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Response to selection in variance 

Han Mulder and Piter Bijma 

Contents 

 Effect of mass selection on Ve 

 Response to selection and breeding goal  

● Use of information of relatives 

● Breeding goal and deriving economic values 

● Multi-trait selection on mean and variance 

● What does nature say with respect to selection on 
variance? 

● Selection experiments  

 Practical 

● Mass selection 

● Information of relatives and breeding goal 
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Learning outcomes 

 To understand and calculate the response to mass 
selection in mean and variance 

 

 To calculate economic values for mean and variance 

 

 To understand and calculate the response to index 
selection in mean and variance using information of 
relatives 
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Effect of mass selection on Ve 
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Response to selection in normal cases 

 Mass selection = selection on phenotype 

 ∆𝑎 = 𝑏∆𝑥 = 𝑏𝑆 

 ∆𝑎 = selection response 

 ∆𝑥 = S= selection differential 

 𝑏 = regression coefficient of ∆𝑎 on ∆𝑥 =
cov a,x

var x
= ℎ2 

 ∆𝑎 = 𝑏∆𝑥 = ℎ2𝑆 

 For directional truncation selection 

 ∆𝑎 = 𝑏∆𝑥 = ℎ2𝑆 = 𝑖ℎ2𝜎𝑃 →  breeders equation 

 General breeders equation: ∆𝑎 = i𝑟𝐼𝐻𝜎𝑎  

 𝑟𝐼𝐻 = accuracy of selection  
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Quantitative genetic model: the additive 

model 
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E
2  = the mean environmental variance 
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Single phenotype, stochastic simulations 

When rA = 0, then 

 P relates nearly linearly to Am 

 P2 relates nearly linearly to Av 

If we want to predict Am and Av 
from a single phenotypic 
observation, then it makes sense to 
use an index of P and P2 

Mulder et al. 2007; Genetics 

175:1895-1910 
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Estimation of breeding values and selection 

responses 

 

  

 

 Start simple: only a phenotype is available, e.g. 
mass selection 

 

 E(Am|P)≈h2*(P-Pmean) 

 

 E(Av|P2)=b * (P2 - P2
mean) 

Mulder et al. 2007; Genetics 

175:1895-1910 
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Single phenotype, selection index with P 

and P2 
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Use both info sources for 
both traits, because Am  
and Av can be correlated 

Mulder et al. 2007; Genetics 175:1895-1910 
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Single phenotype, selection index with P 

and P2 = multiple regression 

Solve the index weights 

● B = P-1G, P = Var(x), G = Cov(x,a) 

● Use moments of the normal distribution  
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- This allows you to estimate breeding values for mean and variance when you  
  know the phenotype of the individual 
- From those selection index equations, you can also derive the accuracy for each trait 

Mulder et al. 2007; Genetics 175:1895-1910 
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Monte Carlo simulation 

 To evaluate goodness of fit 
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Mulder et al. 2007; Genetics 

175:1895-1910 11 

Intermezzo, The Moment Generating 

Function (MGF) 

 The MGF is a function that allows you to derive 

“moments” of distributions 

 First moment: E(X) = mean 

 Second moment: E(X2) 

● Variance = E(X2) – mean2 

 nth moment: E(Xn) 

 Really handy for derivations of variances and covariances 

 For the nth moment:  

● Take the nth derivative of MX(t) with respect to t 

● Calculate its value for t = 0 

)0()0()(  t
dt

Md
tMXE

n

X
n

n
X

n
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Moments of the normal distribution 
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Or, if you don’t like derivatives, look-up the moments at Wikipedia 

Those things are used in the derivations in Mulder et al. 
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Single phenotype, selection index with P 

and P2 

Response to selection in mean and variance 

● a = B’x  a = B’x 

● If you know the selection index weights in B, and the 

selection differentials in x, you can calculate response 

Directional truncation selection on P 

● Selection differentials in mean and variance (e.g. Tallis, 

1961) 
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where x is the standardized truncation point 

Selection intensity 
for the variance 

Selection for the mean also generates a positive 
selection differential in the variance! 

14 
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Response to directional mass selection   

 

p ∆Am ∆Av 𝜎𝐸
2 Ratio 

∆Av / ∆Am 

20% 0.42 0.03 0.73 0.06 

5% 0.60 0.08 0.78 0.13 

1% 0.73 0.14 0.84 0.20 
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Animals with larger variance have larger probability of selection 

→ Directional mass selection increases the environmental 

variance  

05.02 Av

Mulder et al. 2007; Genetics 175:1895-1910 
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Single phenotype, selection index with P 

and P2 

Can we increase uniformity using info on a single 
phenotype? 

 Try stabilizing selection 

Again we can use a = B’x 

  2****2
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where p* is the proportion in one of the tails 

Doing those calculations tells us whether we can select for uniformity 
by taking a group of average animals 

Mulder et al. 2007; Genetics 175:1895-1910 
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Single phenotype, selection index with P 

and P2 

What selection differentials are feasible for P2 ? 

You can select strongly for greater P2, but not for smaller P2  

The selection differential limits the potential to reduce variability with 
mass selection. Stabilizing selection on own performance is not 
promising 

The usual directional selection has the effect to increase variability!   
17 

Response of Av to mass selection 

Directional selection 
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p Directional Stabilizing Disruptive 

20% 0.03 -0.02 0.05 

5% 0.08 -0.02 0.11 

1% 0.14 -0.02 0.17 

70.02

0, E

Mulder et al. 2007; Genetics 175:1895-1910 
18 



29/01/2017 

10 

Heritability of environmental variance   

 

 In analogy of the normal heritability of the 
mean 

 

 Regression of Av on P2 

 

 

 

 

 

 

 Accuracy of BV =    
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Mulder et al. 2007; Genetics 175:1895-1910 
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Conclusions mass selection 

Opportunities to change the variance with info on 
single phenotypes is limited 

● Accuracy is low ( ℎ𝑣
2) 

● The selection differential for stabilizing selection is 

small 

 

 Traditional truncation selection has the tendency 
to increase variability 

20 
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Response to selection using information 

of relatives 

 

21 

Selection based on relatives 

 Use a group of relatives of a single sire and/or dam 

● E.g. progeny 

 Within family variance is a measure for Av 

● HS-Progeny of a single sire  

● VarW = ¾Var(A) + [ Var(E) + ½Av,sire ] 

 E.g. find the sire with the most uniform progeny, using 100 

progeny per sire 

 This yields much higher accuracies than own performance info 

 

 The procedure is the same, but … 

 The mathematics becomes more tedious (Mulder et al., 2007) 

Mulder et al. 2007; Genetics 175:1895-1910 
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Accuracy of selection based on relatives 

Selection based on the within family variance 

● Variance within a group of sibs or progeny 

 

Exact expression is complex  approximation 

 

Classical expression for selection on relatives  

 

 
 𝑟𝐼𝐻 = 𝑎ℎ

𝑛

1+ 𝑛−1 𝑡
 

a = additive genetic relationship between 
candidate and group of relatives  
t = intraclass correlation among the relatives 
t = awh2 , aw = additive genetic relationship 
among the group of relatives 

Mulder et al. 2007; Genetics 175:1895-1910 

Hill and Mulder, 2010; Genetics Res. 92:381-395 
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Accuracy of selection based on relatives 

Expression for selection on the variance (vEBV) 

 

 𝑟𝐼𝐻,𝑣𝐸𝐵𝑉 ≈ 𝑎ℎ
𝑛

1+ 𝑛−1 𝑡
 

● 𝑎 = additive genetic relationship between candidate and 

group of relatives  

● 𝑡 = intraclass correlation among the relatives 

● 𝑡 = 𝑎𝑤ℎ𝑣
2 , aw = additive genetic relationship among the 

group of relatives 

 

 This is the same as for classical traits 
● Limiting accuracies are 0.5 for HS, 0.71 for FS and 

1 for progeny 

24 
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Comparison approximation with simulation 

Table 6. Realized (MC) and predicted accuracy of vÂ  for different numbers of half-sib 

progeny per sire and 2

mA  using either the exact prediction (MR exact) or the approximate 

prediction (MR approx)
a,b

. 

 Accuracy vÂ  

 Number of progeny 

  10    100  

2

mA  MC MR exact MR approx  MC MR exact MR approx 

0 0.235 0.235 0.235  0.607 0.607 0.607 

0.1 0.236 0.236 0.235  0.615 0.615 0.607 

0.3 0.243 0.244 0.235  0.633 0.633 0.607 

0.6 0.251 0.260 0.235  0.648 0.663 0.607 

 

Mulder et al. 2007; Genetics 175:1895-1910 

25 

Accuracy of vEBV 

 

 

 

 

 

3.02 mh 12 P 023.02 vh 0Ar

Number of records Mass  FS HS progeny 

Own phenotype 0.15 - - 

10 - 0.25 0.24 

50 - 0.47 0.50 

100 - 0.55 0.63 

 With phenotype only, accuracy is small and relies on the mean 

when rA ≠ 0 

 Using 100 progeny yields meaningful accuracies 

Mulder et al. 2007; Genetics 175:1895-1910 26 
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Numerical results for accuracy 

 With phenotype only, accuracy is small and relies on the mean 

when rA ≠ 0 

 Using 100 progeny yields meaningful accuracies 

 

hv
2 ≈ 0.5%, 2.5% and 5% 

Mulder et al. 2007; Genetics 175:1895-1910 27 

The accuracy of vEBV (approximation) 
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The accuracy of vEBV (approximation) 
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Large number of clones or half-sib progeny needed to approach 
accuracy = 1.0 29 

Selection to increase uniformity expressed in 

standard deviations 

 Selected proportions: 5% in sires, 20% in dams 

 sires progeny tested, dams sib tested 

 

 

 

 

 
%SDE = change (%) in environmental standard deviation 
%SDP = change (%) in phenotypic standard deviation 

 Large families needed!!! 

n σAv

2  h2 acc sire acc dam %SDE %SDP 

50 0.05 0.3 0.36 0.18 -5.45 -3.78 

100 0.05 0.3 0.48 0.24 -7.18 -4.97 

200 0.05 0.3 0.61 0.31 -9.06 -6.25 

30 
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Selection to improve uniformity expressed 

in standard deviations 

 Selected proportions: 5% in sires, 20% in dams 

 sires progeny/sib tested, dams sib tested 

 

- Progeny testing gives larger response 

- More response for traits with low heritability 

%SDE %SDP 

n σAv

2
 h2 sib progeny sib progeny 

100 0.05 0.1 -5.40 -8.48 -4.85 -7.60 

100 0.05 0.3 -4.56 -7.18 -3.17 -4.97 

100 0.05 0.5 -2.58 -5.54 -1.28 -2.73 

31 

Summary response to selection 

With info on relatives we can reach high accuracies 
despite low heritability 

● Limiting accuracies are the same as in classical theory 

● Clones would be ideal system to study genetics of Ve 

 

Combined with the high GCV, this yields high 
potential response to selection 

 

 

Selection to reduce Ve is promising, especially for 
traits with a low heritability of the phenotype 


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 A
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Some extensions 

33 

Some extensions 

What is the heritability of the log-variance/standard 
deviation of repeated observations? 

● Within-litter variance of birth weight 

 

● Log-variance of repeated records for egg color/egg 
weight/milk yield 

 

 Response to selection with the exponential model 

● Relationship response and GCV 

   

34 
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Heritability litter variance 

We can use the classical equation 

 

 𝑟𝐼𝐻 =
𝑛ℎ2

1+ 𝑛−1 𝑟
 

 𝑟 = repeatability 

 

 If 𝑟 = ℎ𝑣
2=0.01 and n=15 piglets: 

 

 ℎ𝑣,𝑙𝑖𝑡𝑡𝑒𝑟
2 = 0.14 

35 

Heritability repeated observations 

 Egg color in purebred laying hens 

 ℎ𝑣
2=0.01 and 𝑟=0.046 
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Response to selection with exponential 

model 

 Remember: average Ve depends on genetic variance in 
Ve 

 

 𝜎𝐸
2 = 𝜎𝐸,𝑒𝑥𝑝

2 exp 0.5𝜎𝐴𝑣
2  

 

 ∆𝑎𝑣 = 𝑖𝑟𝐼𝐻𝜎𝐴𝑣 

 

 ∆𝜎𝐸
2 = 𝜎𝐸,𝑡

2 (exp ∆𝑎𝑣 − 1) 

 𝜎𝐸,𝑡+1
2 = 𝜎𝐸,𝑡

2 + ∆𝜎𝐸
2 = 𝜎𝐸,𝑡

2 (exp ∆𝑎𝑣 ) 

37 

Response under additive and exponential 

model 

 

 

 

 

 

 Response to selection approximately the same in the 
first generations 

 Additive model can be considered as a linear 
approximation of the exponential model 

 No biological evidence which model is better 

 
38 
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Response to selection: use of GCV 

 In exponential model: 𝐺𝐶𝑉𝜎𝐸
2 ≈ 𝜎𝑎𝑣 

 


∆𝑎𝑣

𝜎𝐸
2 = 𝑖𝑟𝐼𝐻

𝜎𝑎𝑣

𝜎𝐸
2 ≈ 𝑖𝑟𝐼𝐻𝜎𝑎𝑣 

 

 The response in the exponential model is the proportion 
of change in Ve 

 

 

39 

Selection response in standard deviations 

 𝐺𝐶𝑉𝜎𝑒
≈

1

2
𝜎𝑎𝑣 

 𝐺𝐶𝑉𝜎𝑃
≈

1

2
𝜎𝑎𝑣

𝜎𝐸
2

𝜎𝑃
2 


∆𝑎𝑣

𝜎𝑃
≈ 𝑖𝑟𝐼𝐻

1

2
𝜎𝑎𝑣

𝜎𝐸
2

𝜎𝑃
2 

 

 Example: 𝑖 = 1.0, 𝑟𝐼𝐻 = 0.6; 𝜎𝑎𝑣
2 = 0.05; 

𝜎𝐸
2

𝜎𝑃
2 = 0.7 

 ∆𝑎𝑣 = 1.0 ∗ 0.6 ∗ 0.05 = 13% 

 


∆𝑎𝑣

𝜎𝐸
= 1.0 ∗ 0.6 ∗ 0.05 ∗ 0.5 = 6.7% 

 


∆𝑎𝑣

𝜎𝑃
= 1.0 ∗ 0.6 ∗ 0.05 ∗ 0.5 ∗ 0.7 = 2.3% 

40 
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Summary 

 Classical equations can be used to calculate accuracy of 
selection using heritability of Ve 

 

 Many offspring/sibs needed to obtain reasonable 
accuracy 

 

 The additive model is easier for selection response than 
the exponential model 

 

 Genetic coefficient of variation parameters are easy 
parameters to know the change in standard deviation or 
variance 

41 

Breeding goal and deriving economic 

values 
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When do we want to select on variance? 

 Optimum traits: bring population close to the optimum 

 How could we determine it more precisely? 

 Take the derivative with respect to the variance 

 

 

● M=profit equation 

 

 Only non-zero economic value for non-linear profit 
equations!!! 

0
2


P
vA

d

Md
v



Mulder et al. Genet. Sel. Evol. 40:37-59. 

43 

Different cases of non-linear profit 

 Quadratic profit equation 

● Age at first calving 

● Some conformation traits in cattle 

 

 Animals between thresholds 

● Carcass weight in pigs 

● pH of meat in pigs 

● Egg weight in laying hens 

 

-3 -2 -1 0 1 2 3

P

profit=0 profit=1 profit=0

Optimum 

range

Mulder et al. Genet. Sel. Evol. 40:37-59. 44 
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Non-linear profit: Risk aversion 

 Risk aversion 

 Higher profit 
increases utility less 
than lower profit 
decreases utility 

 

 𝑈 = 1 − exp −𝑎𝑌  

 Y is yield 

Eskridge, K. M. and B. E. Johnson. 
1991. Expected utility maximization 
and selection of stable plant cultivars. 
Theor. Appl. Genet. 81:825-832. 
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Case non-linear profit: derivation of economic 

values (quadratic profit) 

 Animal level 

 

 Population level 

 

 Economic values 
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Case non-linear profit  

derivation of economic values (thresholds) 
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Case non-linear profit 

mean and phenotypic variance 
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Multi-trait selection on mean and variance 

49 

Multi-trait selection: selection index theory 

 𝐻 = 𝑣𝐴𝑚𝐴𝑚 + 𝑣𝐴𝑣𝐴𝑣 = 𝐯′𝐚   𝐯′ = 𝑣𝐴𝑚 𝑣𝐴𝑣 ; 𝐚 =
𝐴𝑚

𝐴𝑣
  

 

 Suppose we have information on the mean performance 
and the within-family variance of half-sibs (either as sibs 
or as offspring of selection candidate) 

 𝐼 = 𝑏1𝑃 + 𝑏2𝑣𝑎𝑟𝑊 = 𝐛′𝐱  𝐛′ = 𝑏1 𝑏2 ; 𝐱 = 𝑃 

𝑣𝑎𝑟𝑊
 

 𝐛 = 𝐏−𝟏𝐆𝐯 index weights to maximize genetic gain in H 

 

 𝐏 = var 𝐱 =
var(𝑃 ) cov(𝑃 , 𝑣𝑎𝑟𝑊)

cov(𝑃 , 𝑣𝑎𝑟𝑊) var(𝑣𝑎𝑟𝑊)
 

 

 𝐆 =
𝑐𝑜𝑣(𝐴𝑚, 𝑃 ) 𝑐𝑜𝑣(𝐴𝑣 , 𝑃 )

𝑐𝑜𝑣(𝐴𝑚, 𝑣𝑎𝑟𝑊) 𝑐𝑜𝑣(𝐴𝑣 , 𝑣𝑎𝑟𝑊)
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Response to selection 

 

 ∆𝐴 = ∆𝐴𝑚 ∆𝐴𝑣 =
𝑖 𝐛′𝐆 
𝐛′𝐏𝐛

  𝑖 : selection intensity;  

 𝐛′𝐏𝐛 = standard deviation of index 

 Use classical equations for P and G and ℎ𝑣
2 and additive 

model for Ve (approximation) 

 

 𝐏 =
var(𝑃 ) cov(𝑃 , 𝑣𝑎𝑟𝑊)

cov(𝑃 , 𝑣𝑎𝑟𝑊) var(𝑣𝑎𝑟𝑊)
= 

 


[𝜎𝑝
2(1 + 𝑛 − 1 𝑎ℎ2)]/𝑛 3 + 𝑎 𝑛 − 3 𝑐𝑜𝑣𝑎𝑚𝑣 /𝑛

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 [(2𝜎𝑝
4+3𝜎𝑎𝑣

2 )(1 + 𝑛 − 1 𝑎ℎ𝑣
2)]/𝑛

 

 a = additive genetic relationships between family 
members  

51 

Response to selection 

 

 𝐆 =
𝑐𝑜𝑣(𝐴𝑚, 𝑃 ) 𝑐𝑜𝑣(𝐴𝑣 , 𝑃 )

𝑐𝑜𝑣(𝐴𝑚, 𝑣𝑎𝑟𝑊) 𝑐𝑜𝑣(𝐴𝑣 , 𝑣𝑎𝑟𝑊)
=

𝑎𝑗𝜎𝑎𝑚
2 𝑎𝑗𝑐𝑜𝑣𝑎𝑚𝑣

𝑎𝑗𝑐𝑜𝑣𝑎𝑚𝑣 𝑎𝑗𝜎𝑎𝑣
2  

 

 𝑎𝑗 = additive genetic relationship between the animal to 

be evaluated and the group of relatives 

● 0.5 parent-offspring 

● 0.25 when selection candidate is a half-sib  

 

 Exact elements in Mulder et al. Genet. Sel. Evol. 40:37-
59. 
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What does nature say with respect to 

selection on variance? 

What is the relationship between fitness 

and Ve? 

What is the best Ve from a fitness point of view? 

 Are there any trade-offs of a high or low variance? 

 

What is the regression of fitness on trait values or on 
within-family variance? 

 

We performed an analysis in Great Tits at the Veluwe, a 
nature reservation close to Wageningen 
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Fitness and Ve in Great Tit  

• Results show stabilizing selection on Ve 
• Ve is maintained 

Mulder et al., Evolution 70:2004-2016 
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Selection experiments 
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Selection experiments 

 Selection experiments with laboratory animals, e.g. 
Drosophila 

 

 Selection experiment in rabbits 

 

 Need for more selection experiments 

57 

Selection experiment in rabbits 

Garreau et al. 2008; 

Livest. Sci. 119:55-62. 
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Experiment in rabbits 

 

Garreau et al. 2008; 

Livest. Sci. 119:55-62. 
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Summary 

 Selection index theory can be used to predict responses 
to selection 

 Selection to change the variance is important when the 
profit equation is non-linear 

● Selection to improve uniformity is of importance 
when having an optimum 

 Need for knowledge on relationships between Ve and 
fitness (traits) 

 More selection experiments are needed to learn more 
about genetic architecture of Ve 
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