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MCMC Algorithms



A gourmet of samplers

• Rejection methods
• Variance reduction methods
• Adaptive rejection sampling
• Umbrella sampling
• Slice sampling

etc etc etc



EM Algorithm



EM Algorithm



EM for mixtures





Slice Sampling
• Markov chain sampling method that adapts to 
characteristics of the distribution being sampled

• Constructed using the principle that one can sample from 
a distribution by sampling uniformly from the region 
under the plot of its density function. Construct a Markov 
chain that converges to this uniform distribution by 
alternating uniform sampling in the vertical direction with 
uniform sampling from the horizontal `slice' defined by the 
current vertical position, or more generally, with some 
update that leaves the uniform distribution over this slice 
invariant. 

Radford Neal (Annals of Statistics, 31, 705-767)



Slice sampling (cont)
• Introduced by Wakefield et al as a ‘ratio-of-uniforms’ method for 
generating random variables; developed by Neal as a method for 
‘slicing’ distribution.

• If f(θ) can be written as a product Π fi(θ), where the fi’s are 
positive functions (not necessarily densities), then f can be expressed 
as Π Ι0<wi<fi(θ) where I is the indicator function.

• Thus at the tth iteration, simulate θ(t) by generating k uniform 
random variables  w1

(t)~U(0, f1(θ(t-1)), …, wk
(t)~U(0, fk(θ(t-1))

• Take θ(t) = U(A(t)), where A(t) = { y: fi(y) > wi(t), i=1,…,k }

• This chain converges geometrically when f is bounded and 
converges uniformly when k=1.

• For any MH algorithm, it is always possible to construct a better 
slice sampler (faster convergence)



Why slice sampling?
• Slice sampling methods are more efficient than Gibbs, easily 
implemented for univariate distributions, and can be used to sample 
from a multivariate distribution by updating each variable in turn.

• Slice sampling has the ability to adaptively choose the magnitude 
of changes made. It is therefore attractive for routine and automated 
use. 

• Methods that update all variables simultaneously are also possible. 
These methods can adaptively choose the magnitudes of changes 
made to each variable, based on the local properties of the density 
function. More ambitiously, such methods could potentially adapt to 
the dependencies between variables by constructing local quadratic 
approximations.  



Hybrid Methods
•Employ combinations of MCMC algorithms in a single 
analysis

• different MCMC algorithms for different parameters

• insert a MH step with larger dispersion or 
probability of acceptance at every nth iteration

• mode jumping proposals

• methods based on tempering

• methods based on regeneration

• Can be almost automatically constructed to ensure 
uniform convergence to the target distribution



Perfect sampling

Another development in MCMC that has created its own domain of re-
search is perfect simulat ion, also known as exact sampling. As described in
the original paper by Propp and Wilson [76] and subsequent ly by Kendall
[47], the aim of perfect simulat ion is to sample direct ly from the stationary
distribution f (µ).
Although this appears to be exact ly what MCMC is aiming to avoid,

there are several reasons for pursuing the idea. First , independent sam-
ples drawn direct ly from f (µ) may be preferable to samples obtained from
MCMC algorithms, depending on the degree of dependence in the latter
and the comparat ive computational t ime and complexity. Second, a single
sample drawn directly from f (µ) can be used as a starting point for stan-
dard MCMC algorithms. This avoids thewell-known problem of burn-in, in
which the init ial value of the chain may induce long-term bias.



Perfect sampling (cont)
For a ¯n it e st at e-space X of size k , P ropp and W i lson [76] proposed

an exact sampl ing algor i t hm called coupl i ng from the past (CFT P ). H ere, k
chains cor responding t o al l possib le st ar t ing point s in X are st ar t ed at t ime
t and run in paral lel back in t ime, oft en in a coupled manner , unt i l al l t he
chains coalesce ( t ake t he same value) at t ime 0 or ear l ier . T he real isat ions of
t he chains at t ime 0 t hen form a single µ( 0) fr om t he requi r ed dist r ibu t ion.
I f t he chains have not coalesced by t ime 0, t he chains are run again fr om
t ime 2t and t his is cont inued unt i l t he desir ed resul t i s achieved.

I t can be shown t hat coalescence under CF T P w i l l i ndeed occur in a
¯n it e number of backward i t er at i ons. I n pr act ice, however , t he com put at ion
t im e can be unaccept ab ly long. A l t er nat i ve algor i t hms have been developed
t o im pr ove t h i s and ot her asp ect s of t he or iginal CF T P idea. For exam ple,
F i l l [33] pr op osed an i n ter r upt i ble algor i t hm for per fect simulat ion , in wh ich
t he chains can be st opp ed befor e r each ing t im e 0 but m aint ain t he pr oper t ies
of t he CFT P algor i t hm . A s a second exam p le, i f a monoton i ci t y const r aint
can b e const r uct ed, so t hat t her e is st ochast i cal l y a m ax imum st at e x 1 and
a m in imum st at e x 0 in X , t hen CF T P reduces t o r unn ing on ly t wo chains
fr om x 0 and x 1 unt i l t hey coalesce at t im e 0, sin ce al l t he int erm ed iar y pat hs
wi ll be between these two ext reme cases.



Population Monte Carlo



General PMC (sequential setups)



PMC and normal mixtures



PMC Normal mixture algorithm





Population Monte Carlo
• System of particles ( θ1

(t),.., θM
(t) )t 

random vector evolving over time t

• Many different types, eg Particle Filter

• Vector of weights ( w1
(t),.., wM

(t) )

• Can approximate integrals, eg ∫h(θ)π(dθ)
through importance sampling approximations
Σk=1:M wk

(t) h(θk
(t))



Widely popular!
• Used in engineering, computing, robotics, … 

• Usually used in sequential settings 
eg tracking a moving target (Doucet et al, 2001)

• Extended to static settings with large datasets 
(Chopin 2000, Berzuini and Gilks 2001)

• Body of literature: Fearnhead, Carpenter et al, 
Chen, Crisan & Doucet, Godsill et al, West, Pitt & 
Shephard, Liu,…



Pinball as a Particle Filter

• Use neither importance sampling 
schemes nor weights

• Resample whole vector at each iteration
• Use an updating system based on the 

standard random walk
• Avoid importance sampling justification
• Fixed number of particles (although 

could branch)



Pinball as adaptive MCMC

• Simulates simultaneously a set of values in a 
dependent manner (Gilks & Roberts 1997)

• Akin to Haario & Sacksman (2001) and Andrieu
&Robert (2001) but chain is homogeneous so standard 
ergodic theorems apply

• Akin to parallel MCMC, for example to assess 
convergence (Gelman & Rubin 1992)

• Akin to coupled MCMC: moves depend on the other 
chains 



Algorithm 1
1. Construct a grid (θ1

(0),…, θM
(0)) of starting 

values over the support of π.

2. For t=0,..,T
for k=1,..,M simulate
θk

(t+1) ~ Kk (θ |θ1
(t+1),.., θk-1

(t+1), θk
(t), θM

(t))

• Kk(•|θ1,.., θM ) are proposals with stationary 
distribution π that satisfy detailed balance

• If support of π is unbounded,  construct grid 
from starting dist’n of µ or reparametrise



Theorem

By conditional balance, the stationary 
distribution associated with Algorithm 1 is
(θ1,..,θM) ~ π(θ1)×…×π(θM) = πM(θ1,…,θM)



So What?
• Under standard irreducibility conditions, the 

Markov chain (θ1,…,θM) is ergodic and positive 
recurrent with the correct stationary distribution.

• After removing influence of starting values,
the particle system (θ1

(t),…,θM
(t)) is an iid sample 

from π at any given time t, (rather than in the long 
run as in regular MCMC sampling).

• Can then evaluate output as in regular 
Monte Carlo experiments, eg normal 
approximation confidence intervals.



On with the Pinball
Want a proposal that speeds up mixing:

1. ‘Pseudo-reference’ distribution πR that pushes 
particles further apart from one another

2. Metropolis move based on πR

3. Increase efficiency of proposal with a 
(deterministic) delayed rejection 
mechanism

4. Use a final Metropolis move to calibrate to the 
true reference distribution π



1. Repulsive Proposal

“Pseudo-reference” distribution

πk
R(θ ) ∝ Πj≠k exp(-ξ / π(θj ) ||θ -θj||2)

tempering repulsion

moderator

No dependence on normalisation constant of π;
can absorb it into ξ



2. Metropolis Move

Update θk
(t): 

• Propose θ*
k
(t) using

K*
k(θk | θ1

(t+1),…,θk-1
(t+1),θk

(t),…,θM
(t) )

based on πk
R

• Accept with probability
1 ∧ π(θ*

k
(t)) πk

R(θk
(t)) / (π(θk

(t)) πk
R(θ∗

k
(t)) )



Before getting to 3…
Delayed rejection

Tierney and Mira (1999); Green and Mira....

A. Propose move for θk.
B. Accept with usual M-H probability.
C. If reject, propose new move for θk and accept 

with probability that takes into account the fact 
that the first move is rejected.

D. If reject, repeat C as required or until stopping 
rule.



So…

• New moves can depend on previous 
(rejected) proposed values.

• Moves can also depend on the other 
particles.

• Want detailed balance, so need 
reversibility, so use a random walk + 
iterated (deterministic) reflections if 
rejected.







Delayed rejection and the 
pinball

Given (θ1
(t+1),..,θk

(t),…,θM
(t) ):

A. Generate 1st proposal θk0 from symmetric 
distribution based around current value θk

(t)

B. Accept with M-H probability based on πk
R(θk) and 

πk
R(θk0)

C. If reject, ‘bounce’ θk0 away from nearest particle 
θj to θk0 through symmetry w.r.t. (θj, θk0) and θk1.



When do we stop?

• Erase influence of starting values
• Check for i.i.d.
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How do we compare 
samplers?

• By effective sample size (Mira, …)
• By estimation
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Sequential Methods
Recent interest has also focused on MCMC methods for particle l̄ters

which are usually implemented in sequent ial sett ings or for processing and
analysis of large datasets. A part icle l̄ter describes a dynamic state-space
model of a process with an underlying state of interest that evolves over
t ime. The posterior distribution of the state is approximated by a set of

p p j y p p p g g y g

weighted part icles, wit h the weight of a part icle inversely proport ional to it s
probability mass. Numerous algorithms for updat ing the part icles and their
weights over t ime have been proposed. Most of t hese enjoy rigorous conver-
gence propert ies (Crisan and Doucet , [25]) and under certain condit ions can
claim a Cent ral L imit Theorem [27].



Bayesians in the Night (Strangers in the Night)

Bayesians in the night
with exchangeable glances
Assessing in the night
the prior chances
We'd be sharing risks
before the night is through.

Something in your prior
was so exciting
Something in your data
was so inviting
Something in your posterior
told me I must have you.
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