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Bayesian Methods for QTL 
Analysis

This discussion is based on:
• Hoschele, I. Mapping Quantitative Trait 

Loci in Outbred Pedigrees 
• Jansen, R. Quantitative Trait Loci in Inbred 

Lines. In Handbook of Statistical Genetics, 
Editors D.J. Balding, M. Bishop, C. 
Cannings. Wiley

• some slides by Charles Berry, ucsd.edu



Example 1: Inbred lines
• QTL: genes underlying quantitative or complex traits
• Consider first only inbred lines of diploid organisms (can 

generalise for polyploid organisms and biparental crosses 
between outbreeding lines).

Homozygous parents: P1 (a1a1) P2 (a2a2)
(identical alleles at any given gene)

Heterozygous offspring: F1 (a1a2)

Backcross (BC) design: F1 x P1 or P2 → eg F1 x male P1 (a1a2, a1a1)

Doubled haploids (DH) design: M or F gametes of F1 artificially doubled (a1a1, a2a2)

Filial F2 design: F1 selfed, or 2 F1 crossed (a1a1, a1a2, a2a2 ratio 1:2:1)

Recombinant inbred line (RIL): F2 progeny in single-seed descent inbreeding program
(a1a2 x a1a2 → a1a1 or a2a2 per locus) 



Step 1: Plot the phenotypic data
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Get excited! Major gene?
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Pity! Many genes
of small action
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Hint of dominant major
gene action? (Pitfall: assumed
symmetric/normal traits; may
log transform but then lose
power – need optimal transformation)



It’s a mixture problem…
• Simple model for single QTL with additive

allele effect and normal error in an F2. 
• Let yi denote the trait value of the ith

individual. We do not know its QTL 
genotype.

• 3 possible genotypes: A=a1a1, H=a1a2, B=a2a2

f(yi) = 0.25N(µA,σ2) + 0.5N(µH,σ2) + N(µB,σ2)
Likelihood L = ∏i=1,..,n f(yi)



Fitting mixtures
• Maximum likelihood: set first-order derivatives of 

the log likelihood to zero. Find:

Problem! Cannot be solved analytically.
• First solution: EM algorithm (Dempster et al 

1977) – incomplete data approach, information on 
QTL genotype is missing (with three components 
A, H, B)
– (E-step) Specify or update weights P(A|yi), P(H|yi), 

P(B|yi).
– (M-step) Update estimates of µA, µB, σ2.
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EM Algorithm
• E-step: conditional probabilities calculated using 

the current parameter estimates
• M=step: weighted least squares

• Can do data completion (augmentation) and 
parameter estimation via iterative reweighted least 
squares.

• OR…MCMC (Bayesian or ML)
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Questions
• Want to discover about QTLs underlying 

quantitative variation for our trait(s) of interest. 
How many genes are involved? Where are they 
located on the chromosome? What type of 
(inter)action do they show?

• Partial information is provided by molecular 
markers.

• Molecular marker is a locus on the genome where 
the genotype can be observed with molecular 
tools: categorical variable with observable state. 
(QTL is categorical variable with unobserved 
state.)



Methods of Analysis
• Estimation and testing of means: ANOVA, 

regression (careful of overparametrisation - more 
parameters than needed to represent the effects) 

• Mixture models via EM or MCMC (Bayesian or 
frequentist) and choice of model (number of QTL) 
via single marker interval mapping, composite 
interval mapping, multiple-QTL mapping

• Problem of multiple testing: too many false 
positives (non-existing QTLs) – use an 
experiment-wise error rate, permutation strategies, 
bootstrap strategies, FDR, re-evaluate the loss 
function.



Hurray! I’ve found a QTL!
Statistical association, not a gene. At least four traps:
1. Ghost QTL (error of type 1): two or more linked QTLs with 

effects of equal sign (QTLs in coupling phase), so not unlikely 
that the analysis reveals a single QTL in the middle of two true
QTLs.

2. Ghost QTL (less anticipated): Unlinked major QTL has 
inflated the test score. Incidental association can arise due to
deviations from expected segregation ratios for any pair of loci
on the genome. 

3. Nastier (multi-QTL extension): nothing more than an average 
effect of all QTLs in the region under study, many possibly 
small QTL effects.

4. Variable information content: if the information content is 
relatively low in a region containing a QTL, the peak is shifted
towards more informative regions.



QTL in outbred pedigrees

• Outbred or complex pedigrees:
– Not formed recently by line crossing
– Pedigree information available over multiple 

generations is used instead
– Eg: milk production in dairy cattle; cholesterol 

measures in humans
• Aims of analysis include linkage mapping, 

linkage disequilibrium (LD), combined 
linkage/LD mapping



Comparison with inbred lines

For a moderate-resolution marker map (eg, 10cM):
• disequilibrium measures between QTLs and markers 

must be expected to be zero.
• distances often exceed 1cM, so any disequilibrium 

will have eroded over time
• Hence QTL effects cannot be estimated across the 

population but rather within parents, or phase-known 
QTL genotypes must be inferred for each parents.



Making inferences

• Consider a parent heterozygous at marker M with 
alleles M1, M2; large number of offspring from this 
parent (eg,half-sib design in cattle)

• Compare phenotypes of the two offspring groups 
inheriting the alternative marker alleles 
(assume biallelic QTL for now):
– M1 offspring have higher average phenotype 

(ie, the allele increasing the phenotype is linked with the M1 
allele); similar inference for M2

– No detectable difference between the two groups (parent is 
homozygous at the QTL)



Issues in modelling

• Degree of informativeness of the markers and of the 
QTL

• Unknown inheritance
• Unknown phases
• Degree of heterozygosity at a QTL
• Multiple families: (i) analyse each family separately; 

(ii) analyse all families jointly
• Complexity of model depending on the structure of 

the population



Issues in Modelling
• Power to detect a QTL is limited in outbred pedigrees by the degree of informativeness 

of the markers and of the QTL (measured by PIC, Botstein et al 1980): heterozygosity 
of parents combined with fraction of offspring for which the inheritance at a marker is 
known.

• Inheritance is unknown if an offsprint has the same marker genotype as both of its 
parents or as one of the parents with the other parent unknown.

• With multiple linked markers, phases will be unknown and need to be inferred.
• Degree of heterozygosity at a QTL is also influential in its detection: if very high or 

low, a pedigree will contain only families that are not segregating for this allele and 
hence the QTL will not be detected. 

• Multiple families: (i) analyse each family separately; (ii) analyse all families jointly
• Complexity of model depends on the structure of the population: individual large 

families or small no. families + ignore genetic ties among families, versus 
multigenerational pedigrees with substantial amounts of missing data



Bayesian approach to linkage 
mapping

• We want to estimate genotype, 
recombination rate, etc

• We have
– unknown quantities U
– known quantities K

Pr(U|K) = Pr(K|U) Pr(U) / Pr(K)

Normalising
constant

LikelihoodPosterior Prior on unknowns



What is known, unknown?

• Unknown quantities U:
no. QTLs, ordered (phase-known) genotypes of all individuals 
at all QTLs, ordered genotypes of all individual at all markers; 
QTL locations modeled as linkage status (located on particular 
marked chromosome or in residual unmarked chromosome), 
map positions, map positions of markers, allele frequencies at 
the QTLs and at markers, QTL genotypic effects, dominance 
effects, systematic environmental effects, parameters of 
residual distribution of the phenotypes, parameters of the 
polygenic background variation.
(no. alleles at a QTL)

• Known quantities K:
phenotypes, observed marker genotypes, pedigree



Mapping a monogenic trait
• Vieland (1998): single marker, single trait gene
• Data D=[observed genotypes at marker M and at trait 

locus T]
• Question: are two loci linked?

H0: r=0.5 (no linkage) vs HL: 0<r<0.5
• δ: genetic distance related to r; 

δmin: min. distance for which r=0.5
• Prior prob. of linkage is Pr(M&T locus on same 

chromosome) × Pr(δ<δmin)

Pr(HL|D) = Pr(HL) Pr(D|HL) / P(D)



Relation to LOD score
Antilog of LOD score
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Priors

• Choose carefully so they do not lead to improper 
posterior distributions

• Sensitivity analysis: Different priors lead to 
practically identical inferences if there is sufficient 
information in the data about the unknowns. If 
different priors lead to different answers, we need 
more data.

• Use biologically meaningful prior information in 
priors. 
Eg, avoid irrelevant frequentist H0: no QTLs
segregating in the entire genome.



Priors for QTL analysis

• Number of QTLs: Poisson
• Linkage indicators of different QTLs independent a 

priori, = length of marked chromosome / total genetic 
length of chromosome

• QTL positions, conditional on linkage status, 
independent a prior, uniform over the length of the 
marked chromosome

• QTL allele frequencies independent Beta(1,1) 
(equivalent to Uniform (0,1)).

• Finite polygenic model for residual variation
• etc



Results from a typical run for a 
single chromosome

• Hoeschele (2001)

-|---|--X--|----X----|---|---|--X--|-----|- 16000
-|---|--X--|----X----|---|---|--X--|--X--|- 2000
-|---|--X--| -------- |---|---|--X--|-----|- 600
-|---|--X--|----X----|---|---| ---- |-----|- 1000
-|---|--X--| -------- |---|---|--X--|--X--|- 400
-|---|-1.0-|--.95 --|---|---|-.95--|-.17--|- intervals
-|---|-----|2:.95,1:.05|--|---|1:.88,2:.12|- regions
Chromosome: 2 QTL: .03; 3 QTL: .87; 4 QTL: .10



Genotype sampling in complex 
pedigrees

• Genotypes are multilocus, phase-known or 
ordered, including linked markers and QTLs.

• Want to obtain genotype samples from the joint 
distribution of genotypes of all pedigree members 
and at all loci, conditional on observed genotype 
data (on marker loci) and phenotypic data (y).

• Need these samples in implementation of ML and 
Bayesian mapping methods.



Peeling

• Genotypic peeling: Conditional probabilities are 
calculated in a particular order (a ‘peeling sequence’) 
for which all conditionals simplify such that each 
depends on the genotypes of at most two other 
individuals in the same nuclear family).

• Also allelic peeling
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Fine mapping

• Not often feasible to assign a gene to region of 0.3 
cM or less (required for positional cloning, for 
example) with chromosome dissection methods.

• Use historical recombinations or linkage 
disequilibrium (LD) (Weir, 1996)

• Different types of LD, influenced by multiple factors 
(selection, admixture, genetic drift, mutation, 
migration, coancestry, population expansion etc)



Fine mapping
• Here, marker and phenotypic data are available only on 

the current generation(s) but there is no pedigree 
information relating current generation individuals 
back to ancestral haplotypes carrying a unique, mutant 
trait allele.

• To date, mostly single marker statistics; some multiple 
linked markers (Meuwissen&Goddard 2000); some 
model evolutionary history of population (Lam et al 
2000)

• Most applications are for young, rare diseases, not 
applicable for QTLs.

• Focus on combining LD with linkage mapping.



Why a Bayesian approach?
• Accounts for all uncertainties in the system (eg

unknown no. QTLs, unknown genotypes, unknown 
QTL locations).

• Inferences about particular unknowns of interest 
obtained conditionally on the observed data but not on 
particular values of the other unknowns

• Point estimates, marginal posterior distributions, 
posterior summary statistics etc can be obtained as 
probability statements.

• Bayesian mean estimator of QTL variance in a marker 
interval can be interpreted as a multiple shrinkage 
estimator.
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