A note on practical reports

- **Introduction**
 - The problem
 - The issues
 - Aim (what do we want to compare)

- **Methods**
 - How to calculate things
 - What parameters were varied

- **Results**
 - Give results and explain them
 - Consider use of Tables

- **Discussion** More general issues (e.g. costs)

- **Conclusion**
Practical 7

Multiple Trait Selection

• Explore the possible routes of genetic change (joint improvement of more traits)
 – prediction of response h^2, σ_P
 – correlated response r_A
 – information from more traits h^2_B, r_A, r_P

• Determine an (economically) optimal solution
 – Economic values (weight) for each objective trait
Predicting genetic change to multiple trait selection

- Single trait selection response
- Correlated response to selection

- Response to index selection
 - How can multiple trait response be manipulated by varying index weights
 - Can we go anywhere we want?
Direct and Correlated response to single trait selection

Response = $i.h_A \cdot \sigma_{gA}$

and

Correlated Response = $i.h_A \cdot r_g \cdot \sigma_{gB}$

single trait selection!
Selection for fleece weight and fibre diameter

• Which direction?
• How much response?
• What is optimal?

Note that examples used here are not exactly as in practical exercise
Criteria for selection

True Breeding Value

\[\text{Index} = \text{EBV} = b_1 P_1 \]

\[\text{Index} = \text{EBV} = 0.35 P_{FW} \quad R = 0.17 \text{ Kg} \]

\[\text{Index} = \$\text{EBV} = 1.75 P_{FW} \quad R = 0.85 \$ \]
Criteria for selection

True Breeding Value

\[\text{Index} = \text{EBV} = b_1 P_1 + b_2 P_2 \]

\[\text{Index} = \$\text{EBV} = 1.72 P_{FW} + 0.06 P_{FD} \quad R = 0.18 \text{ Kg} \]

\[R = 0.90 \$ \]
FW 5 $/Kg
FD 0 $/micr
True Breeding Value
= Breeding Objective

Criteria for selection

FW
\[P_1 \]

FD
\[P_2 \]

True Breeding Value

FW
\[A_1 \]

FD
\[A_2 \]

Index Weights

\[\text{Index} = \text{EBV} = b_1 P_1 + b_2 P_2 \]

Economic Weights

\[R_{\text{FW}} = 0.09 \text{ Kg} \]

\[R_{\text{FD}} = -0.43 \text{ micr} \]

\[R = 0.88 \text{ $} \]
$FW = 5 \$/Kg$
$FD = -1 \$/mier$
Criteria for selection

True Breeding Value

FW

\[P_1 \]

\[b_1 \]

\[A_1 \]

\[b_2 \]

\[A_2 \]

FD

\[P_2 \]

Index = EBV = \(b_1 P_1 + b_2 P_2 \)

Index = $EBV = 1.66P_{FW} - 0.19P_{FD} \quad \text{R}_{FW} = 0.15 \text{ Kg}

\[R_{FD} = -.23 \text{ micr} \]
FW 5 $/Kg
FD -0.5 $/micr
FW 5 $/Kg
FD -2 $/mier
Fill in this table

<table>
<thead>
<tr>
<th>Question</th>
<th>$e_{w_{FW}}$</th>
<th>$e_{w_{FD}}$</th>
<th>b_{FW}</th>
<th>b_{FD}</th>
<th>R_{FW} (Kg)</th>
<th>R_{FD} (micron)</th>
<th>R_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single trait selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>4.50</td>
<td>0</td>
<td>1.58</td>
<td>0</td>
<td>-1.25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1b</td>
<td>0</td>
<td>-1.25</td>
<td>0</td>
<td>-0.625</td>
<td>4.50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiple trait selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>4.50</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2b</td>
<td>4.50</td>
<td>-1.25</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>