

Introduction to Breeding and Genetics

Lecture1 GENE 251 / 351

School of Environment and Rural Science (Genetics)

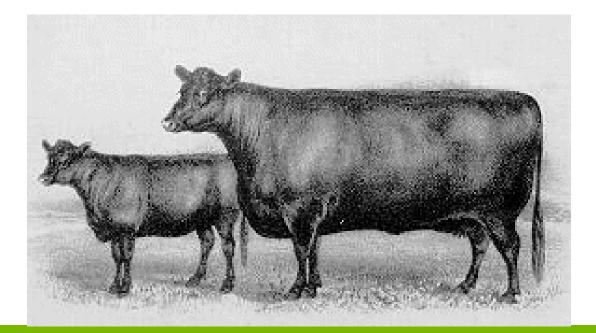
GENE 251 / 351

- Unit Objectives
 - to introduce students to applied genetics
 - basic understanding in plant and animal breeding
 - be aware of new technologies affecting these disciplines

• Teaching Outcomes

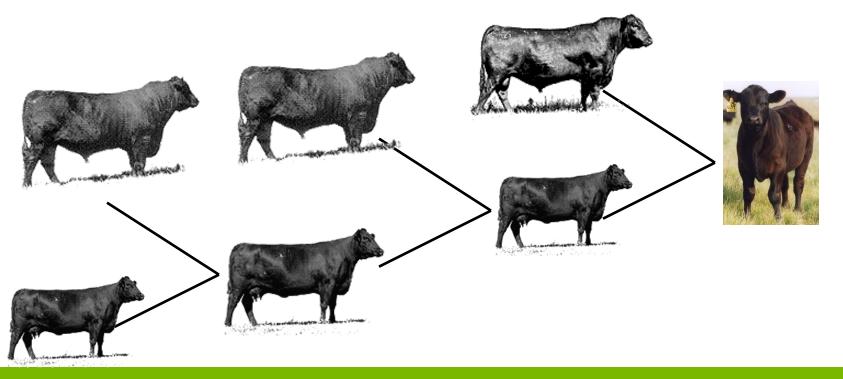
- demonstrate an <u>understanding of applied genetics</u>
- show an understanding of <u>applications</u> of animal and plant breeding
- demonstrate awareness of <u>new technologies</u> affecting these disciplines

Animal and Plant Breeding


- Refers to genetic change with aim to improve
 (breeding not simply as 'reproduction')
- Mainly based on quantitative genetics
 - Measurement of traits
 - Polygenic model

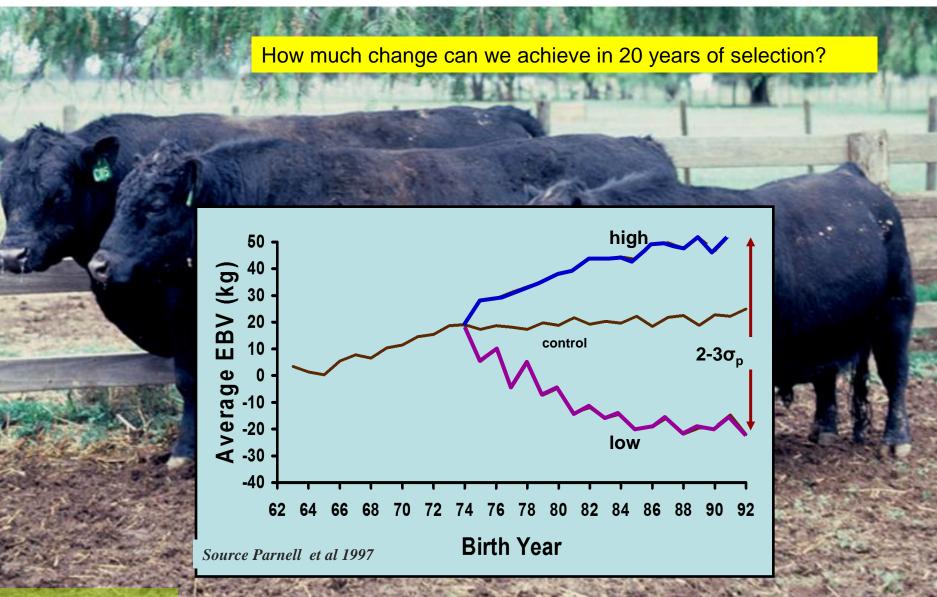
Don't underestimate the power of genetics !

Traditional (historical) Breeding


• Gradual (but dramatic) genetic change over long time periods (100's years) via observation and selective breeding

Slide from Peter Parnell (Angus Assoc)

Traditional (historical) Breeding


- Use of Pedigree Information
 - things could get complicated

une

Slide from Peter Parnell (Angus Assoc)

Selection experiments: Trangie growth research

Courtesy: Peter Parnell

Animal breeding in a nutshell

Where to go? **Breeding objectives**

How to get there?

Getting there

- Measurement of Traits:
- Genetic Evaluation: •
- Reproductive technology?

Quantitative genetics

Which traits, Which animals?

Pedigree and DNA testing

Prediction of Breeding Value

AI. MOET, JIVET, sexing Implementation

- Predicting and comparing alternative strategies
- Decision making: Mate Selection, Merit, Trait emphasis, Inbreeding

Tools and Investment

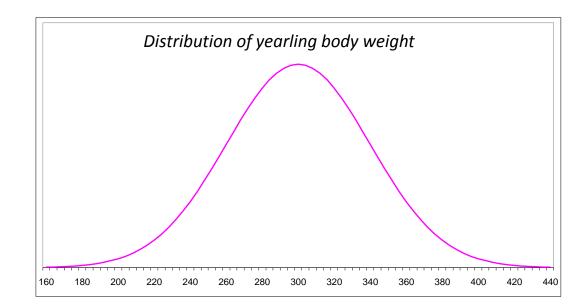
Where to go? Breeding objectives

To increase growth and muscle, and decrease fat

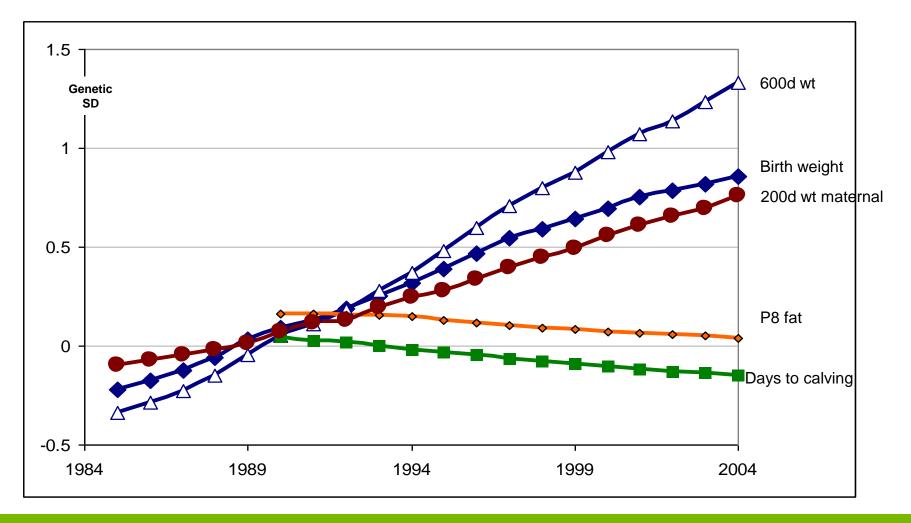
To conserve a rare species

How to get there? Selection

- Which animals to select?
- We are interested in the *GENES* responsible for good muscling, than the good muscling itself
 - Need measurement
 - Correct for non-genetic effects
 - Consider family information (pedigree)
 - Breed from the best only, select accurately, breed from young animals, not all from the same family
 Selection



How much improvement is possible?


- Variation is Key
- Breeding Program
 - Selection Intensity
 - Selection Accuracy
 - Generation Interval

- Multiple Traits
 - Correlations
 - Favourable or unfavourable?
 - Balance between traits

Changing different traits - beef cattle

Changing different traits - sheep

- Realized <u>10 year change</u> in merinos (Merinoselect)-

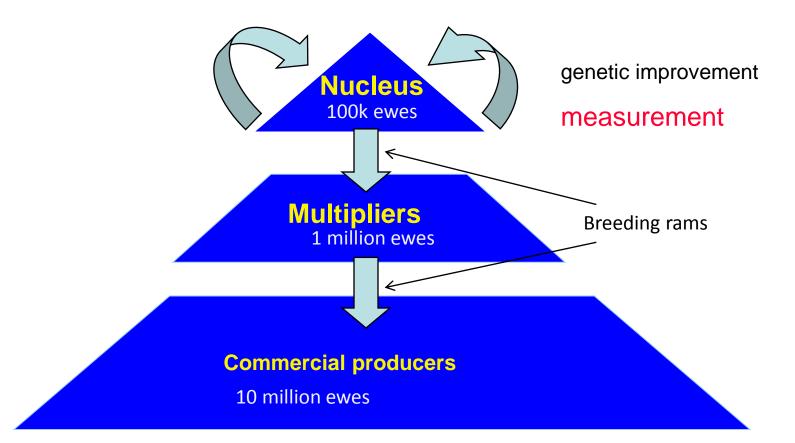
			Before	Genetic	After	
			Mean	Change	Mean	%
Meat						
	Yearling weight	kg	50.0	0.5	55.0	10%
Wool						
	Adult clean fleece weight	kg	4.0	0.03	4.30	8%
	Adult mean fibre diameter	mic	18.0	-0.03	17.7	-2%
Repro						
	Number of lambs weaned	nlw	0.800	0.0024	0.824	3%
Parasites						
	Yearling worm egg count	cubert	8.0	-0.01	7.9	-2%

Is all potential is realized?

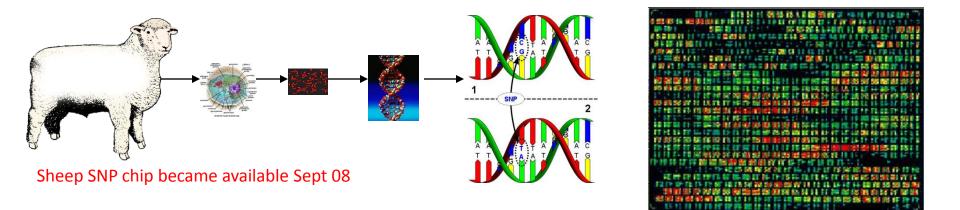
Genetic progress in Sheep	Annual response (\$ per ewe)								
	Potential	Realised							
Border Leicester	2.0	1.7	85						
Merino	2.3	0.7	30						
Terminals	1.8	2.0	111						

Implementation in various industries

Use of quantitative genetics theory has been implemented in all major livestock species:


- Very good use in intensive industries <u>Changes</u>
 dairy, chicken, pigs large
- Good use in extensive industries
 - Meat sheep
 - Beef cattle
 - Wool sheep

substantial smaller very modest


Breeding by the numbers.... EBVs and indexes

Terminals - Top 150 Sires			Analysis Date Friday, 15 June 2001 Inbreeding & Accura						Accuracies	8 LAMBPLAN Bardiene in Manuel Broading and Se shatters			
Ð	Stud of breeding	Wort	Pwwt	Ywt	Pfat	Pemd	Carcase +	Progeny		-	Carcase	Sire	Sire of Dam
161972-1999-990196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093	1630001993930134
162368-1998-980211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260	8600401992920175
162204-1999-990453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205	1619721995950289
161972-1998-980093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134	1603361992920349
161972-1998-980527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091	1630001993930134
860122-1993-930205	OHIO	6.95	11.94	13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200	8601221987870073
161143-1999-990204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	76	1623681998980211	1640001993930411
160060-1996-960004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016	1623541990900584
161143-1999-990201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	77	1623681998980211	1613151995950042
230034-1997-970904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.003	96	92	2300091994940171	2300341994940314
163677-2000-000140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289	1600341994940020
160060-1997-970115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004	1600601992920057
162204-1999-990394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205	1622041996960579
161143-1999-990064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211	1640001994940317
161972-1996-960020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83		1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002	1612351991910691
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205	1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211	1630001993930160
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60		8600371992920165
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83		8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130	
161437-1999-990006	WARBURN	5.41	10.97	10.93	-1.21	0.37	190.26	14		73	65		1640001993930411
160001-1998-980575	NEWBOLD	7.60	11.69	11.57	-0.26	1.48	189.97	89		87	75	1600011997970211	1640001993930411
160085-1998-980007	ALLENDALE	5.71	12.83	13.40	-0.12	1.00	189.76	65		89	83	1604621994940012	1603361991910163
163000-1993-930134	RENE	5.25	9.55	13.73	-1.52	0.65	189.72	1359	0.062	98	97		1630001987870053
860482-1998-980065	CLARONDEN	5.90	9.96	8.49	-1.70	0.10	189.57	153		87	78		8600371989890172
161972-1995-950289	HILLCROFT FARMS	5.74	9.65	11.84	-0.92	1.55	189.35	344		96	93	1630001993930134	1619721990900299

Breeding Program Design

The Genetic Revolution: Genomics

SNP chip shows tens of thousands of DNA differences in one test for one individual --- very dense gene markers

This can be used

to predict - breeding value

- phenotypes
- to find indiv. genes with large effect

Need quantitative genetic theory

- To predict breeding values
- Select the best individuals
- To predict outcomes of selection
 - genetic change
 - inbreeding
- To optimize breeding program decisions
 - multiple traits
 - improved merit versus inbreeding
 - crossbreeding

GENE 251 / 351 Plan

• Basis of genetics

Genes, inheritance

• Quantitative genetics

Variation, heritability, breeding value

- Selection Theory
 Estimating breeding value
 Predicting changes to selection
 Correlated changes
 Multiple trait selection
- Genetic Markers, Genomic Selection
- Animal breeding programs crossbreeding, reproductive technologies objectives, program structure
- Plant Breeding programs breeding programs structure, gene markers