Software for QTL analysis

• Input into BDA
 – Mapmaker

• Libraries to assist specialist programming
 – Mcmc toolpack: R add-on

• QTL programming within general Bayesian software
 – WinBUGS: qtl modelling within Bayesian MCMC software

• QTL modules within general stats software
 – Bmapqtl, bim: R add-ons

• Specialist programs (public and private)
 – qvalue
 – R, C, Fortran, Matlab etc code for papers and problems
Mapmaker

- One example of multitude of QTL software packages
- Whitehead Institute public domain software
- Focus: genetic linkage maps
- Analysis is based on log likelihood. (No Bayes?)
- Multiple testing overcome by setting ‘strict’ LOD score and then relaxing this to assess impact.
- ‘Ripple’ algorithm swaps neighbours to avoid ‘stickiness’
QTL Cartographer

Windows QTL Cartographer 2.0. Department of Statistics,
North Carolina State University, Raleigh, NC.
(http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

- WinQtlCart : mapping quantitative trait loci (QTL) in cross populations from inbred lines. The software is based on QTL Cartographer with interface designed and developed under Microsoft Visual C++ 6.0 environment.
- The current implemented statistical methods include one marker analysis, interval mapping, composite interval mapping, multiple interval mapping and multiple trait analysis.
- Menus include File, Edit, View, Data, Tools, Help
- Does Bayesian interval mapping
MCMCpack

R package that contains functions for posterior simulation for a number of statistical models. All simulation is done in compiled C++. All models return coda mcmc objects that can then be summarized using coda functions or the coda menu interface. The package also contains some useful utility functions, including some additional PDFs and pseudo-random number generators for statistical distributions.
MCMCpack

• Currently MCMCpack allows the user to simulate from the posterior density of the following models: linear regression (with Gaussian errors), a general linear panel model, Wakefield's ecological inference model, Quinn's dynamic ecological inference model, Wakefield's hierarchical ecological inference model, a probit model, a logistic regression model, a one-dimensional item response theory model, a K-dimensional item response theory model, a Normal theory factor analysis model, an ordinal item response theory model, a Poisson regression, and an ordered probit model.

• The package also contains densities and random number generators for commonly used distributions that are not part of the standard R distribution, some additional functions that are useful for manipulating mcmC objects, and some data visualization tools for ecological inference.
Some functions in MCMCpack

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCMCfactanal</td>
<td>Markov chain Monte Carlo for Normal Theory Factor Analysis Model</td>
</tr>
<tr>
<td>MCMClogit</td>
<td>Markov chain Monte Carlo for Logistic Regression</td>
</tr>
<tr>
<td>MCMCoprobit</td>
<td>Markov chain Monte Carlo for Ordered Probit Regression</td>
</tr>
<tr>
<td>MCMCordfactanal</td>
<td>Markov chain Monte Carlo for Ordinal Data Factor Analysis Model</td>
</tr>
<tr>
<td>MCMCpoisson</td>
<td>Markov chain Monte Carlo for Poisson Regression</td>
</tr>
<tr>
<td>MCMCprobit</td>
<td>Markov chain Monte Carlo for Probit Regression</td>
</tr>
<tr>
<td>MCMCregress</td>
<td>Markov chain Monte Carlo for Gaussian Linear Regression</td>
</tr>
<tr>
<td>ddirichlet</td>
<td>Evaluate Density of Dirichlet Distribution</td>
</tr>
<tr>
<td>dinvgamma</td>
<td>Evaluate the Density of the Inverse Gamma Distribution</td>
</tr>
<tr>
<td>diwish</td>
<td>Evaluate the Density of the Inverse Wishart Distribution</td>
</tr>
<tr>
<td>dnoncenhypergeom</td>
<td>Evaluate Density of Noncentral Hypergeometric Distribution</td>
</tr>
<tr>
<td>dwish</td>
<td>Evaluate the Density of the Wishart Distribution</td>
</tr>
<tr>
<td>rdirichlet</td>
<td>Generate Random Draws from the Dirichlet Distribution</td>
</tr>
<tr>
<td>rinvgamma</td>
<td>Generate Random Draw from Inverse Gamma Distribution</td>
</tr>
<tr>
<td>riwish</td>
<td>Generate Random Draw from Inverse Wishart Distribution</td>
</tr>
<tr>
<td>rnoncenhypergeom</td>
<td>Generate Random Draw from Noncentral Hypergeometric Distribution</td>
</tr>
<tr>
<td>rwish</td>
<td>Generate Random Draw from Wishart Distribution</td>
</tr>
</tbody>
</table>
Analysis in WinBUGS

http://www.maths.bris.ac.uk/~masas/work/qtl.htm

• one-qtl.bug - this code searches for one QTL on a single chromosome, under two restrictions. 1) there are markers exactly at both ends of the linkage group, and 2) the markers are equally spaced.

• n-qtl.bug - this code potentially searches for n QTL's on a single chromosome. there are no restrictions on inter-marker distances, but there must still be a marker at each end of the chromosome. This has been tested for 1 and 2 QTL's, and became very slow when finding 2. Also the amount of computation required in the CODA analysis stage was immense.

http://www.maths.bris.ac.uk/~masas/work/qtl.htm
Data

- data1.dat - has the following characteristics:
 # Data set for 200 markers with 1 QTL, with additive effect
 # a=3.000000, dominance effect dom=0.000000, mean mu=10.000000
 # and variance=1.000000
 # M1 - (0.20) - M2 - (0.20) - M3 - (0.05) - M4 - (0.15) - M5 - (0.20) - M6
 # where the qtl is marker 4
 # *true* QTL indicators are: (0=QQ, 1=qQ or Qq, 2=qq)
 # 1 0 1 2 2 1 0 1 2 2 0 0 2 2 0 2 2 0 1 0
 # 0 1 2 1 1 2 2 1 1 2 0 0 1 1 0 1 1 2 1 0
 # 2 1 0 1 0 1 1 2 0 1 1 1 0 1 2 1 1 1 1 1
 # 2 1 2 0 0 0 1 0 1 0 0 0 1 0 1 1 1 2 1 1
 # 0 0 0 2 2 1 0 2 2 1 1 2 0 1 1 1 2 2 0 1
 # 2 1 0 2 1 1 0 2 1 0 0 1 2 2 2 0 2 0 1 1
 # 1 0 0 1 2 1 2 2 0 0 2 1 2 2 2 1 0 0 0
 # 1 1 2 2 2 0 2 1 2 0 1 1 1 1 1 1 0 1 2 1
 # 1 1 1 1 2 1 1 2 2 2 0 2 0 1 1 1 0 1 2 0
 # 0 1 1 2 1 2 1 0 2 1 1 0 0 1 2 1 1 0 0 1
 # seed generator is 891962883
model OneQtl;

const
 N=200, # number of progeny
 L=5, # number of markers
 d=0.2; # distance in cMorgans between markers

var
 m[N,5], # marker data
 y[N], # phenotype data
 q[N], # individuals qtl genotype -> 0=QQ, 1=Qq or qQ, 2=qq
 beta[3], # specific mean for each individual genotype
 tau, # 1/sigmasq
 u[L-1], # prior qtl interval probs
 mu, # overall mean level
 a, # additive effect
 d, # dominance effect
 sigmasq, # overall trait variance
 table[9,3], # table of genotype probs given flanking markers
 r0, #
 r1, # |-> used to simplify table calculations
 r2, # /
 index[N], # pointer to the correct recombination probs
 lambda, # interval containing qtl
 lambda2, # lambda+1
 r[L-1], # recombination probs (per interval)
 theta; # qtl recombination fraction
data in "data1.dat";
{
mu ~ dnorm(0, 0.0000001);
a ~ dnorm(0, 0.0000001);
d ~ dnorm(0, 0.0000001);
beta[1] <- mu + a;
beta[2] <- mu + d;
beta[3] <- mu - a;
lambda ~ dcat(u[1]);
lambda2 <- lambda+1;
theta ~ dunif(0, 0.5*(1-log(-2*d)));
r0 <- r[lambda];
r1 <- theta;
r2 <- (r[lambda]-theta)/(1-2*theta);

table[1,1] <- (1-r1)*(1-r1)*(1-r2)*(1-r2)/((1-r0)*(1-r0));
table[1,2] <- 2*r1*(1-r1)*r2*(1-r2)/((1-r0)*(1-r0));
table[1,3] <- r1*r1*r2*r2/((1-r0)*(1-r0));
table[2,1] <- (1-r1)*(1-r1)*r2*(1-r2)/(r0*(1-r0));
table[2,2] <- r1*(1-r1)*(r2*r2+(1-r2)*(1-r2))/(r0*(1-r0));
table[2,3] <- r1*r1*r2*(1-r2)/(r0*(1-r0));
table[3,1] <- (1-r1)*(1-r1)*r2*r2/(r0*r0);
table[3,2] <- 2*r1*(1-r1)*r2*(1-r2)/(r0*r0);
table[3,3] <- r1*r1*(1-r2)*(1-r2)/(r0*r0);

etc
table[9,3] <- (1-r1)*(1-r1)*(1-r2)*(1-r2)/((1-r0)*(1-r0));
tau ~ dexp(10);
sigmasq <- 1/tau;
for (i in 1:N) {
 index[i] <- 3*m[i,lambda] + m[i,lambda2]+1;
 q[i] ~ dcat(table[index[i],]); y[i] ~ dnorm(beta[q[i]], tau); }
}
data.inits
list(lambda=c(1,7), a=c(1,1), d=c(1,1))

data1.dat
list(
 m=structure(
 .Data=c(1,1,1,1,1,1,0,0,1,1,0,0,1,1,2,2,2,2,2,0,0,0,2,1,1,1,1,0,0,
5,0,0,0,2,1,1,1,1,0,0,2,2,1,1,2,2,1,0,0,0,0,1,2,0,1,0,0,0,
0,2,2,1,1,1,1,2,0,1,1,0,0,0,1,1,2,2,2,2,2,1,1,0,0,0,
0,2,2,1,1,1,2,2,0,1,1,0,0,0,1,1,2,2,2,2,2,2,1,1,0,0,0,
1,1,1,0,0,0,0,0,1,1,1,1,0,1,1,2,2,1,1,2,2,2,2,2,2,0,1,1,2,2,
y=c(9.070279,12.729174, 9.453709, 6.488317, 7.856653, 8.505410,10.603332, 10.655591, 6.668347, 6.773763,12.859454,14.280485, 7.944763, 6.637695,

r=c(0.16484, 0.16484, 0.16484, 0.16484),

u=c(0.25, 0.25, 0.25, 0.25)

etc
BQTL - Bayesian Quantitative Trait Mapping

What's BQTL about?

Software for the mapping of genetic traits from line crosses and recombinant inbred lines is available here.

It performs

- maximum likelihood estimation of multi-gene models
- Bayesian estimation of multi-gene models via Laplace Approximations (see paper)
- interval mapping and composite interval mapping of genetic loci

It allows the user to

- plot results
- prepare printed reports
- specify complicated, epistatic models using a flexible formula language
- use covariates and specify interaction terms involving covariates and genetic effects

It consists of extensible modules written in S, C, and Fortran allowing the expert user to customize it to suit specific applications (e.g., non-standard crosses or phenotypic distributions). The software is engineered to work in conjunction with two dialects of S: Splus 3.4 for UNIX and R (for UNIX, Linux, and Windows), although it may also work with other dialects with minor modifications.

http://hacuna.ucsd.edu/bqtl
Main objects and functions

- The ‘analysis.object’ bundles most of the needed data and ‘meta-data’
- `bqtl()` – maximum likelihood/posterior estimation
- `linear.bayes()` – fast MCMC sampling via approximate posterior
- `loglik()`
Some bqtl functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian QTL mapping toolkit</td>
<td>bqtl Bayesian QTL Model Fitting</td>
</tr>
<tr>
<td></td>
<td>lapadj Approximate marginal posterior for chosen model</td>
</tr>
<tr>
<td></td>
<td>linear.bayes Bayesian QTL mapping via Linearized Likelihood</td>
</tr>
<tr>
<td></td>
<td>(simulated datasets, marker data, phenotype data)</td>
</tr>
<tr>
<td></td>
<td>loglik Extract loglikelihood, log posterior, or posterior from fitted models</td>
</tr>
<tr>
<td></td>
<td>make.analysis.obj Set up data for QTL mapping</td>
</tr>
<tr>
<td></td>
<td>make.location.prior Provide a default prior</td>
</tr>
<tr>
<td></td>
<td>make.regressor.matrix Create regressors using expected marker values</td>
</tr>
<tr>
<td></td>
<td>plot.analysis.object plots by chromosome location</td>
</tr>
<tr>
<td></td>
<td>predict.bqtl fitted values from QTL models</td>
</tr>
<tr>
<td></td>
<td>summary.adj Summarize Laplace approximations</td>
</tr>
<tr>
<td></td>
<td>summary.swap Summarize Gibbs samples for a k-gene model</td>
</tr>
<tr>
<td></td>
<td>swap MCMC sampling of multigene models</td>
</tr>
<tr>
<td></td>
<td>swapbc1 Sample BC1 or Recombinant Inbred loci via approximate posterior.</td>
</tr>
<tr>
<td></td>
<td>swapf2 Sample F2 loci via approximate posterior</td>
</tr>
<tr>
<td></td>
<td>twoh One and Two Gene Models Using Linearized Posterior</td>
</tr>
</tbody>
</table>
Example bqtl program

R : Copyright 2001, The R Development Core Team Version 1.2.2 (2001-02-26)
> postscript()
> source("demo.R",echo=TRUE)
> library(bqtl)
> cvl.map <- make.map.frame(read.table("../plant/cvl-data/cvl.map", header =TRUE))
> plot(cvl.map)
> cvl.markers <- read.csv("../plant/cvl-data/cvl.markers")
> cvl.codes<-apply(cvl.markers,2,function(x) ifelse(x=="AA",1,ifelse(x=="aa",2, 3)))
> image(1:161, 1:163, cvl.codes, xlab = "RIL", ylab = "marker")
> abline(v = seq(1.5, by = 1, length = 160))
> abline(h = 0.5 + which(cvl.map$pos.type == "right"))
> increasing.cM <- function(x, extra = 1) {add.to.x <- cumsum(extra +
c(0, x$cM)[which(x$pos.type == "left")]) add.to.x[x$chr.num] + x [TRUNCATED]
> x.cM <- increasing.cM(cvl.map)
> x.cM <- c(x.cM, x.cM[163] + 1)
> image(1:161, x.cM, cvl.codes, xlab = "RIL", ylab = "cM")
> abline(v = seq(1.5, by = 1, length = 160))
> abline(h = x.cM[which(cvl.map$pos.type == "right")[1:4] + 1])
> pheno.dat <- read.csv("../plant/cvl-data/pheno.dat")
plot(cvl.map)
image(1:161, 1:163, cvl.codes, xlab = "RIL", ylab = "marker")
> abline(v = seq(1.5, by = 1, length = 160))
> abline(h = 0.5 + which(cvl.map$pos.type == "right"))
> summary(phenodata)

 blue brz dark farred
Min. :3.49 Min. :4.800 Min. :10.38 Min. :2.700
1st Qu.:5.66 1st Qu.:6.370 1st Qu.:14.52 1st Qu.:4.370
Median :6.46 Median :7.520 Median :15.73 Median :4.870
Mean :6.66 Mean :7.662 Mean :15.68 Mean :4.975
3rd Qu.:7.58 3rd Qu.:8.820 3rd Qu.:17.01 3rd Qu.:5.430
 ga red white germ
Min. :4.510 Min. :5.150 Min. :3.370 good :148
1st Qu.:6.730 1st Qu.:7.590 1st Qu.:4.870 not.good: 13
Median :7.700 Median :8.750 Median :5.650
Mean :7.882 Mean :8.886 Mean :5.783
3rd Qu.:8.860 3rd Qu.:10.100 3rd Qu.:6.650
Max. :12.200 Max. :14.080 Max. :8.510
<table>
<thead>
<tr>
<th></th>
<th>blue</th>
<th>brz</th>
<th>dark</th>
<th>farred</th>
<th>ga</th>
<th>red</th>
<th>white</th>
<th>germ</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>1.00</td>
<td>0.64</td>
<td>0.68</td>
<td>0.73</td>
<td>0.76</td>
<td>0.70</td>
<td>0.74</td>
<td>-0.28</td>
</tr>
<tr>
<td>brz</td>
<td>0.64</td>
<td>1.00</td>
<td>0.62</td>
<td>0.72</td>
<td>0.58</td>
<td>0.60</td>
<td>0.49</td>
<td>-0.17</td>
</tr>
<tr>
<td>dark</td>
<td>0.68</td>
<td>0.62</td>
<td>1.00</td>
<td>0.61</td>
<td>0.62</td>
<td>0.51</td>
<td>0.56</td>
<td>-0.17</td>
</tr>
<tr>
<td>farred</td>
<td>0.73</td>
<td>0.72</td>
<td>0.61</td>
<td>1.00</td>
<td>0.54</td>
<td>0.70</td>
<td>0.49</td>
<td>-0.25</td>
</tr>
<tr>
<td>ga</td>
<td>0.76</td>
<td>0.58</td>
<td>0.62</td>
<td>0.54</td>
<td>1.00</td>
<td>0.76</td>
<td>0.89</td>
<td>-0.17</td>
</tr>
<tr>
<td>red</td>
<td>0.70</td>
<td>0.60</td>
<td>0.51</td>
<td>0.70</td>
<td>0.76</td>
<td>1.00</td>
<td>0.73</td>
<td>-0.19</td>
</tr>
<tr>
<td>white</td>
<td>0.74</td>
<td>0.49</td>
<td>0.56</td>
<td>0.49</td>
<td>0.89</td>
<td>0.73</td>
<td>1.00</td>
<td>-0.18</td>
</tr>
<tr>
<td>germ</td>
<td>-0.28</td>
<td>-0.17</td>
<td>-0.17</td>
<td>-0.25</td>
<td>-0.17</td>
<td>-0.19</td>
<td>-0.18</td>
<td>1.00</td>
</tr>
</tbody>
</table>
> cvl.ana <- make.analysis.obj(phenotype.dat, make.map.frame(cvl.map,
 reso = 2), cvl.markers, method = "RI.self")
> plot(cvl.ana)
image(1:161, 1:163, cvl.ana$state.matrix[, cvl.ana$map.frame$is.marker, 2], xlab = "RIL", ylab = "locus", zlim = c(0, 2))
abline(v = seq(1.5, by = 1, length = 160))
abline(h = 0.5 + which(cvl.map$pos.type == "right"))
> image(1:163, 1:163, cor(cvl.ana$state.matrix[, cvl.ana$map.frame$is.marker, 2]))
> contour(1:163, 1:163, cor(cvl.ana$state.matrix[, cvl.ana$map.frame$is.marker, 2]),
 levels = c(0.2, 0.4, 0.6, 0.8), add = T)
> abline(v = 0.5 + which(cvl.map$pos.type == "right"))
> abline(h = 0.5 + which(cvl.map$pos.type == "right"))
> fit.null <- bqtl(white ~ 1, cvl.ana)
> summary(fit.null)

$coefficients
 Intercept
 5.782733

$loglik
[1] -256.0794

$std.res
[1] 1.187223

$N
NULL
> fit.PVV4 <- bqtl(white ~ PVV4, cvl.ana)
> summary(fit.PVV4)

$coefficients
 Intercept PVV4
 5.7503866 0.4044548

$loglik
[1] -246.3247

$std.res
[1] 1.116674

$N
 N N.omit N.used
161 0 161
> scan.1 <- bqtl(white ~ locus(all), cvl.ana)
> lod.ratio <- log10(exp(1))
> lod.0 <- loglik(fit.null) * lod.ratio
> lod.1 <- loglik(scan.1) * lod.ratio
> par(mfrow = c(3, 2))
> plot(cvl.ana, lod.1 - lod.0)
white.perm <- sample(1:161)

perm.1 <- bqtl(white[white.perm] ~ locus(all), cvl.ana)

scan.2 <- bqtl(white ~ locus(chromo = 1, cM = c(0, 30)) + locus(chromo = 1, cM = c(100, 150)), cvl.ana)

scan.2.lod <- loglik(scan.2) * lod.ratio

index.2 <- map.loc(scan.2)

vec.2 <- unlist(index.2)

ind.1 <- as.numeric(vec.2[names(vec.2) == "cM1"])

ind.2 <- as.numeric(vec.2[names(vec.2) == "cM2"])

image(unique(ind.1), unique(ind.2), matrix(scan.2.lod, nr = length(unique(ind.1))), xlab = "cM", ylab = "cM")
> text(ind.1, ind.2, round(scan.2.lod - min(scan.2.lod), 1), cex = 0.6)
> lb.spec <- list(gene.number = 1:10, n.cycles = c(0, 400, rep(100, 8)))
> white.lb <- linear.bayes(white ~ locus(all), cvl.ana, rp = 1, spec = lb.spec)
> par(mfrow = c(1, 1))
> plot(log10(white.lb$odds), type = "h")
> par(mfrow = c(3, 2))
> plot(cvl.ana, white.lbSloc.posterior, type = "h")
Bmapqtl: Bayesian interval mapping

R/bim is available directly from the Comprehensive R Archive Network (http://cran.r-project.org) under Contributed Software.

Bayesian interval mapping library R/bim provides Bayesian analysis of multiple quantitative trait loci (QTL) models. This includes posterior estimates of the number and location of QTL, and of their effects. This document assumes some familiarity with QTL and with Bayesian methods. In addition it provides graphical diagnostics that can help investigate several ‘better’ models. Library R/bim requires R/qtl and R/modreg.

> library(bim)

Loading required package: qtl

See separate paper
<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bim.effects</td>
<td>Bayesian QTL map of loci and effects</td>
</tr>
<tr>
<td>bim.fdr</td>
<td>Bayesian False Discovery Rate for QTL mapping</td>
</tr>
<tr>
<td>bim.model</td>
<td>Bayesian model selection for number and pattern of QTL across genome</td>
</tr>
<tr>
<td>bim.</td>
<td>Bayesian QTL estimation and mapping of loci</td>
</tr>
<tr>
<td>bmapqtl.options</td>
<td>Options Settings for BmapQTL</td>
</tr>
<tr>
<td>Bnapus</td>
<td>Cross structure for complete Brassica napus data</td>
</tr>
<tr>
<td>fisch</td>
<td>Eight QTL Stephens and Fisch simulated data</td>
</tr>
<tr>
<td>plot.bim.diag</td>
<td>Marginal and model-conditional summaries of Bayesian interval mapping</td>
</tr>
<tr>
<td>plot.bim.loci</td>
<td>Jittered plot of Bayesian QTL loci samples by chromosome</td>
</tr>
<tr>
<td>plot.bim.mcmc</td>
<td>Bayesian MCMC sequence plots for burnin and iterations.</td>
</tr>
<tr>
<td>plot.bim.model</td>
<td>Graphical model assessment for Bayesian interval mapping</td>
</tr>
<tr>
<td>plot.bim</td>
<td>Diagnostics plots for Bayesian interval mapping</td>
</tr>
<tr>
<td>read.bim</td>
<td>Read samples from WinQTL output</td>
</tr>
<tr>
<td>read.bmapqtl</td>
<td>Read and write options for WinQTL</td>
</tr>
<tr>
<td>run.bmapqtl</td>
<td>Run Bmapqtl reversible jump MCMC</td>
</tr>
<tr>
<td>subset.bim</td>
<td>Subsetting Bayesian interval mapping data</td>
</tr>
<tr>
<td>summary.bim</td>
<td>Summary of Bayesian interval mapping samples</td>
</tr>
<tr>
<td>vern</td>
<td>Eight week vernalization data for Brassica napus</td>
</tr>
</tbody>
</table>