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Case Studies

This discussion is based on:
• George, Mengersen and Davis (2000) 

Localisation of a quantitative trait locus via 
a Bayesian approach. Biometrics 56, 40-51.

• Baker and Mengersen (2002) Central 
censoring and selective genotyping, 
submitted to JABES.

• Various papers as referenced



Leading up to Bayesian methods
• Lander and Botstein 89; Knapp et al 89: Early methods based on 

assumption of at most one QTL contributing to a trait. Obvious 
deficiencies with many contributing QTLs.

• Knapp 91; Haley and Knott 92; Martinez and Curnow 92:
approximate methods to map several QTLs.

• Jansen 92: general mixture model for multiple QTL.
• Cowen 89; Stam 1991: Multiple regression methods.
• Jansen 93; Zheng 93, 94; Jansen and Stam 94; Jansen 94 : Hybrid 

methods combining one-QTL mixture model (L&B 1989) with 
multiple regression, using covariates to correct for neighbouring
QTLs and reduce error variation. Output point estimates for number, 
location and effects of QTLs, approximate critical values for 
significance tests, inference on parameters via bootstrapping.

• Wu and Li 94, 96: Regression approach to joint mapping of QTLs, 
allowing comparison of different models for different no’s of QTLs.



Localisation of a QTL

• Specify a genetic model, a statistical model 
and an analytic technique.

• Focus on half-sib design: large number of 
half-sib families, missing genotype data 
from the dams.

• Biallelic QTL



Source of information
• Pedigree structure: K unrelated half-sib families, 

each family has a single male parent randomly 
mated to a large number of females, each of which 
produces a single offspring.

• Marker information: N linked informative (ie
heterozygous) markers genotyped on the sires and 
all progeny but with no information on the dams.

• Phenotypic information: Quantitative trait 
measured for each offspring and influenced by 
both genetic and environmental factors.



Models

• Genetic model: Assume the quantitative trait is 
influenced by a biallelic QTL with alleles Q and q and 
associated allele frequencies pQ and (1-pQ) respectively. 
Both additive and dominance effects are modelled.



Models
• Statistical model: 

Yji = µGji + εji

– Yji is the trait value for the ith offspring in the jth family
– Gji∈{QQ,Qq,qq} = {1,2,3} is the ith offspring’s QTL 

genotype
– µGji is the expected trait value given the QTL genotype Gji
– εji is the offspring’s random deviation from µGji. Includes 

environmental effects and has variance σR
2 (residual 

variance).

– Trait’s phenotypic variance (σP
2) is the sum of the between-

family (σBF
2) and the within-family (σWF

2) variances. For a 
half-sib design, σWF

2 =(3/4)σA
2+σD

2+σR
2; σBF

2=(1/4)σA
2



Notation
yji: phenotypic value for the ith offspring in the jth family
fj: set of marker data for the jth family so that fji is the genotype for 

the N linked marker loci of the ith individual in the jth family
s: vector of marker genotypes and phase configurations for the K 

sires
Mij : jth allele of the ith gene marker Mi
πj: jth locus on the chromosome, may be a marker locus or a QTL, 

depending on the locus order
Q: set of recombination rates between locus πj and πj+1
µ=(µ1,µ2,µ3), with expected values m+a, m+d, m-a (m is mid 

homozygote value, a is additive, d is dominance)
zs : sire’s unknown QTL genotype: {QQ,Qq,qQ,qq}={1,2,3,4} 
zf : ith offspring’s QTL genotype in the jth family, 

{QQ,Qq,qq}={1,2,3}



Likelihood
• Likelihood for K half-sib families is equal to a 

mixture of four within-family likelihoods pQQ, pQq, 
pqQ, pqq weighted by the probability of the sire 
having QTL genotype QQ, Qq, qQ, qq, 
respectively.
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This likelihood is conditioned on a specific locus order wl:
w1=QM1M2…MN;  ωl=…Ml-1QMl+1 for l=2,…,N;  
wN+1=M1M2…MNQ.

Mixture!



Single-family likelihood
• For a sire with QTL genotype QQ or qq:

– Mixture of two Gaussian densities (mean µj, variance σR
2) 

weighted by the allele frequencies for Q and q from the 
dams’ contributions.

– Multiply over the nj offspring in family j.
– Genetic information does not feature in pQQ or pqq since the 

sire’s QTL is noninformative.
• For a sire with QTL genotype Qq or qQ:

– Mixture of three Gaussian densities (offspring’s three QTL 
genotype classes), weighted by the conditional probability 
of an offspring having genotype fji and QTL genotype Qji
given the sire’s marker genotype and phase sj, locus order 
wl and the sire’s QTL genotype Qj.

– Multiply over the nj offspring in family j.



Conditional Probabilities
• Consider jth family with assumed paternal QTL 

qQ and corresponding within-family likelihood 
pqQ(.)

• The conditional probability for an offspring with 
marker fji and QTL Qji has the functional form

• P(fji,Qji|…Qj=qQ) – fE/Σfy

fji: expected frequency of
A half-sib with marker 
genotype fji and QTL 
genotype Qji=y
-derived from a table of 
expected and observed genotype numbers

sum over the offspring’s QTL
genotypes

Missing data:
dams’ genotypes –
need to estimate
for affected offspring



Priors and posterior
• Model the hidden data structure (individuals’ unknown 

QTL genotypes)
• Can write down:

– the joint posterior for parameters β={θ,p,pQ,µ,σR,ωl} and the 
missing data zs and zf given the observed data and s (marker 
genotypes and phase configurations for the K sires)

– The conditional distribution of the offspring’s QTL genotypes 
given the sire’s QTL genotypes and β

– The conditional distribution of the sire’s QTL genotype given β

All mixture distributions! 
But  if we know z, they simplify to a product of terms



Prior for recombination rates θ
• Genotyping errors, recombination hot spots, nonuniformity

of recombination events along the chromosomes contribute 
to errors in the linkage map from which the marker 
positions are obtained. 

• To allow for this uncertainty, estimate the recombination 
rates in the analysis. Incorporate published marker 
information through strong priors.

• Assuming independence of recombination rates along the 
chromosome, the prior for θ is the product of the priors for 
the between-marker recombination rates. Set these as 
Gaussian centred around the relevant published value.

• No information on the QTL’s position, so place a uniform 
density on the recombination rate between the QTL and the 
marker.



Other priors
• Prior for  p: set of allele probabilities. 

Allele probabilities at a given locus do not 
influence allele probabilities at an alternative locus 
because of linkage equilibrium, so the prior for p 
is the product of priors for all individuals. Set a 
Dirichlet distribution on (pi1,pi2,pi3).

• Prior for pQ: Strong prior (normal or t-distribution) 
is possible using information from the design. 
Here we used a uniform distribution.

• Prior for σR
2 (residual variance): must be no larger 

than the observed phenotypic variance of the 
quantitative trait σP

2.  So use uniform U(0, σP
2).

• Prior for ωl (locus order): equal weightings to 
different orders. 



Update parameters, given the locus ordering
1. Allocate the zs: sires are allocated QTL genotypes 

based on the family’s phenotypic and genotypic 
information and the current set of parameter values.

2. Given the sire’s QTL genotype, zf is allocated: the 
offspring are allocated QTL genotypes based on 
the offspring’s phenotypic and genotypic 
information and the current set of parameter values.

3. New parameter values Q,p,pQ,µ,σR
2 are sampled 

via the M-H algorithm for a specific locus ordering 
by treating zs and zf as known information.



Update locus ordering, given the parameters
Example: 
• old values of locus order: w2

1 = AQBCD and recombination rates: 
θ1=(0.2,0.4,0.1,0.2),
Q is QTL; A,B,C,D are gene markers

• Convert recombination rates to map distances via the Haldane
mapping function (δ=0.5ln(1-2θ)), so that δ1=(δAQ

1, δQB
1, δBC

1, 
δCD

1)=(.26,.81,.11,.26). (Map distances are easier to work with 
than recombination rates due to their additive nature.)

• Randomly select a marker to act as a pivot. For a forward or 
backward move, shift the QTL to the right or left of the pivot, 
respectively. The distance between the QTL and the pivot remains
the same.



• Suppose a forward move is chosen and the pivot marker is 
B. The new locus order is dependent on the size of δQB

1 in 
relation to δBC

1 and δCD
1. For example, δQB

1> δBC
1 + δCD

1, 
so δ5

2=ABCDQ.
• The vector of map distances associated with the new locus 

order is δAB
2= δAQ

1 - δQB1
1 ; δBC

2= δBC
1 ; δCD

2= δCD
1 ; 

δDQ
2= δQB

1 – (δBC
1 + δCD

1 ).
• Obtain θ2 by applying the inverse of the Haldane mapping 

function.

• Do a similar trick for a backward move. We can show the 
reversible nature of these moves.

• These relationships will change depending on the move 
type, the pivot selected, and the position of the markers on 
the chromosome, but the principle of shifting the QTL 
about a randomly selected pivot and adjusting the map 
distances accordingly is preserved.



Accepting proposed moves
• Proposed move is from old=(ω2

1,θ1) to 
new=(ω5

2,θ2)
• Accept proposed move with probability

|J| is the determinant of the Jacobian (required 
because of the way we’ve moved)
pF: probability of making a forward move
pB: probability of making a backward move.
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Complete algorithm

1. Given the locus ordering:
1. Allocate the sires’ QTL genotypes
2. Allocate the offspring’s QTL genotypes
3. Update the parameter values

2. Update the locus ordering.



Example
• 6 designs: 

– sires = 20, 5
– offspring = 200, 50
– σR=0.5, 2.0
– a/σP = 1.15a, 0.47a,
– σQ

2/σP
2 = 0.67, 0.11

• Design 1: qM2Q pQ µ1 σR
True .10 .50 71.00 0.50
Mean .10 .48 71.02 0.50
95% CI   (.08,.12) (.45,.51) (70.96,71.07) (.48,.52)

• For each design, the true locus order had the highest 
posterior probability. 

• Use Bayes factors to confirm strength of evidence. Some 
designs suggested spurious multiple QTL, due to half-sib 
data.



• Posterior probabilities for the locus order. True locus order 
is M1M2QM3M4.

Design 1 Design 2
Q M1M2M3M4 0.000 0.020
M1QM2M3M4 0.002 0.346
M1M2QM3M4 0.998 0.365
M1M2M3QM4 0.000 0.233
M1M2QM3M4Q 0.000 0.036

• Average percent of correctly allocated sires and offspring?
Sire allocation: Design 1: 1.00 Design 2: 0.99
Offspring allocation: 0.77 0.51



Conclusions
• Weak priors result in poor estimation of some parameters.
• Stable estimation of locus ordering takes longer than estimation

of parameters within a locus ordering.
• Poor mapping of QTL under some designs, perhaps due to half-

sib design.
• Correct allocation of sires is influenced by the size of the QTL

and the number of offspring in the half-sib families.
• Correct allocation of the offspring depends only on the strength of 

the individual’s data.
• The size of the QTL has a profound effect on the accuracy of the

parameter estimates.
• Family size influences the performance of the sampler: easier to

achieve convergence with a small number of large half-sib 
families compared to a large number of small half-sib families.

• ANIMAP overestimated the additive effect and failed to detect 
small QTL.



Example: Selective genotyping

• Introduced by Lander & Botstein (1989): increase power 
to detect QTL of a smaller effect

• Phenotype a population but genotype, via molecular 
markers, those with extreme phenotypes
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Why selective genotyping?

• Lander & Botstein (1989): increase power to detect QTL 
of a smaller effect

• Darvasi & Soller (1992): for a single marker linked to a 
QTL, genotyping the upper & lower 25% is nearly as 
efficient as genotyping the whole population.

• Lin & Ritland (1996): for large linked QTL, may need 
tails of larger size or genotype all individuals

• Muranty & Goffinet (1997): for a trait other than that 
used for SG there is no loss of accuracy of QTL 
detection compared to genotyping a random sample of 
the same size.



Methods of analysis
• Lander & Botstein (1989): EM approach; need 

bias adjustment (Darvasi & Soller 1992)

• Baker et al (2000): Bayesian mixture model 
- General Bayesian package BUGS



Cattle mapping study (Davis et 
al, 1998)

Sire 1 2 3  

Progeny: n=250 n=250 n=250

Phenotype data
(adj. for fixed effects)

4 chromosomes A-D: 
5, 5, 4, 4 markers
13 markers heterozygous for Sire 1;
16 for Sire 2
2 linked QTL on A, single QTL on C

Dams: up to 
5 markers



Cattle Mapping study (Davis et 
al, 1998)

• 3 sires 2507, 2508, 2509 each with 250 progeny
• Phenotype data adjusted for fixed effects via linear 

models
• Four chromosomes A,B,C,E had 

5, 5, 4, 4 markers respectively. Markers were between 20 
& 35 cM apart.

• Two linked QTL on chromosome A at approx. 15 & 60 
cM from 1st marker and a single QTL on chromosome C 
at approx 75 cM from 1st marker C1.

• 18 markers: 13 heterozygous for sires 2507 and 2509; 16 
heterozygous for sire 2508.



Notation
• Offspring markers labelled as M1, M2 if they may have 

come from the sire or M3 otherwise

• If a sire has marker alleles M1 & M2 and the QTL has 2 
alleles Q (positive for the trait) and q, then we assume 
the sire has marker-QTL genotype M1Q/M2q.

• The dams have 3 marker alleles M1, M2, M3 with 
unknown proportions t1, t2, (1-t1-t2).



Genetic effects
Genetic effect
Of QTL alleles
{µqq, µQq, µQQ)

Additive (>0)
& dominance
components
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Genetic effects

• Define genetic effect of QTL alleles 
{µqq, µQq, µQQ} as G0, G1, G2.

• overall phenotypic mean µ
• additive & dominance components a>0, d
• Genetic effects written as:
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Without marker information

∆∆ is nx3 matrix,is nx3 matrix,
1 = QTL genotype, 1 = QTL genotype, 
0 otherwise0 otherwise

X is design matrix
for fixed effects
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Without marker information

• Define ∆ as nx3 matrix with elements 1 to indicate 
QTL genotype, 0 otherwise

• Define X as design matrix for fixed effects β.
• For observed phenotype data without marker 

information:

• (could replace by skewed t or multivariate t within 
clusters)
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With marker information

• pk are conditional on observed marker types
• Let r be recombination rate between the QTL and 

marker.
• Probabilities of a QTL given a linked marker:
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Likelihood: without SG

• j = 1 for M1M2, 2 for M1M2, 3 for M2,M2 etc
� δM(j)=1 if offspring has marker type j; 0 otherwise
� δl = nx1 vector with l th element 1; 0 otherwise
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Likelihood: with SG

• δM(j) is not 0 or 1 if the marker type is not recorded 
for that individual

• Instead, δM(j) is Pr(marker type = j), j=1,..,5) and 
must be estimated.

• This results in a finite mixture with 15 components 
for those individuals not genotyped.



Bayesian approach

• Posterior ∝ Likelihood x prior

• Marginal posterior distribution of any parameter is 
found by integrating the joint posterior over all 
other parameters.

• Use MCMC for computation.
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Priors

• No informative prior information, so 
disperse proper priors were adopted

• For selective genotyping, prior on marker 
types:
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Mixtures as latent variables

• Estimate δM(j). 
• Then allocate ungenotyped individuals to the 5 

marker types. 
• For each marker type, estimate R(jk). 
• Then allocate individuals to the 3 mixture 

components.
• Estimate component-specific parameters using those 

individuals allocated to that component.
• Estimate other parameters.



Results
• Four chromosomes A,B,C,E had 5, 5, 4, 4 markers respectively. 
• Markers were between 20 & 35 cM apart.
• Two linked QTL on chromosome A at approx. 15 & 60 cM from 1st marker 

and a single QTL on chromosome C at approx 75 cM from 1st marker C1.
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Full vs SG datasets: Bayes 
Factors
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