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Abstract

Genomic selection (GS) is the use of statistical methods to estimate the
geneticmerit of a genotyped animal based on prediction equations de-
rived from large ancestral populations with both phenotypes and geno-
types. It has revolutionized the dairy cattle breeding industry and
has been implemented with varying degrees of success in other animal
breeding programs, including swine, poultry, and beef cattle. The
findings of empirical field studies applying GS to the breeding sectors
of these main animal protein industries are reviewed. Several trans-
lational considerations must be addressed before implementing GS
in genetic improvement programs. These include determining and
obtaining economically relevant phenotypes and determining the
optimal size of the training population, cost-effective genotyping
strategies, the practicality of field implementation, and the relative
costs versus the benefits of the realized rate of genetic gain. GS may
additionally change the optimal breeding scheme design, and stud-
ies that address this consideration are also reviewed briefly.
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INTRODUCTION

In 2001,Meuwissen et al. (1) published a seminal paper that envisioned a future in which a dense
set of genetic markers spread evenly throughout the genome would be used to accurately predict
the genetic merit of individuals. At the time it was published, the technology the authors antic-
ipated, namely, genome-wide densemarkermaps, did not exist, because no livestock genomes had
yet been sequenced and the enabling technology of single-nucleotide polymorphism (SNP) chip
genotyping platforms had not yet been developed. With remarkable foresight, this paper laid out
an approach, subsequently termed genome-wide or genomic selection (GS), and the statistical
methods that could be used to estimate the genetic merit of individuals based solely on a data set of
phenotypes and genotypes derived from ancestral populations of the selection candidates. It also
presented some of the statistical and operational problems thatmight be associatedwith use of this
approach. Since that time, GS has revolutionized the dairy cattle breeding industry (2), and the
technique has been implemented with varying degrees of success in breeding programs associated
with other animal and plant industries.

To understand how GS can accelerate the rate of genetic improvement, it is important to un-
derstand some of the basic principles of animal breeding. The purpose of selection programs is to
accelerate the rate of genetic change or selection response per unit of time, DG, toward a given
breeding objective. The classic equation for explaining DG, as described by Falconer (3), is

DG ¼ irsA

L
,

where i is the selection intensity (the proportion of animals in a population that are selected to
become parents of the next generation), r is the accuracy of selection [correlation between the
estimated breeding value (EBV) and the true breeding value], sA is the additive-genetic standard
deviation of the trait of interest (genetic variation in the population available for selection), andL is
the generation interval (average age of parentswhen their offspring are born). Any technology that
can act to increase accuracy, intensity, and/or genetic variation or decrease the generation interval
has the potential to accelerate the rate of genetic gain. The reproductive rate of breeding animals and
uncertainty about the true genetic merit of breeding animals make up the most important limiting
factors inabreedingprogram.A rangeofapproacheshavebeen employed tomodify the components
of this equation in a breeding program, including performance recording of individuals and their
offspring to increase the accuracy of selection; the use of assisted-reproductive technologies, such as
artificial insemination (AI), to increase the selection intensity; crossbreeding and introgression to
increase genetic variation in the population; and the use of gametes from prepubertal or embryonic
animals to decrease the generation interval. Inbreeding decreases the effective population size,which
can reduce the amount of genetic variation available for selection. In comparison with other factors
in the equation, which can be modified quite extensively through the application of reproductive
technologies, relatively little can be done to impact the amount of genetic variation within a breed.

Early attempts to increase the accuracy of selection using genetic markers employed blood
groups to map quantitative trait loci (QTL) (4). Even in these relatively rudimentary studies, the
authors reported “statistically significant associations between some blood genes and (milk) fat
percentage” (4, p. 408). Since those early studies, many studies have attempted to find genetic
markers, ranging frommicrosatellites to SNPs, associated with traits of economic importance (5).
And whereas markers associated with simple qualitative or monogenic traits have been used to
great effect to identify carriers of recessive alleles (6), traditional marker-assisted selection (MAS)
approaches based on the identification of markers associated with QTL, using either linkage
mapping or genome-wide association studies, have generally failed to significantly improve the
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accuracy of breeding value estimates for quantitative or multigenic traits (5). This has been due in
part to the overestimation of significantmarker effects that occurswhenmany effects are tested for
significance (7), as well as the fact that many small-effect QTL are missed entirely as a result of the
use of stringent significance thresholds (8). Additionally, markers that were significantly asso-
ciated with a trait in one population often were not confirmed or validated in an independent
population (e.g., other breeds or families) owing to a high rate of false discovery and/or differences
in the linkage disequilibrium (LD) between the marker and the QTL (9).

GS, however, uses high-density genotyping technologies to genotype individuals for many
markers [for example, Illumina BovineSNP50 (10) comprises ∼54,000 SNPs spanning the bovine
genome],with the goal of identifying at least onemarker associatedwith eachQTL for a given trait.
GS relies on a large number of individuals in a genotyped and phenotyped training population
fromwhich a genomic prediction equation is derived that can then be used to estimate the genomic
estimated breeding value (GEBV), also known as themolecular breeding value (MBV) or the direct
genomic value, of unphenotyped individuals froma selection candidate populationbased solely on
their marker genotypes (Figure 1). In GS, the marker effect does not have to exceed a significance
threshold to be included in the prediction equation; therefore, potentially all genetic variance
associated with markers can be captured using GS. As with other forms of MAS, the additional
genetic response relative to non-MAS is approximately proportional to the square root of the
genetic variation explained by the markers or the prediction equation (8).

Several groups across the globe have implemented GS in livestock breeding programs (11).
Although in simulated dataMeuwissen et al. (1) found the accuracy of GEBV [i.e., the correlation
(r) between theMBV and the true breeding value] to be 0.85, few empirical studies have achieved
such high accuracies using real data; however, the definition of accuracy has varied among real and
simulated data studies, making direct comparisons problematic (12). To implement GS, breeders
must consider many translational questions, including the size of the training population, the
number of markers to include in the genotyping platform, the statistical methodology and ap-
proach to incorporating the MBV into genetic merit estimates, the frequency of marker effect
reestimation, and the economic break-even point of technology adoption. These translational
questions vary by industry and are the subject of considerable research effort. Such deliberations
are likely to become increasingly complex given recent progress in approaches to targeted gene
editing (see sidebar, Precision Genetics). This review focuses on the findings of empirical field
studies applying GS to breeding populations of the main livestock and poultry industries. GS may
also change the optimal breeding scheme design, and studies that address this consideration are
also reviewed in terms of the potential impact ofGS on the breeding programs for various livestock
industries.

STATISTICAL METHODOLOGY AND APPROACH TO INCORPORATING
GENOMIC DATA INTO GENETIC MERIT ESTIMATES

The accuracies of MBV depend on the size of the training population, effective population size,
genetic relationship between the target population and the training population, marker density,
statisticalmethod, heritability, and genetic architecture of the trait being predicted (13). To predict
MBVs for animals that have genotypes but no phenotypes, the effect of the chromosome segments
that carry the markers can be summed across the genome. When it comes to estimating the allelic
effects of all of thesemarkers in data sets of limited sizes, there are not enoughdegrees of freedom to
fit allmarker effects simultaneously using standard linearmodel procedures. A variety of statistical
approaches have been proposed to overcome this large p, small n problem [i.e., estimating a large
set of parameters (p) from a limited number of data points (n)] in the development of prediction
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models for GS. These calculations all require some assumption to be made about the true dis-
tribution of the marker effects.

There is an evolving and rapidly expanding literature examining the statisticalmethods that are
most appropriate for analyzing genomic data. Several approaches have been proposed for esti-
mating marker or haplotype effects across chromosome segments for GS (14). The key difference
between these approaches is the assumption theymakeabout thedistributionof SNPeffects,which
in turn reflects the distribution of QTL effects and the LD between SNPs and QTL.Mixed-linear-
model approaches assume that the SNP effects are normally distributed, in which case the marker
effects are best linear unbiased predictors (SNP-BLUPs) (1), which is equivalent to estimation of
breeding values using BLUP, but with a genomic relationship matrix (G-BLUP) (13) rather than
a pedigree-based relationship matrix. If the number of animals in the training population is fewer
than the number of markers, the G-BLUPmodel is often preferred for computational reasons, as it
results in fewer equations to solve than does the SNP-BLUPmodel (2). Bayesian regressionmodels
assume a nonlinear distribution of the SNP effects, including a t-distribution, which assumes
many small effects but allows some SNPs to have a moderate to large effect (Bayes A) (1). Other
approaches assume amixture of distributions, with some fraction (p) of themarkers having a zero
effect and the remainder (1 � p) having a t-distribution [Bayes B (1); Bayes Cp (15)]. One of the
disadvantages of these approaches is the need to set or determine the proportion of markers that
have no effect for each trait in amultiple-trait genetic evaluation.Gianola et al. (16) provide amore
complete explanation of these methods and their relationship to quantitative genetic models.

PRECISION GENETICS

Traditional animal breeding programs have long selected for breeds specialized for their intended purpose, such as
milk, meat, or egg production (152). Genomics has enabled the use of DNA markers and GS to accelerate genetic
progress. However, to date breeders have worked with the genetic variation present in a given breed or breeds to
direct genetic change. Introgression of a new trait from an outlying breed into a highly specialized breed is typically
a time-consuming process requiring several backcross generations to eliminate linkage drag and restore production
to pre-introgression levels. In highly specialized breeds, this limits the amount of foreign genetics that can be
introduced into a breed or a closed breeding population.
New precision gene-editing techniques [e.g., zinc finger nucleases, meganucleases, transcription activator-like

effector nucleases (TALENs), oligonucleotide-directed mutagenesis, and clustered regulatory interspaced short
palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases] offer an approach to enable intro-
duction of desirable alleles into the elite germplasm of a given breed, without the need to bring along the unwanted
genetic material that accompanies traditional backcrossing and introgression strategies. These techniques create
double-stranded breaks at a specific location in the genome, and repair can be directed by a template carrying
the desired allele. For more information on this approach to direct targeted homologous recombination, the reader
is referred to Tan et al. (153).
As genomic discovery proceeds to identify the function of allelic polymorphisms, such targeted gene-editing

strategies likely will be employed to selectively introduce beneficial alleles from one breed into the genome of elite
seedstock of another breed. For examples, TALENs were used to introduce a bovine POLLED allele from a beef
breed into fibroblasts derived from a horned dairy bull, and other performance-enhancing and disease-resistance
alleles were introduced into pig, goat, and cattle fibroblasts (154). These allelic introgression approaches offer
a powerful new approach to accelerate the genetic improvement of livestock in the future.

Best linear unbiased
predictor (BLUP):
a technique for
estimating genetic
merit by using pedigree
information and
estimating random
effects
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The incorporation of genomic data into genetic evaluations often involves a multistep pro-
cedure that requires (a) traditional evaluation with an animal model, (b) extraction of corrected
phenotypes or pseudo-observations for animals with marker genotypes, and (c) estimation of
marker effects (17), assuming some prior distribution of SNP effects. The genomic information is
then combinedwith the traditional evaluation using a selection index (18). Single-step approaches,
which incorporate all pedigree, genotype, and phenotype information available from both
genotyped and ungenotyped animals in a training population, have been proposed as a more
streamlined alternative (19, 20). These single-step G-BLUP approaches involve integrating the
pedigree and genomic information into a single relationshipmatrix. Some of the advantages of this
approach are that it uses pedigree and phenotypic information from ungenotyped animals in

Estimate marker
effects for phenotyped

traits

Predict genetic merit of
selection candidate

within breed based on
genotype

Not predictive in other
breeds/strains/lines 

Genotypic and phenotypic
information from selected
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marker effects to maintain

prediction equation
accuracy

Predict genetic merit of
selection candidate within
breed based on genotype

Large training population 
• Phenotyped
• Genotyped

Selection candidate population
Genotypes used to predict genetic merit

Factors that improve accuracy of GS:
• Large number of animals in training population

• Number of SNP markers being genotyped

• Small effective population size

• High heritability of the trait to be improved

• Small number of large-effect QTL influencing trait

• High level of genetic relationship between
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Figure 1

Overviewof principles behindgenomic selection (GS).GS relies on a largenumberof individuals in a genotyped
and phenotyped training population from which to derive a genomic prediction equation. This equation can
then be used to estimate the genomic breeding value, also known as the molecular breeding value, of
unphenotyped individuals from a selection candidate population based solely on genotype. Abbreviations:
QTL, quantitative trait loci; SNP, single-nucleotide polymorphism.
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addition to that from genotyped animals and that it is well suited to multiple-trait analyses (21). A
disadvantage is that it currently assumes a distribution of equal variance for each marker, which
maynot be true for traitswith some large-effect loci, although formost traits this assumption yields
accuracies that are similar to those obtained when a nonlinear distribution of SNP effects is
assumed. However, these methods require careful scaling of the genomic relationship matrix to be
consistentwith thepedigree-based relationshipmatrix (19, 22). This single-stepG-BLUPapproach
was found to be particularly powerful for low-heritability traits in a field broiler data set, in which
it resulted in GS evaluations that were 50% more accurate than genetic evaluations based on
phenotypes alone or genomic evaluations based solely on the smaller subset of animals in the
training population that had both genotypes and phenotypes (23).

For traits that involve a limited number of large-effect QTL (e.g., coat color, milk fat, fatty acid
composition of meat), methods that allow a fraction of the markers to have zero effect have
typically resulted in more accurate predictions than have those that assume all SNPs have a non-
zero effect (24). However, the differences detected between contrasting statistical models in real-
world evaluations of GS accuracy typically have not been as large as those reported in simulation
studies. It is unclear if this is because the genetic architecture of real traits is more infinitesimal than
has been suggested by QTL-mapping studies or whether other characteristics of the data (number
of markers, length of LD, relationships among animals) prohibited greater distinction between
models (14). In field implementation, the G-BLUP approach is attractive because its imple-
mentation is fairly straightforward using existing genetic evaluation software. Statistical methods
that allow for a large proportion of SNPs to have zero effect may become increasingly important
when there are very large numbers of SNPs in the analyses (25), as might be expected fromwhole-
genome sequencing (2).

Results from the application of GS in several livestock species have shown the superior accu-
racy of genetic predictions that include genomic data relative to traditional evaluations based on
pedigree andphenotypes (18, 26–30). The accuracy ofMBV is derived from two sources: The first
source is markers that capture additive-genetic relationships but that are in linkage equilibrium
with QTL (linkage), and the second is due to markers that are in LD with QTL (31, 32). The
accuracy of GEBV is expected to be more persistent across generations than the accuracy of
pedigree-based EBV because marker-based relationships resulting from LD are expected to erode
more slowly thanpedigree relationships (33),which are reducedby50%at eachmeiosis in outbred
populations (34). Linkage will also decay more rapidly with increasing genetic distance between
the training and target populations than will LD relationships. To obtain accurate predictions on
individuals that are unrelated with the training data, a large number of markers and training
records are required to identify markers in LD with QTL (35). Jannink et al. (36) broke down the
accuracy of GS into that contributed by LD and that resulting from linkage for varying training
population sizes, marker numbers, and trait architectures. The proportion of GS accuracy at-
tributable to LD increased as the marker density and training population size increased (Figure 2).
Bayes B was more effective than SNP-BLUP at capturing LD between markers and QTL. Because
these marker-QTL linkages are tight, recombination does not cause them to decay rapidly, and
accuracies fromBayes B persisted longer than those from SNP-BLUP (36). Habier et al. (37) found
that the accuracy of GEBV based on additive-genetic relationships declined with increasing
training population size, depending on the extent of LD and the level of additive-genetic rela-
tionships, and they suggested that modeling polygenic effects using G-BLUP jointly with GEBVs
using Bayesian methods may help to prevent that decline.

Without routine retraining, the accuracy of genomic prediction equations will decay over time
(38), although this decay is slower if the accuracy is derived largely from markers that are in LD
with QTL. Wolc et al. (34) recommended retraining every generation when GS is used in closed
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breeding populations. This may change in the future as sequencing costs decrease and whole-
genome resequencing data become available on many influential founder animals (39). With
whole-sequence data, the causative SNP resulting in theQTL (also known asQTN)will be among
the millions of polymorphisms that are genotyped (40). As a result, the accuracy of MBV will not
rely onmarkers inLDwithQTNbut ratherwill conceptually include theQTNthemselves.Marker
panels that includeQTNwere found to have improved predictive ability comparedwith those that
excluded causative mutations (41). In a simulation study, whole-genome-sequence information
was found to improve the accuracy ofGS relative to the accuracies available with dense SNP chips,
andperhaps as importantly, estimates of SNP effectsmade in one generation remained accurate ten
generations later (42).

RESULTS FROM THE DAIRY INDUSTRY

Genetic change is best accomplished by selecting candidates based on an economic index ($Index)
composed of genetic merit estimates for economically relevant traits weighted by marginal eco-
nomic values. Indexes are derived from breeding objectives that take into account traits most closely
associated with income and expenses. The dairy industry economic index, Net Merit ($NM), has
changed over time (Table 1). The emphasis on yield traits has declined as fitness traits have been
introduced. Also, as the emphasis on protein yield increased, milk volume became less important
because of the high correlation between those two traits. In the 2010 $NM economic selection
index, the trait milk yield has a zero weighting. Production traits currently represent 35% of the
selection emphasis within $NM, with the remaining 65% being placed on functional traits (43).
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Figure 2

Decomposition of genomic selection (GS) prediction accuracy using the method of Habier et al. (31). On
a genome comprised of seven 1.5-M chromosomes, individuals were generated using a coalescent assuming an
effective population size of 100. Round and square symbols, ridge regression and Bayes B, respectively.
Symbolswith andwithout blue outlines, 40 quantitative trait loci (QTL) and 200QTL, respectively. Black and
nonblack symbols, 4,000 and 400 markers, respectively. Small and large symbols, training population size of
400 and 2,000, respectively. Figure adapted with permission from Jannink et al. (36).
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For more than half a century, progeny testing has been the foundation of genetic selection
programs in dairy cattle (44). Several factors make progeny testing especially advantageous in
dairy cattle, most notably widespread use of AI with frozen semen and the fact that nearly all traits
of economic importance, including milk production, milk composition, female fertility, length of
productive life, calving ability, disease resistance, and physical conformation, are sex limited and
cannot be measured until females begin lactating. Progeny testing has led to rapid genetic gains in
production traits: roughly 90 kg of milk, 3 kg of fat, and 3 kg of protein per year over the past
decade (https://www.cdcb.us/eval/summary/trend.cfm). However, genetic progress is limited by
long generation intervals of approximately 7.1 and 3.9 years, respectively, for sires and dams of AI
bulls (45). Furthermore, progeny testing is not a cost-effectivemethod for improving traits that are
difficult or expensive to measure routinely on commercial dairy farms, such as how efficiently an
animal uses feed for milk production (feed efficiency).

Table 1 A history of the main changes in US Department of Agriculture (USDA) genetic-economic indexes for dairy cattle and
the relative emphasis (%) on traits included in the indexes (http://aipl.arsusda.gov/reference/nmcalc.htm)

USDA genetic-economic index (and year introduced)

Traits included

Predicted

difference

$(1971)

Milk, fat,

protein

$(1976)

Cheese

yield

$(1984)

Net

merit

$(1994)

Net

merit

$(2000)

Net

merit

$(2003)

Net

merit

$(2006)

Net

merit

$(2010)

Milk 52 27 �2 6 5 0 0 0

Fat 48 46 45 25 21 22 23 19

Protein — 27 53 43 36 33 23 16

Productive life — — — 20 14 11 17 22

Somatic cell
score

— — — �6 �9 �9 �9 �10

Udder composite — — — — 7 7 6 7

Feet/legs
composite

— — — — 4 4 3 4

Body size
composite

— — — — �4 �3 �4 �6

Daughter
pregnancy rate

— — — — — 7 9 11

Service sire
calving
difficulty

— — — — — �2 — —

Daughter calving
difficulty

— — — — — �2 — —

Calving ability
(CA$)a

— — — — — — 6 5

aCA$, an index that includes sire calving ease, daughter calving ease, sire stillbirth, and daughter stillbirth.

Progeny testing:
evaluation of offspring
to determine an
individual’s breeding
values

Feed efficiency: an
animal’s ability to
convert feed intake
(input) into body mass
(output)
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Dairy cattle improvement programs are also well suited for GS (1), because individual animals
with high EBV have sufficient value to offset the costs of genotyping, and because large reference
populations of bulls with highly accurate estimates of genetic merit exist for the purpose of es-
timating SNP effects with Bayesian regression models or for calculating genomic predicted
transmitting abilities (GPTA)1 with G-BLUP. As of November 2013, the US Department of
Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville,
MD) database contained the SNP genotypes of more than 522,800 dairy bulls, cows, heifers, and
calves. These animals were genotypedwith a variety of commercially available chips, including arrays
with 3K, 6K, 9K, 50K, 80K, 648K, and 777K SNPs (https://www.cdcb.us/Genotype/cur_freq.html).

In North America, as in most countries with well-developed genomic evaluation systems for
dairy cattle, genotype information has been incorporated into genetic evaluation systems in
anearly seamlessmanner (46). Roughly 45,000 SNPs are used in routine genomic evaluations, and
for animals that have been genotyped with low-density chips (e.g., 3K, 6K, or 9K), the remaining
SNPs can be imputedwith 90–99%accuracy based on themedium- and high-density genotypes of
reference animals in the same breed (47, 48). In this manner, low-density genotyping of cows,
heifers, and calves on commercial dairy farms is possible for less than $50 per animal, and after
genotype imputation, their GPTA values are sufficiently accurate for selection and culling
decisions (49, 50). For cows with phenotypes, as well as for cows and bulls whose offspring have
phenotypes, the published GPTA values represent a combination of pedigree, phenotypic, and
genomic information, whereas for young bulls and heifers without phenotypes, the published
GPTA values reflect only pedigree and genomic information. In both cases, the GPTA values are
published on the same genetic base, scale, and units of measurement as those for animals that have
not been genotyped, with the only difference being higher accuracy for genotyped animals and aG
indicator on their predicted transmitting ability (PTA) values and selection indices.

The increases in reliability (REL¼ squared accuracy) of PTA for young calves and heifers owing
to genomic testing are remarkable. In USHolsteins, the average gains in REL for production traits
are 29%, 31%, and 23% formilk, fat, and protein, respectively, whereas gains for fitness traits are
22%, 27%, and22%for daughter pregnancy rate, somatic cell score, and length of productive life,
respectively (46). For protein yield, which has a heritability of approximately 30%, the amount of
information provided by a young calf’s pedigree is equivalent to having approximately 7 daughters
with phenotype, whereas the amount of information provided by the calf’s genotype is equivalent
to approximately 34 additional daughters. In contrast, for daughter pregnancy rate, which has
heritability of approximately 4%, the amount of information provided by the calf’s genotype is
equivalent to approximately 131 additional daughters.

Selection of dairy bulls has changed dramatically in the era of GS. North American dairy
farmers currently have access to semen from hundreds of young genome-tested Holstein, Jersey,
and Brown Swiss bulls without progeny of their own. In fact, the number of young AI bulls
currently marketed based on GPTA values exceeds the number of progeny-tested bulls marketed,
and several large breeding companies now derivemore than 50%of their sales from young genome-
tested bulls. Farmers that use young genome-tested bulls to produce their replacement heifers can
reduce the generation interval for the sires-to-produce-daughters selection pathway to approxi-
mately 30 months, as opposed to roughly 72 months when using traditional progeny-tested bulls.

1Genetic evaluations can be expressed as either a predicted transmitting ability (PTA), an expected progeny difference (EPD),
or an estimated breeding value (EBV). All are measures of performance relative to a base population. PTA and EPD indicate
the difference in performance that can be expected from an animal’s offspring relative to the base; an EBV is the genetic merit
of the animal itself relative to the base and, therefore, is equal to twice its PTA or EPD.

Genomic predicted
transmitting ability
(GPTA): a calculation
of genetic merit based
on genotypic,
phenotypic, and
pedigree information

Predicted transmitting
ability (PTA): within-
breed evaluation of an
animal’s parental
genetic merit based on
information on an
individual and relatives
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Furthermore, these young genome-tested bulls are often used to produce the next generation of AI
bulls, and the impact on generation interval is dramatic, as shown in Figures 3 and 4 (51).

In a traditional breeding program based on progeny testing, approximately 54 months are
required for rearing a bull, collecting and distributing his semen, rearing his daughters, recording
his daughter’s phenotypes, and predicting his breeding value based on progeny information using
pedigree-based BLUP. At this point, the bull can be identified as a sire of future AI bulls [the sires-
to-sires (SS) selection pathway], and if his semen is used immediately to inseminate elite cows and
heifers, his first sons will be born when he is approximately 63 months of age. In an aggressive
breeding program based onGS, a young bull can be identified as a sire of future AI bulls as early as
one or two months of age, and as soon as he reaches sexual maturity his semen can be used to
inseminate elite cows and heifers (52). His first sons will be born when he is roughly 21 months of
age, which means that we can achieve a threefold reduction in generation interval in the SS se-
lection pathway. An obvious extension of this strategy is to also use GS to identify potential dams
of futureAI bulls, the dams-to-produce-sires (DS) selection pathway, at a young age andpropagate
themvia embryo transfer or in vitro fertilization as yearling heifers, as opposed towaiting for them
to complete one or more lactations. In this manner, the generation interval for the DS selection
pathway can also be reduced, fromapproximately 38months to roughly 22months. Furthermore,
the GPTA values of elite cows and heifers based on genomic testing have much greater REL than
their traditional PTA values based only on pedigree and performance data, and this further
accelerates the rate of genetic progress per year.

Historically, the weak link in dairy cattle improvement programs has been the dams-to-
produce-daughters selection pathway, owing to poor accuracy and low selection intensity (53).
The REL of traditional pedigree-based PTA values for cows on commercial farms has tended
to be low, and high rates of culling owing to illness, injury, or infertility have typically prevented
the culling of genetically inferior replacement heifers. However, culling rates on modern, well-
managed free-stall operations tend to be low, and widespread use of gender-enhanced (sexed)
semen has generated an excess of replacement heifers. For the first time in history, dairy producers
have an opportunity to improve the genetic potential of their herds by culling inferior females at
a young age, andmore importantly, they can significantly reduce the costs associated with rearing
animals that are unlikely to performat a profitable level once they reach lactating age. In herds that
lack pedigree data, genomic testing of all heifer calves and culling of the poorest 10%, 20%, or
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Timeline of a traditional artificial insemination breeding program based on progeny testing. Adapted from
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30% based on GPTA was found to be a cost-effective herd-improvement strategy. Similarly, in
herds with known sire identification or complete pedigree information, genomic testing of the
bottom50%ofheifer calves basedonpedigree index and culling of the bottom10%,20%,or30%
based on GPTA were also found to be cost effective (54).

Inbreeding has long been a concern in dairy cattle breeding programs, and breeders try to
achieve a balance between rapid genetic progress and maintenance of genetic diversity (55). GS
programs can provide greater selection response per year and, like traditional pedigree-based
breeding programs, individual sires and cows can have a tremendous influence through the use of
AI and embryo transfer or in vitro fertilization technologies, respectively. However, an advantage
of GS is that it facilitates within-family selection decisions among animals with identical pedigrees
(26). For example, in a traditional pedigree-based selection program, an elite cow might produce
three full-sibling sons by embryo transfer, and one of these sons may be purchased by each of the
major AI companies. In a modern genome-based selection program, the cow would also produce
three full-sibling sons by embryo transfer, and the sonwith the highest GPTAwould be purchased
by the company that had the first-choice contract. The other two sons would be culled, and the
other two AI companies would select first-choice bulls from other families, thereby enhancing the
genetic diversity of the AI sire population.

On the farm, dairy producers manage inbreeding and reduce the probability of inherited defects
by using computerizedmating programs (56). Genomic data can provide more precise measures of
inbreeding than can pedigree-based inbreeding coefficients (57), which reflect expected inbreeding,
and genome-based mating programs can accommodate both additive and dominance effects (58).
Because virtually every AI sire in the major dairy breeds has been genotyped, dairy farmers who
invest in genotyping their cows, heifers, and calves can readily use genome-based mate-selection
programs that consider average heterozygosity, dominance effects, and lethal defects.

Although theprimaryobjective ofGS indairy cattle is to increase the accuracyofGPTAfor young
selection candidates, related activities, such as fine-mapping of QTL and detection of inherited
defects, are greatly facilitated by the availability of hundreds of thousands of low-, medium-, and
high-density SNP genotypes. For example, a genome-wide association analysis identified numerous
candidate genes and chromosomal regions affecting production, health, fertility, and conforma-
tion traits in Holstein cattle (59). Interestingly, several SNP haplotypes were identified that were
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abundant in the heterozygous form and yet were never observed in homozygous form in Holstein,
Jersey, andBrownSwiss cattle (60). Furthermore, sires that carried thesehaplotypes tended toexhibit
reduced conception rates and increased stillbirth rates whenmated to daughters of bulls that carried
the same haplotypes. In one of these haplotypes, a nonsense mutation in the CWC15 gene was
identified that appears to be responsible for decreased fertility in Jersey cattle (61).

In summary, the impact of genomics on dairy cattle breeding programs has been enormous, and
the pace of change has been breathtaking. Within two years of the commercial availability of the
first BovineSNP50 chip (10), the vast majority of AI bulls and elite cows were genotyped, and
routine selection decisions used GPTA rather than traditional pedigree-based PTA. Genomic data
are used to select every young bull that enters an AI company, and the overwhelming majority of
cows, heifers, calves, and embryos that are consigned to public auctions are marketed based on
genomic information. Progeny testing, in which selection andmarketing decisions must wait until
daughters’ phenotypes become available, has been replaced by genomic testing and progeny
validation, in which selection and marketing decisions are made immediately and reviewed later,
when the bull’s sons and grandsons are being marketed. New inherited defects have been dis-
covered, and the search for QTL with large effects on performance, health, and fertility is faster,
more precise, and much more efficient. Programs for mate selection and avoidance of inbreeding
are changing rapidly, andwidespread use of genomicmating programs is imminent. Because of the
availability of inexpensive low-density SNP arrays and highly accurate imputation algorithms,
many farmers are using genomic testing in conjunctionwith sexed semen to generate extra females,
cull inferior animals early, enhance genetic progress, and reduce feed costs. Lastly, GS will allow
the improvement of traits such as feed efficiency and fatty acid composition ofmilk (62), which are
too difficult and expensive to measure routinely on commercial farms but are feasible for mea-
surement in smaller reference populations, such as experimental herds.

RESULTS FROM THE SWINE INDUSTRY

The swine industry focuses on the cost-effective production of high-quality pork, thereby con-
tributing to food security (63). The system for pork production can be separated into a re-
production phase, which consists of females (sows) that are bred to produce high-quality piglets,
and a grow-finish phase, which raises these piglets for market. A growing proportion of the
pork-production industry is controlled by a limited number of large companies that capitalize
on vertical integration and contract production (64). Figure 5 illustrates the typical breeding
pyramid used for genetic improvement and production. Sows in the reproduction phase are
typically crossbreds (F1s) to capitalize on heterosis for reproduction and maternal traits. Breeds
or lines that produce the crossbred sows are selected for reproduction and maternal traits
(fertility, litter size, litter weaning weight), along with growth rate and leanness (backfat) (65).
To produce market piglets, sows are bred to a terminal sire line that is selected primarily for
growth rate, leanness, reducedmortality, andmeat quality, resulting in crossbredmarket pigs to
further capitalize on heterosis for growth and fitness (65). The maternal and terminal breeds or
lines that feed into the reproduction and grow-finish phases are increasingly controlled by
private breeding companies, although the presence of individual breeders and cooperative
breeding programs persists in some countries.

To implement genetic improvement in the pure lines that contribute to commercial production,
companies maintain multiple nucleus populations with extensive phenotype recording, genetic
evaluation, selection of parents, and rapid turnover of generations to maximize rates of genetic
gainwhile limiting ratesof inbreeding (65). Through these efforts, rapid rates of genetic gain can be
achieved for traits such as growth rate and backfat. These gains are then disseminated to the
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reproduction and production phases of the commercial industry in the form of semen (AI), boars,
or gilts (young females).

Although this system of genetic improvement has resulted in substantial rates of genetic im-
provement (66–68), several limitations exist: (a) Rates of genetic improvement are limited for
female reproduction traits, such as litter size, because these traits have low heritability and are
observed only on females and only after animals have obtained reproductive age. Thus, accuracies
of selection for these traits are limited, in particular for males. (b) Most meat quality traits can be
measured only on the carcass and, thus, require information to be collected on relatives of the
selection candidates, resulting in limited accuracies of selection. (c) Nucleus herds are operated
under tight biosecurity. Although necessary to ensure that disease-free breeding stock can be
provided to customers, limiting data collection to the nucleus herd also limits the ability to select
for disease resistance. In addition, performance data collected in the nucleus and on purebred
animals may not correlate well with performance of their crossbred descendants in the field
because of genotype-by-environment interactions (G3 E) and/or genotype3 genotype interactions
(dominance, epistasis) (69, 70). Thus, the ability to obtain genetic improvement for traits that
are relevant in the field through genetic selection based on data collected in the nucleus is limited.
One strategy to overcome the latter is to select purebred animals in the nucleus based on the
performance of their crossbred progeny or sibs in the field (71, 72). This has been implemented
in some breeding programs but requires extensive logistics in the form of tracking pedigree in
commercial farms and collecting phenotypes in the field (73).

Since the 1980s, the use of genetic markers has offered great promise to address the above
limitations to genetic improvement in the pork industry. Commercial availability of theHalothane
or stress gene (74) as a genetic test to select against the detrimental effects of this gene on meat
quality represented one of the earliest success stories of the use ofmarkers for genetic improvement
in livestock. This was followed in the 1990s by the use of a limited number of proprietary genetic
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Pyramidal breeding program typical for genetic improvement programs in poultry and pigs. Data recording
and selection take place within multiple pure breeds or lines at the top of the pyramid under strict biosecurity
and superior management. Superior genetic material developed in the nucleus is passed on or disseminated to
the commercial-production sector, often through amultiplier phase to increase the numberof breeding parents,
and crossedwith improved stock derived fromother purebred populations to capitalize on heterosis and breed.
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markers developed using the candidate gene approach (75). Potential benefits of using markers in
pig breeding were characterized by simulation studies (76) and shown to be cost effective (77, 78).
Some sectors of the industry capitalized on these advances to some extent prior to the recent
development of SNP panels (5). Figure 6 illustrates the evolution of the development and use of
markers byoneof the leaders in the industry, Pig ImprovementCompany (PIC) (79–81). Following
the initial wave of genetic markers using QTLmapping and candidate gene approaches in the first
decade of this century, PIC employed several in-house, higher-density SNP panels (starting with
1,000 SNPs in 2002 and 7,000 SNPs in 2008). Large numbers of animals were genotyped, and
GWAS was used to identify SNPs with effects on various traits, which were then incorporated in
genetic evaluation (Figure 6) (82).

A real technology breakthrough came in 2009 with the release of the 60K SNP panel for pigs
(83). Several simulation studies showed that the use of such a panel for GS could in principle
overcome many of the limitations that were previously identified as being associated with tra-
ditional approaches for genetic improvement in terminal sire lines (84), in maternal lines (85), and
for crossbred performance in the field (86, 87). Itwas clear fromdairy cattle that,with a sufficiently
large training data set, the use of a 60K SNP panel could result in sizeable increases in accuracy of
EBV inpigs aswell (88, 89).However, comparedwith dairy bulls, the value of a selection candidate
in pigs is much lower in relation to the genotyping costs for GS to be implemented, and op-
portunities to reduce generation intervals are limited. Thus, initial strategies were to use the 60K
panel to develop trait-line-specific low-density panels of up to 200 SNPs (90). Formost traits, these
have been replaced by the approach of using equally spaced, low-density SNP panels and im-
putation, as Habier et al. (91) proposed. This strategy has been implemented in PIC’s routine
genetic evaluation program using a low-density panel of approximately 450 SNPs (92). High-
density SNP genotyping of all breeding males, low-density genotyping on dams and selection
candidates, and sophisticated methods for imputation (93, 94) have resulted in imputation ac-
curacies of up to 97% (95) at a dramatic reduction in genotyping costs. Single-step G-BLUP is
being used to incorporate genomic information in routine genetic evaluations on a within-line
basis, and strategies to select the optimal proportion andwhich animals to genotype (96) are being
employed.

Although GS appears to be the method of choice for most traits of economic importance, it
requires a continuous input of phenotypic data for retraining. Thus, investments in phenotypic
data recording must be maintained, including recording of phenotypes in the field, although the
need to track pedigrees through the system may be reduced (97). For some traits of economic
importance (e.g., disease traits), routine extensive data recording in the field may not be possible.
Thus, for such traits, there will be an ongoing need to develop small marker panels for genetic
selection based on identified QTL or, ideally, the causative mutations. One example is the recent
discovery of a genomic region on chromosome 4 that affects piglet response to infection with the
porcine reproductive and respiratory syndrome virus (98), which is the most costly disease in pigs.
The release of the swine genome sequence (99) will aid in such discoveries.

Implementing GS on a routine basis requires large investments in development of software,
databases, tissue or DNA storage, and computing infrastructure. In addition, large training data
sets with genotyped and phenotyped animals must be developed separately for each breed or line
forwhichGS is implemented because training across breeds has not yet been shown to be effective.
Because selection and breeding decisions aremade on a continuous basis, streamlined logistics and
pipelines for tissue and phenotype collection, DNA isolation, genotyping, genotype imputation,
and genetic evaluation are needed. These investments and developments have been made in house
by some of the larger breeding companies but may require sharing of resources to be effective for
small- to medium-sized companies.
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RESULTS FROM THE POULTRY INDUSTRY

Through egg and meat production, the poultry industry provides at least one-third of animal-
derived food globally (100). Eggs and poultry meat accounted for 59 million and 90 million
metric tons, respectively, of the worldwide food supply quantity in 2009 (101), nearly a fivefold
increase over the past 50 years, and they will continue to be a vital source of protein as the world
population continues to grow. Poultrymeat is the mainmeat consumed in the United States (102),
and it is projected to overtake pork as the most consumed meat worldwide in the next five to six
years. Production on this scale is possible because of the highly specialized, mechanized, and
commercialized structure of the modern poultry industry. Poultry production involves an often
vertically integrated system of hatcheries, producers, and growers. Intense industry competition
has resulted ina relatively small numberof large international companies dominating thecommercial
breeding programs. Over 90% of global poultry breeding stock is managed by three companies
selling to a worldwide market (103).

Derived from the red junglefowl (Gallus gallus) of Southeast Asia, domestic chickens were kept
primarily for their eggs, and chicken meat was viewed largely as a by-product of egg production
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until the late 1920s. Dual-purpose breeds paved the way for the transition to dedicated broiler
chickens, and the genetic improvement of commercial stocks began in the 1940s. As demand for
poultry products increased and technology and breeding practices evolved, strains of layers for
high egg production and feed efficiency were created. In broilers, an emphasis on hybrid vigor
resulted in systematic matings that involve crossing different breeds, strains, or inbred lines. In
comparisonwith other livestock species, chickens can achieve a faster rate of genetic improvement
owing to the combination of shorter generation intervals, large numbers of progeny, AI tech-
nology, and defined closed genetic populations. These factors allowed for the extremely successful
application of genetics to poultry production traits. Havenstein et al. (104) compared the per-
formance of contemporary 2001 broilers to a line that was randomly bred since 1957 (Figure 7).
They estimated that at least 85% of this remarkable improvement in performance can be
accounted for by genetic changes resulting from combined selection by poultry breeders for
growth, body composition, feed efficiency, reproduction, health, and welfare.

This potential for improvement in performance has resulted in the application of intensive
selection to both broilers and layers. The comparatively rapid reproduction ratemeans that a large
number of generations have been exposed to intensive selection. Poultry breeding programs gen-
erally involve crosses between four breeds or lines:Grandparent or great-grandparent lines that have
been phenotyped for critical production traits (G0 or G1) are crossed to produce parent lines (F1),
which are crossed to produce chicks. Each bird can produce over 200 offspring at each generation
(Figure 8). The specialized nature of these lines means that they are essentially closed breeding
populations, with virtually no gene flow between commercial and noncommercial populations.
Additional increases in productivity are achieved through the exploitation of heterosis.

Current breeding programs are improving the efficiency of meat production in the broiler
industry by 2–3% per year. In the United States, growth rates and breast meat yields continue to
improve by 0.74 days and 0.5% per year for a broiler grown to 2.27 kg, respectively, whereas the
feed-conversion ratio (kg of feed required to obtain one kg of growth) is decreasing by 0.025 per
year. At the same time, the livability (survival expectancy) of broilers is improving 0.22%per year,
and condemnation rates have decreased 0.7% per year (100). This underscores the importance of
combined selection for many traits, including robustness, specific and general disease resistance,
and absence of metabolic defects in the breeding objectives. Egg layers have been selected for
multiple traits, including egg number, egg size, egg quality, livability, persistency of production,

43 days 57 days 71 days 85 days
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Figure 7

Contemporary comparison of 1957 control and 2001 selected broiler carcasses slaughtered at different
ages. Photo by G.A. Havenstein (155).
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feed efficiency, and mature body weight. Although some of these traits have negative correlations
with each other, US industry estimates show that the egg number is improving by more than one
egg per year per individual and the feed conversion ratio is improving by 0.01 per year. Addi-
tionally, livabilities to 60 and 80 weeks of age are improving by 0.12% and 0.18% per year,
respectively (100). These data highlight the genetic progress that has been achieved by the poultry
industry using traditional selection techniques.

The publication of the draft chicken genome sequence in 2004, and the release of the second
assembly in 2006, shed light on the differences between chicken and mammalian genomes (105),
allowed for the identification of∼3million SNPs (106), and resulted in the subsequent development
of60K (107) andhigh-density600KSNPgenotyping arrays for the chicken (108). The availability of
these genomic resources allows for greater accuracyandearlier determinationof the geneticmakeup,
and selection, of candidate breeding animals (109). In poultry, GS may also be especially powerful
when phenotypic selection is not possible, for example, for egg traits in males (110).

Currently, GS is being tested in commercial chickens, and breeding progress, especially in
layers, is showing promise (111). Increases in accuracy were evaluated when selection for layers
was carried out at a very early age, prior to phenotypes being available on selection candidates or
their siblings, and at a later age. By including high-density (23.4K) SNP genotypes in genetic
evaluations, accuracies of EBV were increased up to 200% for selection at an early age and by up
to 88% for selection at a later age (109). Late-age selection represents a scenario where genomic
information is used to increase accuracy of selection in existing layer breeding programs, par-
ticularly in the case ofmales, which in current breeding programs are primarily evaluated based on
sib information.However, the structure of the chicken breeding industry and the need for effective
training programs for the successful implementation of GS require retraining of the genomic
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Broiler industry structure and global estimate of bird numbers (modified from Reference 100) alongside
estimates of timeline and genetic expressions derived from a single pedigree female broiler chicken
(Dr. Rachel Hawkin, Cobb-Vantress, personal communication).
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predictions at regular intervals (38). This also allows for responses to new mutations or the
possible fixation of major QTL alleles. A study of the accuracy of GEBVs using real data on egg
production and quality traits in layer chickens showed that, when training was on data from
generation 0, the accuracy in generation onewas 0.43, but it dropped to 0.33 in generation two. In
contrast, when data from generations zero and one were used for retraining, the accuracy in
generation two increased to 0.49. The results of this study suggest that retraining should be done
every generation for GS in closed populations (34).

Limitations of the application of GS technology in poultry breeding programs lie in the cost
effectiveness of this approach, given theneed todevelop trainingpopulations and routine genotyping
of the large numbers of selection candidates that are produced each generation. As commercial birds
are typically hybrids from a four-way cross, the effort and expense of developing phenotyped
training populations is quadrupled compared with those for dairy cattle. In addition, broiler lines
have no association with layer lines, and even white and brown layer lines are genetically distinct.
Therefore substantial investment will be required to develop line-specific training populations, in
addition to the ongoing costs of genotyping each generation of selection candidates.

Traditional breeding programs have been successful in using pedigree and relatively in-
expensive trait information, and the added cost of GS must be recovered through improved
product performance. The additional cost of GS must eventually be paid for by customers pur-
chasing the genetically improved birds. Until that time, the substantial investment in developing
the training populations must be prefinanced by the breeding company until it can recoup the
investment through the sale of more valuable products.

Although GS has the potential to be expensive, breeders have begun to implement various
strategies tominimize the costs of genotyping and retraining.Higher accuracies can be obtained by
combining data from populations with and without genomic data using single-step G-BLUP, and
costs associated with large-scale genotyping can be reduced by imputing high-density genotypes
from low- or reduced-density SNP chips (112). This method was demonstrated in a population of
brown egg layers in which, after two generations of high-density genotyping of all parents, sires
were high-density genotyped in generations three through five, and dams were either high- or
reduced-density genotyped for one to two generations. As the number of reduced-density-
genotyped dams increased, a steady decline of accuracy was observed, suggesting that high-
density genotyping of dams may need to be selectively implemented to maintain accuracy
comparable to that achieved by using high-density panels (113).

In another study that investigated the potential application of genotype imputation, a portion
of birds from a commercial broiler linewere genotyped on a low-density panel, and the rest were
genotyped on a high-density panel. Missing genotypes were imputed for birds with reduced-
density genotypes, and GEBVs were calculated. In comparison with EBVs from pedigree-only
selection methods, the accuracy of GEBVs was 7–8% higher for one trait, body weight, and
4% higher for a second trait, hen house production (114). Additionally, a simulation study
based on a real broiler pedigree of 13 generations compared the accuracy of GEBV based on
high-density genotypes, GEBV based on equally spaced low-density genomic estimated
breeding values, and traditional BLUP over four generations based on four different combi-
nations of low- and high-density genotyping. The results showed that a combination of low-
and high-density SNP panels could be employed to rationalize the cost of genotyping. Use of
low-density panels resulted in 88.8% of the accuracy generated with a high-density panel at
generation four (115).

Effective implementation of GS may require a complete redesign of breeding programs to
optimize the selection intensity applied to young animals based on the improved accuracy enabled
by genomic information. This was investigated on an experimental basis by splitting a commercial
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brown layer line into two sublines (116). One subline was selected based on own record and
pedigree information with a traditional one-year generation interval, whereas the other was
selected based on genomic information with the generation interval reduced to six months. To
reduce costs, the size of the GS subline was reduced by a factor of five, and cross-classified mating
was introduced to compensate for the decrease in effective population size. Both sublines were
selected based on an index combining 16 traits. Genomic BLUP and Bayes B methods were used
to estimate GEBV. Selected parents from generations preceding the base population were
genotyped with a 42K Illumina SNP chip to provide information about marker effects, as were
all selection candidates. Retraining was performed in every round of selection. Inbreeding level
was monitored, and matings of close relatives were avoided in both sublines. The accuracy of
GEBVs was shown to be higher and more persistent than that of pedigree-based EBVs. The
accuracy of predictions varied substantially between traits and generations. Genomic regions
explaining the largest proportion of genetic variationwere identified for all studied traits. By the
end of the two-year experiment, the rate of genetic progress in the GS subline was superior for
the majority of traits, although the GS subline was slightly more inbred than the pedigree-
selected subline (116).

Breeding goalsmay also be refinedwith the advent of the genomics era. Currently, issues facing
the poultry industry include control of infectious diseases, namely avian influenza, Marek’s dis-
ease, Salmonella, and Campylobacter (117, 118). The application of genomics may be the best
approach for selection of birds with improved disease resistance (119). The structure of the
breeding industry and the three- to four-year timeline to product require breeders to think ahead
in preparing for future opportunities and challenges, including consideration of public opinion
regarding traits such as animal well-being and housing system desirability (110).

Other Avian Species

The rapidly decreasing costs associated with whole-genome sequencing and SNP identification
and genotyping are also enabling the sequencing of other poultry species. In 2010, the turkey
genome was completed, primarily by next-generation-sequencing methods, for one-fiftieth the
cost of the chicken genome (111, 120). After chicken, turkey is the second most-consumed
poultry meat worldwide (101). The availability of the turkey genome sequence allowed for the
identification of 5.49 million SNPs. Analysis of these SNPs showed that all commercial lines
have a common origin and that the turkey genome is much less diverse than the chicken genome.
Additionally, the Beijing Genome Institute (BGI) has completed the duck genome sequence.
Through the BGI’s 1,000 Plant and Animal Reference Genomes Project, several other avian
species are in the process of being sequenced or are on the list of species to be sequenced in the
near future.

RESULTS FROM THE BEEF INDUSTRY

The US beef industry consists of many herds spread over a wide geographic location. It is com-
posed of five main sectors: seedstock, commercial, feedlot, processor, and end-user (retail). There
are several thousand seedstock breeders and over 750,000 commercial producers (Figure 9). The
industry includes nearly 30 breeds, although at the seedstock level the top five breeds comprise
nearly 80% of all registered animals. The main constraints to greater industry-wide genetic
progress are the segmented nature of the beef industry and the large number of relatively small
breeding operations. Increased rates of progress with the potential to have widespread impact on
the commercial production sector are more likely if larger breeding operations develop in the
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future. Individual breeders are generally too small to have their own closed breeding program, and
they regularly rely on the importation of genes into their herds. From a beef industry perspective,
breeders who generate SS sires and DS dams are effectively the nucleus breeders. In the US Red
Angus population, only 153 seedstock herds (3.6% of all herds in the pedigree) produced 50% of
the SS animals (121). Typically, animals change ownershipmultiple times in the production chain,
and phenotypic performance in downstream segments (e.g., feed efficiency in the feedlot, carcass
quality, eating satisfaction) is rarely relayed back to the breeding sector. In contrast to more
vertically integrated industries, this results in market failure because breeders are rarely rewarded
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for developing breeding programs thatmaximize profit for the entire industry. Additionally, in the
absence of phenotypes from the commercial, feedlot, processing, and retail sectors, it is difficult to
make genetic improvement for traits that are measured in these sectors.

There are no well-defined breeding goals for national beef cattle improvement in the United
States. In contrast to other countries that have developed a total production $Index for whole-
industry economic merit (122, 123), much of the US beef industry still largely relies on expec-
ted progeny difference (EPD) for individual traits rather than an economic index. This is inmarked
contrast to swine, poultry, sheep, and dairy cattle industries, for which such indexes are the
fundamental driver of selection decisions (124). The focus ofGS in the beef cattle industry has been
to increase the accuracy of EPD on young animals or to provide new EPDs as selection criteria for
economically relevant traits that were not formerly included in national beef cattle genetic
evaluations (NCEs) (e.g., beef tenderness, feed efficiency).

The adoption of GS in the beef industry has been slow compared with that in the dairy cattle
industry (39). There are many reasons for this disparity. First, there are many breeds with varying
characteristics designed to fit the different environments associated with beef cattle production.
Additionally, the beef industry does not use AI very heavily. As a result, fewer high-accuracy sires
are available to provide a within-breed reference population. Additionally, there is no obvious
beneficiarywilling to pay for the development of phenotyped and genotyped training populations,
such as the AI studs provided for the dairy industry, owing to the lesser use of AI in the beef
industry. Consequently, the development of training populations in the beef cattle industry has
been somewhat disjointed. Some companies, such as GeneSeek� (formerly Igenity�) and Zoetis
(formally Pfizer Animal Genetics), saw this void as a business opportunity (28) and paid for the
genotyping of semen collections from AI sires put together by individual researchers (125) or
developed their own training populations. This involvement of commercial genomics companies
introduced a proprietary component into the process of ranking animals based on genetic merit
(28) andmade it difficult to obtain validation data of the resulting genomic predictions (126). As of
2013, two ∼$75 products are being offered for the genetic evaluation of Angus cattle, the
GeneSeek� Genomic Profiler Bovine HDTM (GGP-HD) test (which replaced the 384 SNP Igenity
Profile) (GeneSeek�, Lincoln, Nebraska) and a 50K SNP chip offered by Zoetis (Kalamazoo,
Michigan). The companies report MBVs to the Angus Association, and the genomic data from
these two companies are incorporated into theAngusAssociation’sNCEs on aweekly basis for the
traits listed in Table 2.

Table 2 reveals some translational considerations with regard to GS in beef cattle. The first is
that the accuracy of 50K-trained predictions varies depending upon the training population. This
can be seen when comparing the Zoetis 50K data between Australia and the United States and
between 2012and2013. Predictions trained in theUnited Stateswere not as accuratewhen applied
to the same breed in another country. In 2013, theZoetis 50Kgenomic prediction equations forUS
Angus were recalibrated on a larger and more current training data set, resulting in an increase in
accuracy.

In contrast to the poultry, swine, and dairy industries, where reduced SNP panels have been
employed to enable imputation to a higher-density SNP platform (127, 128), commercial reduced
SNP panels in beef cattle have been developed based on associations of the selected SNP with
a subset of traits. This approach was examined in dairy cattle, where a study compared subsets of
SNPs selected from the 50Kchip for strong associationswith nine dairy traits (129).Very fewSNPs
were shared between the different dairy traits, and at least 1,000 of the highest-ranked SNPs were
required to obtain accurate predictions for each trait. Similar results were reported for Angus
cattle, where the predictive ability of a reduced-SNP panel for feed efficiency dropped markedly
as the number of SNPs dropped below 600 (130). Given the quantitative nature of most traits, it

Expected progeny
difference (EPD):
within-breed
evaluation of an
animal’s parental
genetic merit based on
information on an
individual and relatives
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is unlikely that SNPs included in panels of less than 500 are in LDwithQTL. This suggests that the
accuracies for multiple traits associated with reduced-SNP panels that are not used for imputation
are derived primarily from familial linkage (i.e., tracing family relationships), meaning that in the
absence of retraining, accuracy would be predicted to decay over time, as can be seen with the
Igenity panel (Table 2).

For breeds other than Angus, individual breed associations have developed their own training
populations. They have genotyped AI bulls and obtained 50K genotypes from the influential bulls
that were genotyped at the US Meat Animal Research Center (US-MARC) in Clay Center,
Nebraska, as part of the 2,000 Bull Project. This project involved 50K genotyping of 2,026 ani-
mals from the 16 most prominent breeds (Angus, Beefmaster, Brahman, Brangus, Braunvieh,
Charolais, Chiangus, Gelbvieh, Hereford, Limousin, Maine-Anjou, Red Angus, Salers, Santa
Gertrudis, Shorthorn, and Simmental) in theUS beef industry. Breed associations, in collaboration
with the National Beef Cattle Evaluation Consortium, used these data to develop within-breed
genomic prediction equations. The advantage of this model is that the breed association has
access to the genotypic information and can use this information in conjunction with new per-
formance and pedigree information in the breed database to continuously retrain prediction
equations. Publications documenting the accuracy of genomic predictions in field data are slowly
becoming available for beef cattle. Table 3 shows the most current results from US breed asso-
ciations (29, 30, 131). These data provide a guide to the accuracy of these predictions but do not
represent the true correlation between the MBV and the true BV, because of the heterogeneity of
variance among the deregressed EPDs (28).

Table 2 Genetic correlation between molecular breeding value and phenotypic trait of interest in two genomics companies in
2012 US Angus (150), 2012 Australian Angus (132), and 2013 US Angus (156)

2012 (United States) Australia 2013 recalibration (United States)

Trait Igenity 384 Zoetis 50K Zoetis 50K Igenity 384 Zoetis 50K

Calving ease direct .47 .33 .24 .34 .61

Birth weight .57 .51 .40 .42 .64

Weaning weight .45 .52 .37 .38 .54

Yearling weight .34 .64 — .34 .66

Dry matter intake (component of residual
average daily gain)

.45 .65 — .27 .59

Yearling height .38 .63 — .24 .70

Yearling scrotal .35 .35 — .23 .73

Docility .47 .60 — .18 .67

Milk .24 .32 — .21 .38

Mature weight .53 .58 — .39 .51

Carcass weight .54 .48 .34 .27 .57

Carcass marbling .65 .57 .36 .34 .63

Carcass rib .58 .60 .25 .29 .63

Carcass fat .50 .56 .47 .22 .53
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For breeders to make the best use of genomic data, they must be combined with traditional
sources of information (i.e., phenotypes and pedigrees) in genetic evaluations. There is a need to
optimize themost suitablemethod to include genomic information inNCE, considering the type of
genomic data available, the existing structure of the genetic evaluation system, and the commercial
computing capacity. In some countries, a centralized body is responsible for beef cattle genetic
evaluations (132, 133). However, in the United States, breed associations are responsible for
genetic evaluations. MBVs are being incorporated into NCE to provide genomic-enhanced EPDs
(GE-EPDs) to industry in a variety of ways. Swan et al. (134) provide a review of the methods. As
discussed previously, in the United States the American Angus Association has partnered with
genomics companies who retain ownership of the genotype information and return MBVs to the
breed association, whereupon they are incorporated into NCE as correlated traits in a multitrait
BLUPevaluation (135).As the genetic correlationbetween theMBVand the traitof interest increases,
so does the accuracy of the GE-EPD. Other groups compute EPDs and MBVs independently and
include both pieces of information in a selection indexwhereby each trait is weighted proportionally
to the respective amount of genetic variation (18, 26) [e.g., BREEDPLAN in Australia (132)].

Many commercial beef cattle producers are taking advantage of the benefits of heterosis and
are engaging in systematic crossbreeding or buying crossbred or composite bulls. Harris et al.
(136) showed that prediction equations developed in one breed did not perform well in another
breed. This was thought to result from a breakdown in LDbetween informativemarkers andQTL
in across-breed predictions (33, 137). As has been discussed previously, it has also been shown that
some of the accuracy associated with GS is due to the relationships between individuals in the
training population and those in the selection candidate population (138), and this familial linkage
source of accuracy is not expected to be predictive across breeds. It was hoped that pooling training
populations across breeds, or training in multibreed populations, might improve the accuracy of
predictions (139).

Table 3 Realized accuracies (correlation between deregressed breeding value and molecular breeding value) resulting from
genomic selection prediction equations trained in US beef cattle breedsa

Trait

Red Angus

(6,412)b
Angus

(3,500)

Hereford

(2,980)

Simmental

(2,800)

Limousin

(2,400)

Gelbvieh

(1,181)

Birth weight 0.75 0.64 0.68 0.65 0.58 0.41

Wean weight 0.67 0.67 0.52 0.52 0.58 0.34

Yearling weight 0.69 0.75 0.60 0.45 0.76 —

Milk 0.51 0.51 0.37 0.34 0.46 0.34

Fat thickness 0.90 0.70 0.48 0.29 — —

Rib eye area 0.75 0.75 0.49 0.59 0.63 0.48

Marbling 0.85 0.80 0.43 0.63 0.65 0.56

Calving ease direct 0.60 0.69 0.68 0.45 0.52 0.48

Calving ease (maternal) 0.32 0.73 0.51 0.32 0.51 —

Scrotal circumference — 0.71 0.43 — 0.45 0.50

aData taken from References 29, 30, 131; D. Garrick, unpublished data (personal communication).
bNumbers indicate training population. The Red Angus training data set includes some Black Angus cattle that have expected progeny difference in the
Red Angus Association.
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To investigate this further, the accuracy of genomic predictions derived from two large training
data sets from the US-MARC were evaluated across multiple breeds and in crossbred cattle. The
first training data set was composed of data from the 2,000 Bull Project. Deregressed EPDs (139a)
were used as phenotypes for training the prediction equations. The second set was composed of
50K genotypes and adjusted phenotypes from 3,358 crossbred animals derived from the US-
MARCGermplasmEvaluation Project (GPE). Althoughmore genotyped animalswere included in
the GPE training population, less phenotypic information was actually assessed, as deregressed
EPD in the 2,000 Bull Project population included data frommultiple progeny records. Moderate
genetic correlations (0.23–0.42) were found between 2,000 Bull Project–trained genomic pre-
dictions for growth traits in multiple purebred beef breeds. Lower correlations (0.19–0.37) were
foundwhenusing theGPE-derived genomic prediction equations (140, 141). Itwas envisioned that
the increased marker density of the Illumina 777K SNP chip would help improve the accuracy of
across-breed predictions (13, 33), although preliminary data in dairy cattle showed only a small
improvement resulting from poolingHolstein and Jersey populations that had real or imputed 777K
genotypes (25). This suggests that because there are differences in theLDbetween singlemarkers and
QTL across breeds, pooling of data might actually dilute associations of markers with phenotypes.

To date, there has been limited adoption of GS in the beef industry, as the value proposition
associated with improving the accuracy of NCE EPDs on young beef sires destined for natural
mating pastures, where they might sire 100 offspring (142), is considerably less than that as-
sociated with seedstock animals that are destined to have thousands or even millions of genetic
descendants. Many of the traits that influence the profitability of beef production are not
currently included in NCE. This includes traits that are expensive or difficult to measure (e.g.,
feed efficiency and fertility), occur late in life (e.g., stayability), or are experienced by a down-
stream segment of the cattle industry, such that the relevant phenotypes (e.g., disease sus-
ceptibility in the feedlot) are never relayed back to the breeder. No preexisting database of
phenotypes for these traits is available from which to form a training population. Some countries
are taking advantage of electronic animal identification to start to compile a database of phe-
notypes from the entire production chain (133). Several large, publicly funded efforts are also
under way in several countries to obtain large phenotyped and genotyped training populations
for hard-to-measure production traits, such as feed efficiency, fertility, and disease resistance.

Pooling data across countries represents an attractive approach to increase the size of the
training population for expensive-to-measure traits (143). It has worked in the dairy industry
[e.g., in the Brown Swiss breed (144)], although this assumes minimal genotype-by-environment
interactions and markers in tight LD with QTL. If markers are tracking familial linkage, this
approach will improve the accuracy of prediction equations only if the populations share
a commongenetic base. The development of phenotypedpopulationswith the thousands or tens of
thousands of individuals that will be needed to obtain accurate predictions (13, 145) for these
hard-to-measure traits represents a significant hurdle to the implementation and adoption of GS
for these economically relevant traits in the beef industry. Ironically, these are the very traits that
are most likely to benefit from GS, as no selection criteria currently exist for them. In the future,
other traits, such as methane emissions and adaptation to climate change, may also become
relevant to beef cattle breeding objectives (39).

IMPACT OF INDUSTRY STRUCTURE ON ADOPTION OF GENETIC
TECHNOLOGY

Breeding objectives and industry structures vary considerably among the different animal agri-
culture industries. Genetic improvements prior to GS have been most pronounced in those
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industries that have a highly structured breeding sector (e.g., pig and poultry) and a well-defined,
profit-maximizing breeding objective. These species have high reproductive rates per female
(Figure 6), and this allows incremental improvements in efficiency to be multiplied across many
animals, which directly improves profitability as well as the investment that can be made in
improving the accuracy of genetic merit estimates. A small number of animal breeding companies
control the genetics of these vertically integrated industries. Industries that have less vertical
integration (e.g., beef) have a large number of independent seedstock breeders and have typically
made less genetic progress. Because the relative economic value of traits differs among industry
sectors (e.g., fertility is a key profit driver for the commercial sector but is not important to the
processing sector), in the absence of vertical integration it is difficult to develop a single, industry-
wide breeding objective that is economically rational for all sectors. This leads to an important
concept in animal breeding: the role of the decision maker (146).

Based on reported and ongoing studies, GS clearly has the potential to accelerate genetic
progress. Selection index methods have been developed to evaluate the impact of GS on response
to selection (97). A stochastic simulation study of GS that halved the generation interval in layer
chickens fromone year to sixmonths showed that,with breeding programredesign, itwas possible
to increase the response to selection while controlling rates of inbreeding and additionally raising
and phenotyping a smaller number of elite stock (147). Even in industries with well-structured
breeding programs, there will be a need to examine the most cost-effective ways to implement GS,
which animals to genotype, and at what density (96), in both the training and target population.

Table 4 summarizes some of the main factors that accelerate and impede the adoption of GS in
the major animal protein industries. One of the most important considerations in applying GS to
industry will be the development of statistical tools and software that allow the integration of
genomic information into existing breeding programs in real time (148). Another important
consideration will be cost effectiveness in comparison to existing strategies. Investments in new
technologies, including GS, must be considered from the perspective of predicted benefit. Rela-
tively few studies have examined the economic aspects of GS (52, 54, 128, 142, 149–151).

Clearly, further work is needed to determine the most cost-effective approach to capitalize on
the opportunity offered by GS. Advances in sequencing technologies and genotyping by se-
quencing likely will have a transformative effect on the price of genotyping. This will undoubtedly
accelerate the uptake of this technology in the field and may well result in the redesign of breeding
programs. Groups that can organize themselves to take advantage of the rapidly declining cost of
genotyping and capture the cumulative supply-chain value derived from using genomic in-
formation for multiple purposes will be ideally positioned to more fully realize the nascent po-
tential of genomic information.

SUMMARY POINTS

1. GS relies on the availability of a large population of phenotyped animals with high-
density genotypes to estimate themarker effects for a given trait across the genome. This
enables the development of genomic prediction equations that canbe used to estimate the
GEBV of unphenotyped individuals based solely on their genotype.

2. Several statistical approaches, including several BLUP and Bayesian regression-model
variations, have been proposed to estimate marker effects for GS. They differ based on
the assumptions they make about the distribution of SNP effects.

3. GS has been shown to improve the accuracy of traditional genetic evaluations based on
pedigree and phenotypes alone in several livestock species.
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4. In dairy cattle breeding programs, progeny testing has been replaced by genomic
testing and progeny validation, resulting in rapid improvements across multiple traits.

5. Biological limitations, costs, and industry structure influence the rate of adoption of GS
in different livestock industries. High-density SNP genotyping of breeding males and
low-density SNP genotyping of dams are successfully being used to impute geno-
types, making GS more cost effective for the swine and poultry industries.

6. Prediction equations trained in one line or breed have not been shown to be accurate
when used to predict in another. Training populations of genotyped, phenotyped
animals must therefore be developed separately for each breed or line in which
GS will be implemented. In addition, retraining of genomic predictions must be
performed at regular intervals.

7. The segmented nature of the beef industry, the lack of a well-defined breeding goal for
beef cattle improvement, and the large number of breeds have resulted in limited
adoption of GS as compared with other industries. Breed associations have started to
implement GS for some traits, although there is a paucity of large training populations for
many economically relevant traits.

8. GS has the potential to accelerate genetic progress. The development of statistical tools
and software, and the cost effectiveness in comparison with existing strategies, will be
important for the integration of genomic information into existing breeding programs.

9. In the future, precision gene-editing techniques may be combined with genomic knowl-
edge and understanding to further accelerate the rate of genetic improvement through
the introduction of targeted beneficial alleles into elite seedstock germplasm.
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