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Mixture Models

• Why consider mixture models?
• Trans-dimensional MCMC
• Nonparametric modelling



Bayesian mixture representation
y ~ Σj=1:k pj f( y|θj )

Eg, for mixture of Normals: 
y ~ Σj=1:k pj N( µj , τj )

p ~ Dirichlet
µ ~ Normal
τ ~ Gamma
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Eg, 3 genotypes: qq, qQ, QQ

The p’s are the ‘weights’ assigned to each component. If there are 
two p’s this is like a binomial situation. With more than two 
components the extension is the multinomial situation. The
Dirichlet is a conjugate prior for the multinomial distribution

p(θ|α) ∝ Π θjαj-1 ; setting α=1 for all j gives the Uniform.





Issues with Mixtures

• Likelihood can be written down but is 
poorly defined and computationally difficult

• Reparametrisation issues
• Prior modelling is delicate
• Problem of label switching
• Inferences may be problematic
• How to choose the number of components



Likelihoods can
be very similar

0.8N(0,1)+0.1N(-2,1)+0.1N(2,1)  versus
0.55N(0,1)+0.225N(-1,1.25)+0.225N(1,1.25)



The computational problem
• The formulation  y ~ Σj=1:k pj f( y|θj )

means that the likelihood is

• This has kn terms – an unwieldy computation!
• There is a probability (1-pi)n that no observation 

will be allocated to a component, ie no 
information from sample to assist estimation, ie
likelihood becomes unbounded



Missing data approach

• It is always possible to associate to a r.v. Xi from a 
mixture of k distributions another r.v. Zi such that

Xi | Zi = z ~ f(x|θz),      Zi ~ Mk(1;p1,…,pk)

where Mk(1;p1,…,pk) is the multinomial distribution.

• Thus Zi identifies the component of the mixture to 
which Xi belongs.



Identifiability, or ‘label-switching’
A basic feature of a mixture model is that it is invariant 

under permutation of the components. Hence the 
component parameters are not identifiably marginally: 
we cannot distinguish component 1 from component 2 
in the likelihood, because they are exchangeable. 

This is crucial for both Bayesian inference and 
computation: 
1. Maximisation and exploration of the posterior surface is 

harder.
2. If the prior on θ=(θ1,…,θk) is exchangeable, the posterior 

expectation of θ1 is equal to the posterior expectation of θ2, 
etc.

3. Can’t use independent improper priors.



Overcoming label-switching
1. Impose an ‘identifiability constraint’, eg by ordering 

the means (or the variances or weights): shown to be 
unstable and undesirable.

Beware!
• This amounts to truncating the original prior 

distribution. This might radically modify the prior and 
come close to contradicting it.

• Instead of singling out one mode of the posterior, this 
might include parts of several modes, so the posterior 
mean might lie in a very low probability region while 
the high posterior probability regions are located at the 
boundaries.

• With many parameters, such ordering is unrealistic.



Overcoming label-switching
2. Introduce a common reference θ0: scale, location or 

location-scale parameter. This can now have an 
improper prior if desired. 
Define θi in terms of departures from θ0.

Eg, Normal case: 
• Start from the N(µ,τ2) distribution.
• Create a two-component mixture

p N(µ,τ2) + (1-p) N(µ+τθ,τ2ω2)
• Three-component mixture:



Gibbs sampling for mixtures
0. Initialisation: Choose p(0) and θ(0) arbitrarily

For t=1,…

1.1 Allocate observations to components:
Generate z(t) for each observation

1.2 Generate new weights for the components:
Generate p(t)

1.3 Generate new parameters for each component:
Generate θ(t)



Gibbs sampling for mixtures
Consider a 3-component mixture with N observations.

At step t:

1.1 To generate zi:
Use weights p1,p2,p3 and parameters θ1,θ2,θ3
from the last iteration:
Calculate P(zi

(t)=1|…)  ∝ p1 f(xi|θ1)
Calculate P(zi

(t)=2|…)  ∝ p2 f(xi|θ2)
Calculate P(zi

(t)=3|…)  ∝ p3 f(xi|θ3)



Gibbs sampling for mixtures

1.2 To generate p:

Use zi from the last step:
Calculate n1=no. components allocated to component 1
Calculate n2=no. components allocated to component 2

Generate p from a Dirichlet distribution
Dirichlet (3; n1/N, n2/N)



Gibbs sampling for mixtures

1.3 To generate θ:
For component j, use the observations 
allocated to that component and estimate 
parameters using methods discussed previously,
ie generate new θj from
p(θ|…)



Normal mixture example
p unknown

Normal prior N(δ,1/λ) on both µ1 and µ2

For computation, let sj
x = sum of the x’s allocated to component j

Then µ1 and µ2 are independent, given (z, x), 
with conditional distributions

Conditional distribution of z given (µ1, µ2) is



Gibbs for Normal mixture

nj
(t) is number of observations allocated to component j

See
previous
slide



Example
.7N(0,1) + .3N(2.5,1)

Dependent on initial conditions: can ‘get stuck’ in small mode!



M-H escapes trapping states better



Effect of ‘tuning’



3-component Normal mixture



MCMC algorithm





BUGS code
model

{
for( i in 1 : N ) {

y[i] ~ dnorm(mu[i], tau[T[i]])
mu[i] <- lambda[T[i]]
T[i] ~ dcat(P[])

}
P[1:3] ~ ddirch(alpha[])
lambda[3] ~ dnorm(0.0, 1.0E-6)I(lambda[2], )
lambda[2] ~ dnorm(0.0, 1.0E-6)I(lambda[1], )
lambda[1] ~ dnorm(0.0, 1.0E-6)
tau[3] ~ dgamma(0.001, 0.001)  sigma[3] <- 1 / sqrt(tau[3])
tau[2] ~ dgamma(0.001, 0.001) sigma[2] <- 1 / sqrt(tau[2])
tau[1] ~ dgamma(0.001, 0.001) sigma[1] <- 1 / sqrt(tau[1])

}



BUGS Results

A 1000 update burn in followed by a further 20000 updates using 3 chains 
gave the parameter estimates

Param Mean SD Actual
λ1 0.18 0.053 0.18
λ2 0.57 0.068 0.55
λ3 0.25 0.042 0.27
µ1 34.8 1.333 35.6
µ2 45.9 0.699 45.8
µ3 63.3 2.263 61.7
σ1 4.03 0.683 4.59
σ2 5.32 0.535 5.93
σ3 11.34 1.106 11.89



Trace Plots for some parameters
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Bayesians in the Night (Strangers in the Night)

Bayesians in the night
with exchangeable glances
Assessing in the night
the prior chances
We'd be sharing risks
before the night is through.

Something in your prior
was so exciting
Something in your data
was so inviting
Something in your posterior
told me I must have you.
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