

Genetic Evaluation, BLUP

Lecture 11 Introduction to Breeding and Genetics GENE 251/351

School of Environment and Rural Science (Genetics)

Estimation of Breeding Values in livestock in Australia

• Genetic evaluation systems

Beef:	BREEDPLAN via breed societies
Sheep:	Sheep Genetics: Lambplan, MerinoSelect
Dairy:	ADHIS

- Breeder submits phenotypes and pedigree
- Genetic evaluation system returns EBVs
 - plus other information e.g. selection indexes, accuracies, inbreeding coefficients
- Calculating of EBVs is generally via BLUP method

Extract from LAMBPLAN report

Terminals - Top 150 Analysis Date Frid			friday, 15 June 2001										
Sires									Inbreedin	g & A	ocuracies	Exection of the second	p Broading and Sr shutles
D	Stud of breeding	Woot	Pwwt	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff W	leight	Carcase	Sire	Sire of Dam
161972-1999-990196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093	1630001993930134
162368-1998-980211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260	8600401992920175
162204-1999-990453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205	1619721995950289
161972-1998-980093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134	1603361992920349
161972-1998-980527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091	1630001993930134
860122-1993-930205	OHIO	6.95	11.94	13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200	8601221987870073
161143-1999-990204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	76	1623681998980211	1640001993930411
160060-1996-960004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016	1623541990900584
161143-1999-990201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	77	1623681998980211	1613151995950042
230034-1997-970904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.003	96	92	2300091994940171	2300341994940314
163677-2000-000140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289	1600341994940020
160060-1997-970115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004	1600601992920057
162204-1999-990394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205	1622041996960579
161143-1999-990064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211	1640001994940317
161972-1996-960020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134	1613151991910870
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002	1612351991910691
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205	1636771994940008
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211	1630001993930160
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260	8600371992920165
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411	8600401992920175
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130	1600341994940171
161437-1999-990006	MARBURN	5 41	10.97	10.93	-1 21	0.37	190.26	14		73	65	1604621994940012	1640001993930411

What is a BLUP EBV?

- Best Linear Unbiased Prediction
- Uses a statistical model (linear mixed model) such that
 - Information of all relatives is used
 Best
 - Fixed effects are accounted for
 Unbiased
 - The method accounts for selection over time
 - Non-random mating of sires and dams

Accuracy of EBV = correlation with True BV

Accuracy = 45%

Accuracy = 90%

Select on EBV: accuracy related to response

Accuracy = 45%

Double accuracy gives double selection response!

Accuracy = 90%

une

Accuracy = 45%

the more accuracy, the more response

une

Accuracy of predicting a breeding value

Info used.	h2 = 0.25	Accuracy of EBV
Sire + Dam		0.35
Prog Tested Sire + Dam		0.49
+ Own F	Record	0.63
+ [ONA markers	0.71
	+ 30 progeny	0.85
+	1000 progeny	0.99

Features of EBVs

High accuracy, for high response 'best'

- highest correlation between true and estimated breeding value

Lack of any bias, for fair comparison 'unbiased'

 Comparisons between animals should not be affected by non-genetic effects

Possible causes of bias from 'fixed effects'

- Problem: Animals reared as different birth/rearing type
- Solution: Compare phenotypes with others of same type
- Problem: Animals producing in different herds
- Solution: Take phenotypic deviation from herd mean
- Problem: Animals are measured at different ages
- Solution: Correct phenotypes back to the appropriate age

Correcting for age differences

	<u>Age (mo)</u>	Weaning Weight Kg.	
Alfy	11	280	
Betty	13	295	Population mean at 12 mo = 285kg

Correcting for age differences

Example of contemporary groups

Bull	YW	Herd Ave	Ρ	EBV h ² =40%
Bert	330	300	+30	+12
Flossy	300	260	+40	+16

Note that this assumes that herds have the same genetic mean

Can not always take simple deviation from herd averages

	Herd A	Herd B
Progeny of Sire 1	320	
Progeny of Sire 2	300	
Progeny of Sire 3	-	310
Progeny of Sire 4	-	330

Can not always take simple deviation from herd averages

	Herd A	Herd B						
Progeny of Sire 1	320							
Progeny of Sire 2	300							
Progeny of Sire 3	-	310						
Progeny of Sire 4	-	330						
Progeny of Sire 5	290	340						
Link sire								

A linear model is used to correct for unbalanced data

Possible causes of bias 'fixed effect confounded with genetic effect'

 Problem: Animals producing in different herds, and the different herds have different genetic means (*no longer can take phenotypic deviation from herd mean*)

 Solution: Use reference sires as links between herds, and simultaneously evaluate herd and sire effects

In most genetic evaluation programs:

- Linkage between flocks/herd is now substantial
- This allows across-flock and even across-breed analysis

Possible causes of bias 'unequal merit of mates'

Problem: Some sires have better mates

Sire 1: +300Dam 1: +200Progeny: +250Sire 2: +300Dam 2: +300Progeny: +300

Without information on the dams, sire 2 would 'look better' due to a higher progeny mean

Solution: Account for mates by evaluating all animals jointly

A feature of BLUP

Possible causes of bias 'selection bias'

- Problem: There is culling and selection
 - worst sires have more progeny culled 'culling bias'
 - animals are from selected parents

Culling bias

ID	Sire	Weaning Weight	Progeny mean	Yearling Weight	Progeny mean
101	1	160		300	
102	1	140	140	280	280
103	1	120		260	
104	2	140		280	
105	2	120	120	260	270
106	2	100		no record as culled	

Sire 2 gets an unfair 'lift' in progeny mean of yearling weight, due to culling at weaning.

Animals are from selected parents

Estimating genetic trend

une

Possible causes of bias 'selection bias'

Problem: There is culling and selection

- worst sires have more progeny culled 'culling bias'
- animals are from selected parents
- Solution: Do joint evaluation
 - account for culling bias by evaluating first and later traits jointly
 - account for selection by joint evaluation over years
 - Information about culled animals should be included in analysis

A feature of BLUP

Genetic trends

BLUP separates genetic and year effects

genetic trends can be observed by plotting BLUP EBVs over years

une

BLUP helps selecting between old and young bulls

- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval

Example of BLUP selection (truncation)

Terminals - Top :	150		Analy	ysis l	Date 1	Friday	, 15 June	2001				LAMRPLAN	
Sires								_	Inbreeding	g & Acc	uracies	Rawlinne in Rowelling and Se shattan	
D	Stud of breeding	What	Pwwt	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff We	eight C	arcase	Sire Sire of Dam	
161972 <mark>-1999-9</mark> 90196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093 1630001993930134	
162368 <mark>-1998-9</mark> 80211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260 8600401992920175	
162204 <mark>-1999-1</mark> 90453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205 1619721995950289	
161972 <mark>-1998-9</mark> 80093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134 1603361992920349	
161972 <mark>-1998-9</mark> 80527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091 1630001993930134 Cor	sider top 15
860122 <mark>-1993-9</mark> 30205	OHIO	6.95		13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200 8601221987870073	s truncation
161143 <mark>-1999-9</mark> 90204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	76	1623681998980211 1640001993930411 Sire	s, truncation
160060 <mark>-1996-9</mark> 60004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016 1623541990900584 poi	nt = 195
161143 <mark>-1999-9</mark> 90201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	77	1623681998980211 1613151995950042	
230034 <mark>-1997-9</mark> 70904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.083	96	92	2300091994940171 2300341994940314	
163677 <mark>-2000-0</mark> 00140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289 1600341994940020	
160060 <mark>-1997-9</mark> 70115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004 1600601992920057	
162204 <mark>-1999-9</mark> 90394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205 1622041996960579	
161143 <mark>-1999-9</mark> 90064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211 1640001994940 317	
161972 <mark>-1996-9</mark> 60020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134	
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134 1613151991910870	
161235-1997-970830	POLLAMBI	1.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002 1612351991910691 Sires	s in top are from
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205 1636771994940008 vario	ous age classes
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211 1630001993930160	0
860074-1995-950044	ADELONG	- 1.11	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189	
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260 8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411 8600401992920175	
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130 1600341994940171	
161437-1999-990006	WARBURN	5 41	10.97	10.93	-1 71	0.37	190 26	14		73	65 I	11604621994940012 1640001993930411	

Another feature of **BLUP**

- BLUP uses family information (and more so at lower heritabilities)
- Selection on BLUP EBVs can thus results in higher inbreeding than selection on phenotypes alone
- Best strategy: Balance merit and genetic diversity
 - Start selecting from top, but leave an animal out if sibs have been selected already

Example of BLUP selection

Terminals - Top 1	150		Analy	rsis I)ate 1	Friday	, 15 June	2001				Ι.A Μ	RPLAN [®]	
Sires									Inbreedi	ing & A	ccuracies	LACELV. Exerciser in the	un Roualing and Souther	
D	Stud of breeding	Wort	Pount	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff l	Weight	Carcase	Sire	Sire of Dam	
161972 <mark>-1999-1</mark> 90196	HILLCROFT FARMS	5.46	14.95	14.94	-1,19	1.62	226.64	38	0.133	83	70	1619721998980093	1630001993930134	
162368 <mark>-1998-9</mark> 80211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260	8600401992920175	
162204 <mark>-1999-9</mark> 90453	BETHELREI	8.52	13.38	15.87	-1.18	1.11	211.75	224		93	89	8601221993930205	1619721995950289	
161972 <mark>-1998-9</mark> 80093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207.51	12		80	74	1630001993930134	1603361992920349	
161972 <mark>-1998-9</mark> 80527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0.47	204.10	25		85	76	1619721996960091	1630001993930134	
860122 <mark>-1993-9</mark> 30205	OHIO	6.95	11.94	13.72	-1.60	0.49	203.76	1522		98	97	8601221992920200	8601221987870073	
161143 <mark>-1999-9</mark> 90204	DERRYNOCK	8.39	12.10	12.19	-0.49	2.19	203.60	38		82	7	1623681998980211	▶640001993930411	
160060 <mark>-1996-9</mark> 60004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200.47	151		93	87	1632801992920016	1623541990900584	
161143 <mark>-1999-9</mark> 90201	DERRYNOCK	5.43	11.83	11.14	-1.19	0.83	199.83	39		83	7	1623681998980211	613151995950042	
230034 <mark>-1997-9</mark> 70904	BURWOOD	4.98	11.01	8.82	-2.27	-0.55	198.82	380	0.003	96	92	2300091994940171	2300341994940314	11
163677 <mark>-2000-0</mark> 00140	FELIX	6.69	13.56	13.36	-0.59	0.61	197.98	56		70	63	1619721995950289	1600341994940020	 m
160060 <mark>-1997-9</mark> 70115	ANNA VILLA	6.30	14.47	11.69	-0.42	0.24	196.90	118		90	83	1600601996960004	1600601992920057	, al
162204 <mark>-1999-9</mark> 90394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196.85	24		82	74	8601221993930205	1622041996960579	fle
161143 <mark>-1999-9</mark> 90064	DERRYNOCK	5.10	11.20	10.10	-0.72	1.60	196.01	18		80	74	1623681998980211	1040001994940317	пс
161972 <mark>-1996-9</mark> 60020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0.36	195.20	83		88	75	1630001993930134		
160185-1996-960001	JOLMA	6.19	10.29	10.42	-1.56	0.63	194.57	101		90	83	1630001993930134	1613151991910870	
161235-1997-970830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002	1612351991910691	
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205	1636771994940008	
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211	1630001993930160	
860074-1995-950044	ADELONG	7.17	14.47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189		
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260	8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411	8600401992920175	
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130	1600341994940171	
161437-1999-990006	MARBURN	5 41	10.97	10.93	-1 21	0.37	L 190.26	14		73	65	1604621994940012	1640001993930411	

These are sibs so might not select all of them as flock sire

Good methods need good data

- Accuracy of BLUP EBVs depends on amount and the quality of the data (as well as the trait heritability)
 - Accurate phenotypic measurements
 - Correct pedigree
 - Correct recording of fixed effects & contemporary groups
 - Appropriate data structure (e.g. information on mates, culls)
- Remember, if BLUP doesn't know a piece of information, it cannot account for it

BLUP summary

- Uses information on all relatives optimally
- Accounts for fixed effects such as herd, birth type, age
- Accounts for unequal usage of sires in different herds
- Can compare across herd or flocks but need links to exist
- Accounts for culling and selection, non-random mating
 but non selected animals and mates need to be included in analysis!
- Allows selection across age classes
- Provides an estimate of genetic trend

Why is selection on BLUP EBVs better than selecting on an animals' phenotype?

Why is selection on BLUP EBVs better than selecting on an animals' phenotype?

- Phenotypic information has been corrected for fixed effects → BLUP EBV is unbiased
- Information from relatives has been included in BLUP EBV → BLUP EBV is more accurate
- BLUP EBV allows fair comparisons of animals from different age classes (accounted for genetic trend)