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MCMC Algorithms
e Gl

SiMlage Ilﬂnealing Simulated tempering



A gourmet of samplers

e Rejection methods
» Variance reduction methods
* Adaptive rejection sampling
 Umbrella sampling
 Slice sampling

etc etc etc



EM Algorithm

the distribution of the HFIIII]I]i' I cal be written as
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a sequence of completions of the missing variables = hased on k(z|z. #) and

of maximisations of the expected complete log-likelihood (in #):




EM Algorithm

0. Initialization: choose #19)

1. Stept Fort —=1....

1.1 The E-step, compute

0 (H|H':" “.i) Ege-1; [log Le (8|, Z)] .

where Z ~ k (z|8%-1) ).

1.2 The M-step, maximize ¢ (#|6" l:'-ij' in & and take

it arg max (J (I"-"|HU . .-!') .
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EM for mixtures

For an illustration in our setup, consider again the special mixture of normal
distributions {1.7) where all parameters but # (ji1.e2) are known. For a
simulated dataset of 500 cbservations and true values p — 0.7 and (. pea)
(00, 2.5, the log-likelihcod is still kimodal and running the EM algorithm on
this model means, at iteration ¢, computing the expected allocations
4D = P(Z, = 1), )

TR

in the E-step and the corresponding posterior means

in the M-step. As shown on Figure & for five runs of EM with starting points
chosen at random, the algorithm always converges to a mode of the likeli-
hood but only two out of five sequences are attracted by the higher and maore
significant mode, while the other three go to the lower spurious mode (even
though the likelihood is considerably smaller). This is because the starting
paints happened to be in the domain of attraction of the lower mode.
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Slice Sampling

- Markov chain sampling method that adapts to
characteristics of the distribution being sampled

 Constructed using the principle that one can sample from
a distribution by sampling uniformly from the region
under the plot of its density function. Construct a Markov
chain that converges to this uniform distribution by
alternating uniform sampling in the vertical direction with
uniform sampling from the horizontal “slice' defined by the
current vertical position, or more generally, with some
update that leaves the uniform distribution over this slice
invariant.

Radford Neal (Annals of Statistics, 31, 705-767)



Slice sampling (cont)

* Introduced by Wakefield et al as a ‘ratio-of-uniforms’ method for
generating random variables; developed by Neal as a method for
‘slicing’ distribution.

* If f(0) can be written as a product I1 £,(0), where the f.’s are
positive functions (not necessarily densities), then f can be expressed
as IT £y Where 1 1s the indicator function.

 Thus at the rth iteration, simulate 6® by generating k uniform
random variables w,O~U(O0, f;(6®D), ..., w, O~U(O0, f, (6tD)

 Take 00 = U(A®), where A(t) = { y: fi(y) > w,(t), i=1,....k }

* This chain converges geometrically when fi1s bounded and
converges uniformly when k=1.

* For any MH algorithm, 1t 1s always possible to construct a better
slice sampler (faster convergence)



Why slice sampling?

» Slice sampling methods are more efficient than Gibbs, easily
implemented for univariate distributions, and can be used to sample
from a multivariate distribution by updating each variable in turn.

» Slice sampling has the ability to adaptively choose the magnitude
of changes made. It is therefore attractive for routine and automated
use.

» Methods that update all variables simultaneously are also possible.
These methods can adaptively choose the magnitudes of changes
made to each variable, based on the local properties of the density
function. More ambitiously, such methods could potentially adapt to
the dependencies between variables by constructing local quadratic
approximations.



Hybrid Methods

Employ combinations of MCMC algorithms 1n a single
analysis

e different MCMC algorithms for different parameters

e insert a MH step with larger dispersion or
probability of acceptance at every nth iteration

* mode jumping proposals
* methods based on tempering
« methods based on regeneration

e Can be almost automatically constructed to ensure
uniform convergence to the target distribution



Perfect sampling

Another devdopment in MCMC that has created its own domain of re-
search is perfect ssimulation, also known as exact sampling. As described in
the original paper by Propp and Wilson [76] and subsequently by Kendall
[47], the aim of perfect simulation is to sample directly from the stationary
distribution f ().

Although this appears to be exactly what MCMC is aiming to avoid,
there are several reasons for pursuing the idea. First, independent sam-
ples drawn directly from f (y) may be preferable to samples obtained from
MCMC algorithms, depending on the degree of dependence in the latter
and the comparative computational time and complexity. Second, a single
sample drawn directly from f () can be used as a starting point for stan-
dard MCMC algorithms. T his avoids the well-known problem of burn-in, in
which theinitial value of the chain may induce long-term bias.




Perfect sampling (cont)

For a nite state-space X of size k, Propp and Wilson [76] proposed
an exact sampling algorithm called coupling from the past (CFTP). Here, k
chains corresponding to all possible starting pointsin X are started at time
t and run in parallel back in time, often in a coupled manner, until all the
chains coalesce (take the same value) at time O or earlier. T he realisations of
the chains at time 0 then form a single p®) from the required distribution.
If the chains have not coalesced by time 0, the chains are run again from
time 2t and this is continued until the desired result is achieved.

It can be shown that coalescence under CFTP will indeed occur in a
" nite number of backward iterations. In practice, however, the computation
time can be unacceptably long. Alternative algorithms have been developed
to improve this and other aspects of the original CFTP idea. For example,
Fill [33] proposed an interruptible algorithm for perfect simulation, in which
the chains can be stopped beforereachingtime O but maintain the properties
of the CFTP algorithm. As a second example, if a monotonicity constraint
can be constructed, so that there is stochastically a maximum state x1 and
a minimum state xo in X, then CFTP reduces to running only two chains
from xo and x1 until they coalesce at time 0O, since all theintermediary paths
will be between these two extreme cases.




Population Monte Carlo

As an alternative to MOMC, {.1;L|:|n: et al. (2003) have shown that the 1n-
portance H}l||||h|i||_; ll-t'||||ic|lll- | Robert and Casella 20004, '['||s||t-lv1' 2 Al
b .'—'iL'IIL'I'H|'|'~n't| Lo encorpass mneh more r'li]r'll‘.-l'll"- and loecal schemes than
thonght previonsly, without relaxing its essential justibication of provid-
ing a correct diserete approximation to the distribution of interest. This
leads to the Population Monte Carlo (PMC) algorithm. following Iha's
(2000 denomination. The essence of the PMC scheme 1s to learn from ex-
perience, that 1=, to butld an mmportance sampling fanetion based on the
|3"-I'|l-|'|||r'|||c'u“- of earlier i||||u-|'lf'|||n- HEI||||'|i||_:. III'HIF"'=r'I|H. ”_‘ﬁ' illll'-Jt|I|c"|II:_'_ il
Ll-||||:u1'f'l| dimension to the selection of the nuportance function, an su|sl|t-—
tive perspective can be achieved at hittle cost, for a potentially large gain
111 I-|Hc"|l-||t-_'s'_ Celenx et al. Il'._]'""i:l have shown that the PMC scheme 15 a vi-
able alternative to MOMC schemes in =S dlata settings, among others
for the stochastic volatility model I:H||L'|||m1'|| 199G, Even with the stan-
dard choice of the ll conditional distributions. this method |||'-ﬂ.'i||n'*- Pl
accurate representation of the distribution of interest in a few terations.
[n the same way, Guillin et al. {2003) have illustrated the good properties
ull'l||'|'-h '»i'||l-|||l-u|| 5 | '-.'-.'L.'il|'||.lll;_'_ I'LH"'-[I"L |II'IIZ|'-'| [Hsllll.lll“ll ]!'!-“i-“{] |.-LII' ".'L.'llil'll ||It'

MCMC approximations are less satisfactory.




General PMC (sequential setups)

J(AT) p(AD)

and ,r':l:'

L)
0. Initialization. Choose { Py

—(0)
1. Step t. For ¢
Ll bore 0 M
1.1.1 Generate (H'” '”) from o, (0. p),

(3 Hiey
1.1.2 Compute

(%) f?]

Ziey Py

: f:} (i)
it [H Py

Af
1.2 Compute w'? ,a':"l'/z ot
i=1

1.3 Resample M values with replacement from the ( {:: EE::) S

using the weights o'




PMC and normal mixtures

In the case of the normal mixture (1.7}, a PMC sampler can be efficiently
implemented withour the (Gibbs) augmentation step, L|-1|r1;5 normal random
walk proposals based on the previous sample of (1. e2)'s. Moreover, the diffi-
culty inherent to random "'u'-|”- s, namely the selection of a "proper” scale, can
be bypassed by the adaptivity :’r' h PMC algorithm. Indeed, several proposals
can be 2

a '5';,|:_:u::i.:-'|t|-'u::| -f'|TI| ar |r"|._'e -_-f variances v, & | . f{. At each step
' to the perfor-

mances of the sc ||-:'_1 3 ONn rhu previous iterations. Fu._.-r ||'|5t.:||'|u.:n:§, a scale can
be chosen proportionally to its non-degeneracy rate in the previous iteration,
that is, the percentage of peoints generated with the scale v that survived
after resampling. WWhen the survival rate is null, in order to aveid the complete

removal of a given scale oy, the correspon ding number ». of proposals with
that scale is set to a positive value, like 1% of the sample size




PMC Normal mixture algorithm

. Initialization. Choose (114 'E.ﬁ Ii.ru_fIE,:,ﬁ: and (jig 'E.;.g- ... (g 'Enﬁ;}

Eomtep £ boed e

B BT e R
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1.4 Update the w's: #; is proportional to the number of
i T L[] 4 ;
(fe1 IEH It,ra;z_.lr‘:’}'i. with variance i« resampled.




FIGURE 20. Representation of the log-posterior distribution with the PMC
weighted sample after 10 iterations (the welghts are proportional to the circles
at each point).




Population Monte Carlo

 System of particles ( ,%,.., 6,,7),
random vector evolving over time t

 Many different types, eg Particle Filter
 Vector of weights (w,?,.., w,,®)

Ih(§) (a6

Zi—1:m Wi h(6,1)



Widely popular!

Used in engineering, computing, robotics, ...

Usually used in sequential settings
eg tracking a moving target (Doucet et al, 2001)

Extended to static settings with large datasets
(Chopin 2000, Berzuini and Gilks 2001)

Body of literature: Fearnhead, Carpenter et al,
Chen, Crisan & Doucet, Godsill et al, West, Pitt &
Shephard, Liu,...



Pinball as a Particle Filter

Use neither importance sampling
schemes nor weights

Resample whole vector at each iteration

Use an updating system based on the
standard random walk

Avoid importance sampling justification

Fixed number of particles (although
could branch)



Pinball as adaptive MCMC

Simulates simultaneously a set of values in a
dependent manner (Gilks & Roberts 1997)

AKin to Haario & Sacksman (2001) and Andrieu
&Robert (2001) but chain is homogeneous so standard
ergodic theorems apply

AKin to parallel MCMC, for example to assess
convergence (Gelman & Rubin 1992)

AKin to coupled MCMC: moves depend on the other
chains



Algorithm 1

1. Construct a grid (6,7,..., 6,,) of starting
values over the support of .

2. Forr=0,.T
for k=1,.., M simulate
6, ~ K, (6|6,tD,.., 6,_,D, 6.0, 6,,0)

* K, (°|6,,.., 6,,) are proposals with stationary
distribution 7 that satisty detailed balance

 If support of 7is unbounded, construct grid
from starting dist’n of 1 or reparametrise




Theorem

By conditional balance, the stationary
distribution associated with Algorithm 1 is

Oy Or)) ~ T O)%o.x 7 By)) = 7Oy, O))



So What?

* Under standard irreducibility conditions, the
Markov chain (6,...,6,,) is ergodic and positive
recurrent with the correct stationary distribution.

e After removing influence of starting values,
the particle system (&,%,...,6,,7) is an iid sample
from 7 at any given time #, (rather than in the long
run as in regular MCMC sampling).

* Can then evaluate output as in regular
Monte Carlo experiments, eg normal
approximation confidence intervals.



On with the Pinball

Want a proposal that speeds up mixing:

1. ‘Pseudo-reference’ distribution 7% that pushes
particles further apart from one another

2. Metropolis move based on 7%
3. Increase efficiency of proposal with a

(deterministic) delayed rejection
mechanism

4. Use a final Metropolis move to calibrate to the
true reference distribution 7



1. Repulsive Proposal

“Pseudo-reference” distribution

tempering repulsion
\ e
1 (0) o« 1L, exp(-5/ 7(6) ||0-0]12)
\

moderator

No dependence on normalisation constant of 7;
can absorb it into &£



2. Metropolis Move

Update 6,7:

* Propose &, using
K (0 | 6’1(’”),..., Hk_l(’”), Qk(ﬁ,m, gM(t) )

based on 7®
e Accept with probability
1A ,09) £X09)/((6,9) n2(G7))



Before getting to 3..
Delayed rejection

A. Propose move for 6.
B. Accept with usual M-H probability.

C. If reject, propose new move for 6, and accept
with probability that takes into account the fact
that the first move is rejected.

D. If reject, repeat C as required or until stopping
rule.



So...

 New moves can depend on previous
(rejected) proposed values.

* Moves can also depend on the other
particles.

« Want detailed balance, so need
reversibility, so use a random walk +
iterated (deterministic) reflections if
rejected.
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Delayed rejection and the
pinball

Given (6,,..,0,0,...,0,,7):

A.

B.

Generate 15 proposal 6,, from symmetric
distribution based around current value 6,7
Accept with M-H probability based on 7,%(6,) and
75 (Gro)

If reject, ‘bounce’ §,, away from nearest particle
0. to 6, through symmetry w.r.t. (6, 6,,) and 6,;.



When do we stop?

* Erase influence of starting values
e Check for i.i.d.



How do we compare
samplers?

* By effective sample size (Mira, ...)
* By estimation



Sequential Methods

Recent interest has also focused on MCMC methods for particle Iters
which are usually implemented in sequential settings or for processing and
analysis of large datasets. A partide Iter describes a dynamic state-space
mode of a process with an underlying state of interest that evolves over
time. The posterior distribution of the state is approximated by a set of

weighted particles, with the weight of a particle inversely proportional to its
probability mass. Numerous algorithms for updating the particles and their
weights over time have been proposed. Most of these enjoy rigorous conver-
gence properties (Crisan and Doucet, [25]) and under certain conditions can
claim a Central Limit Theorem [27].




Bayesians 1n the Night (Strangers in the Night)

Bayesians 1n the night

wlth exchangeable glances
ssessing 1in the night

the prior chances

We'd be sharing risks

before the night is through.

Something in your prior

was soO exciting

Something in your data

was so inviting

Something in your posterior

told me I must have you.
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