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Mixture Models

 Why consider mixture models?
e Trans-dimensional MCMC

* Nonparametric modelling



Bayesian mixture representation
y ~ 2P H(yl6)
Eg, for mixture of Normals:

Yy~ Zj=]:k10j N( lLlj) Z} )
p ~ Dirichlet

1~ Normal
7~ Gamma Eg, 3 genotypes: qq, qQ, QQ

The p’s are the ‘weights’ assigned to each component. If there are
two p’s this 1s like a binomial situation. With more than two
components the extension 1s the multinomial situation. The
Dirichlet 1s a conjugate prior for the multinomial distribution
p(O|a) oc TT Bai-! ; setting a=1 for all j gives the Uniform.



FIGURE 1. Some normal mixture densities for K = 2 {first row), &' = 5 (second
row ), K = 25 (third row) and K = 50 {last row).




Issues with Mixtures

Likelihood can be written down but 1s

poorly defined and computationally difficult

Reparametrisation issues

Prior modelling is delicate

Problem of label switching

Inferences may be problematic

How to choose the number of components



Likelihoods can
be very similar

0.8N(0,1)+0.1N(-2,1)+0.1N(2,1) versus
0.55N(0,1)+0.225N(-1,1.25)+0.225N(1,1.25)




The computational problem

* The formulation y ~%._,, p; f( y|6:)
means that the likelihood 1s

e This has k" terms — an unwieldy computation!

* There 1s a probability (1-p;)" that no observation
will be allocated to a component, 1€ no
information from sample to assist estimation, 1e
likelihood becomes unbounded



Missing data approach

* [t 1s always possible to associate to ar.v. X, from a
mixture of k distributions another r.v. Z. such that

where M, (1;py,...,p;) 1s the multinomial distribution.

* Thus Z. 1dentifies the component of the mixture to
which X. belongs.



Identifiability, or ‘label-switching’

A basic feature of a mixture model 1s that it 1s invariant
under permutation of the components. Hence the
component parameters are not identifiably marginally:
we cannot distinguish component 1 from component 2
in the likelihood, because they are exchangeable.

This 1s crucial for both Bayesian inference and

computation:
1. Maximisation and exploration of the posterior surface 1s
harder.

2. If the prior on 6=(0,,...,0,) 1s exchangeable, the posterior
expectation of 0, 1s equal to the posterior expectation of 0,,

etc.
3. Can’t use independent improper priors.




Overcoming label-switching

. Impose an ‘1dentifiability constraint’, eg by ordering
the means (or the variances or weights): shown to be
unstable and undesirable.

Beware!

This amounts to truncating the original prior
distribution. This might radically modify the prior and
come close to contradicting it.

Instead of singling out one mode of the posterior, this
might include parts of several modes, so the posterior
mean might lie in a very low probability region while
the high posterior probability regions are located at the
boundaries.

With many parameters, such ordering 1s unrealistic.



Overcoming label-switching

2. Introduce a common reference 0,: scale, location or
location-scale parameter. This can now have an
improper prior 1f desired.

Define 0. in terms of departures from 0.

Eg, Normal case:

 Start from the N(u,t?) distribution.

e C(Create a two-component mixture

p N(,v%) + (1-p) N(p+10,7°0%)

e Three-component mixture:




Gibbs sampling for mixtures

0. Initialisation: Choose p(» and 6 arbitrarily
Fort=1,...

1.1 Allocate observations to components:
Generate z(" for each observation

1.2 Generate new weights for the components:
Generate p

1.3 Generate new parameters for each component:
Generate O



Gibbs sampling for mixtures

Consider a 3-component mixture with N observations.

At step .

1.1 To generate z::

Use weights p,,p,,p; and parameters 0,,0,,0,
from the last 1teration:

Calculate P(z,0=1]|...
Calculate P(zV=2|...
Calculate P(z9=3|...

p; (x;
p, (x;

p; (X,

01)
0,)
0;)



Gibbs sampling for mixtures

1.2 To generate p:

Use z. from the last step:
Calculate n;=no. components allocated to component 1
Calculate n,=no. components allocated to component 2

Generate p from a Dirichlet distribution
Dirichlet (3; n;/N, n,/N)



Gibbs sampling for mixtures

1.3 To generate O:
For component j, use the observations
allocated to that component and estimate
parameters using methods discussed previously,
ie generate new 6; from

JCIY



Normal mixture example

pA (py.1) +(1 —p) A (pa. 1) p unknown

Normal prior N(0,1/A) on both p, and p,

For computation, let s* = sum of the x’s allocated to component j

Then p, and p, are independent, given (z, X),
with conditional distributions




(G1bbs for Normal mixture
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Example
N(0,1) + .3N(2.5,1)
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FIGURE 12, Log-posterior surface
and the corresponding Gibbs sample
for the model {1.7), based on 10, 000
lterations,

FIGURE
tialised close to the second and lower
mode, based on 10, 000 iterations.

II
A |
— |1
I

Il I

|M i

\ I

13, Same graph, when ini-

Dependent on initial conditions: can ‘get stuck’ in small mode!



M-H escapes trapping states better
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FIGURE 17. Track of a 10, 000 iterations random walk Metropolis-Hastings sam-
ple on the posterior surface, the starting point is equal to (2.-1). The scale of the
random walk ¢? is equal to 1.




Effect of ‘tuning’

FIGURE 15, Ewvolution of the FIGURE 19, Same graph with a scale
Metropolis-Hastings  sample  over ¢~ equal to 0.01.

20,000 iterations {The seale ¢ of the

random walk iz equal o 0.1.)




3-component Normal mixture

In this case, # = (p1.jea. . 7f. 75, 03). As in Casella et al. (2000

conjugate priors

a

a; ~ g '-"'_.i--jlr' | -F"_Jlﬁ_f T, Ii“’ﬁ"fT;_;wJ (p1.p2.p3) ~ Z (v1.72. 1) .

where #% denotes the inverse gamma distribution and n;. 7. 04, 45,7, are
known hyperparameters. If we denote

Ly
K5 £ 2
i 2 :]I-“-'e=.r"-'“f' —Hjl -
i—1

then

5
"T_,Tlu”_.i'i--; ~




MCMC algorithm

0. Initialization. Chocse p(™ 4",

1. Stept.Fort=1,...
(£)

i
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After 20,0000 iterations, the Gibbs sample is quite stable {although more
detailed convergence assessment is necessary and the algorithm fails to visit

that the posterior mean estimations of g1, 2. pa are equal to 9.5, 21.4. 26.5,
those of 7. 73. 73 are equal to 1.9.6.1.34.1 and those of py.py. pg are equal
to 0,09, 0,25, 0.06. Figure 15 shows the histogram of the data along with the
estimated (plug-in) density.

FIGURE 15, Histogram of the velocity
of 82 galaxies against the plug-in esti-
mated 3 component mixture, using a
(:1bbs sampler.

FIGURE 16. Same graph. when using
a Netropolis—Hastings algorithm with
-2

¢ = .01,




model

BUGS code

for(iin1:N){
y[i] ~ dnorm(muli], tau[T[i]])
mu[i] <- lambda[T[i]]
T[i] ~ dcat(P[])
}
P[1:3] ~ ddirch(alpha][])
lambda[3] ~ dnorm(0.0, 1.0E-6)
lambda[2] ~ dnorm(0.0, 1.0E-6)
lambda[1] ~ dnorm(0.0, 1.0E-6)
tau[3] ~ dgamma(0.001, 0.001) sigmal3] <- 1 / sqrt(tau[3])
tau[2] ~ dgamma(0.001, 0.001) sigmal[2] <- 1 / sqgrt(tau[2])
tau[1] ~ dgamma(0.001, 0.001) sigma[1] <- 1 / sqrt(tau[1])

(lambda[2], )

|
(lambda[1], )



BUGS Results

A 1000 update burn in followed by a further 20000 updates using 3 chains
gave the parameter estimates

Param Mean SD Actual
A 0.18 0.053 0.18
A, 0.57 0.068 0.55
A; 0.25 0.042 0.27
My 34.8 1.333 35.6
M, 45.9 0.699 45.8
s 63.3 2.263 61.7
o 4.03 0.683 4.59
o, 5.32 0.535 5.93

O, 11.34 1.106 11.89



Trace Plots for some parameters




Bayesians 1n the Night (Strangers in the Night)

Bayesians 1n the night

wlth exchangeable glances
ssessing 1in the night

the prior chances

We'd be sharing risks

before the night is through.

Something in your prior

was soO exciting

Something in your data

was so inviting

Something in your posterior

told me I must have you.
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