of within-brood variance)
« Results show stabilizing selection on Ve
¢ Ve is maintained

WASENINGEN Mulder et al., Evolution 70:2004-2016

55

Selection experiments

WAGENINGEN

UNIVERSITY & RESEARCH
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Selection experiments

® Selection experiments with laboratory animals, e.g.
Drosophila

® Selection experiment in rabbits

" Need for more selection experiments

WAGENINGEN

UNIVERSITY & RESEARC

57

Selection experiment in rabbits

Garreau et al. 2008;
0.25 Livest. Sci. 119:55-62.

0.2
0.15
O'l 7 RRTITE S -.
0054 o SR
04
005
-0.1 1
0.15 4 \/
024
025 , [ [ |

GO Gl G2 G3 G4
Generalions

EBV

Fig. 1. Estimated breeding values (v) of environmental variability over
the four generations of selection in heterogeneous (--fil--) and
homogeneous lines (=@=).

58
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Experunentu1rabb¢s Garreau et al. 2008;
Livest. Sci. 119:55-62.
(@) (b)
100 P-value = 0.2773
90
o) NM
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Fig. 2. Phenotypic least-squares means of the four generations of selection and phenotypic mean of the base population for standard deviation of birth
weight (STDB) (a), standard deviation of weaning weight (STDW) (b), individual birth weight (BW) (c), individual weaning weight (WW) (d) in59

heterogeneous (--fll+) and homogeneous lines (=@-). P value of the line effect. (NM: Not measured in the base population).

Summary

® Selection index theory can be used to predict responses
to selection

® Selection to change the variance is important when the
profit equation is non-linear

e Selection to improve uniformity is of importance
when having an optimum
" Need for knowledge on relationships between Ve and
fitness (traits)

® More selection experiments are needed to learn more
about genetic architecture of Ve
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