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1.   Sequence Data 

 

The aim of this practical is to introduce sequence data from raw reads to alignment 

and finally to variant detection and genotyping.  Checking of data quality and filtering 

is emphasised at each step.  We will be using the Galaxy web interface https:// 

usegalaxy.org  This website provides most of the tools needed to manipulate, check 

and visualise sequence data.  You will find lots of tutorials on how to run the various 

programs.  All programs on it are also available as stand-alone open source programs.  

As a teaching tool it is useful because it is point and click without the need to know a 

lot of command line or R syntax.  I have made small data files that will run in a 

reasonable time.  For large datasets, the upload and download times will be too long.  

To resolve this, Galaxy can be setup as a web interface for an institution’s own 

computer cluster and can be integrated with their local job scheduling software, 

removing the need to up and download all data. 

 

 First, a user account needs to be created on Galaxy: 

 

Go to: https:// usegalaxy.org 

Click on “User” and follow the links to create an account.  You should have 

immediate access after that. 

Now login under the “User” tab and you are ready to start analysing sequence data! 

 

 

1.a  Raw reads and quality control 

 

The file that contains the raw reads and base quality scores is called a fastq file.  The 

format for fastq files has been introduced with more detail in the lecture slides.  

Briefly, each read has 4 lines dedicated to it.  The first line starts with an @ and is 

followed by text identifying the sequencer, and flow cell, and whether it passed the 

chastity filter, the second line contains the basecalls, the third line contains a + 

signifying that the next line are the phred scale quality scores per base in symbol 

form.  Each symbol is unique and stands for a certain phred quality.  

 

 NOTE: There are several different keys/formats to assign a symbol to a phred score.  

A good description of them can be found here:  

http://en.wikipedia.org/wiki/FASTQ_format 

Our data is in Illumina Casava 1.8+ format and is consistent with Sanger Phred+33. 

 

Example.fastq 

 

@HWI-ST690:130:D058YACXX:4:1101:1220:2180 1:Y:0 
GGNCANAAATAAAGNATNNAT… 
+ 

^$>>BBBCTT##... 

https://main.g2.bx.psu.edu/
https://main.g2.bx.psu.edu/
https://main.g2.bx.psu.edu/
http://en.wikipedia.org/wiki/FASTQ_format
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We now want to upload some data to your Galaxy account.  In Galaxy, click on “Get 

Data” in the left panel. Then click on “Upload File”.  In the middle panel you can 

browse for the file you want to upload.  Galaxy will automatically detect what file you 

are uploading. Click “Excecute”. 

 

Upload SeqExample1-bbmg.fastq and SeqExample2-thm.fastq 

 

You should now see these datasets in right hand side panel (you may have to refresh 

by clicking the refresh button (arrow circle) at the top of the right panel.  Any files 

created on Galaxy can be downloaded by clicking the floppy disk in the right panel. 

 

 

In the left panel, click on “NGS: QC and Manipulation”. 

 

We now need to “groom” the fastq file.  There are various formats (different 

symbols for same phred score) and this step converts all formats to Sanger format.  

We need to do this even though our fastq files are already in Sanger format. 

 

Click on “FASTQ Groomer”, select the fastq file, select “Sanger” and “excecute”.  Do 

this for both fastq files.  (The example data is Illumina Casava 1.8+, therefore it is 

Sanger encoded) 

 

As before, the new files are shown in the right panel. 

 

Summary statistics can be calculated by clicking on “FASTQ Summary Statistics” in 

the left panel and selecting the groomed fastq in the middle panel.  You can view the 

results by clicking on “the eye” in the left hand panel.   

 

The statistics are calculated for each base position across all reads.  For example, if 

read are 100 bases long then 100 rows of statistics are calculated.   

 

FastQC is another program that can be used to calculate quality statistics, including 

GC and per base sequence content, etc.  You can run  FastQC by clicking “FastQC: 

Read QC” in the left panel.  Inspect it by clicking “the eye” in the right panel.  It 

makes plots of the statistics for easy inspection.  ( it can also be downloaded here 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/  ) 

 

We now have a good idea about the unfiltered quality statistics of both fastq files.  

Which file do you think is higher quality? 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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We now want to trim the end of the read based on their quality scores.  Click on 

“Filter FASTQ” on left panel.  There are various options.  To start set the minimum 

base quality at 20.  Do this for both fastq files. 

 

Now rerun either FastQC or FASTQ Summary Statistics on the filtered files. Have 

they improved? 

 

Now try “filtering” by just trimming a certain number of bases of the ends of reads.  

Compare the amount of data and summary statistics to the previous filters based on 

quality. 

 

Try different thresholds and repeat filters and quality summaries.   

 

 

 

1.b  Alignment bam files: QC and viewing 

 

Aligning the reads means that we want to find the location of each read on the 

reference genome.  This is also called mapping.  In principle, this should be easy.  All 

we need to do is go along the reference genome and find a matching sequence to our 

read.  However, this gets tricky because there are some duplicated or repetitive 

regions in the genome where the reference assembly might be suboptimal and also our 

reads are likely to have some errors in them even after filtering.  While you could 

align the fastq files given in part a) above on Galaxy, it would take too long to do 

during a practical.   Also, they are only a subset of reads from the whole genome and 

the resulting alignment bam would be very low coverage in any given region.   

 

Instead we have prepared two bam files: one higher coverage (~40x) HighCov10000-

1010000.bam and one lower coverage (~4x) LowCov10000-1010000.bam.  The 

regions on them is very small, just  1 megabase on bos taurus Chr1 bp 10000 to 

1010000 on cow genome.  They are aligned to UMD3.1.   

 

Upload the two bam files to Galaxy.  It will detect that it is a bam file.  Choose “Cow 

Nov. 2009 (Bos_taurus_UMD_3.1/bosTau6)(bosTau6)” as the reference.   It may take 

a few minutes for the larger one.   

 

Let’s first run a FastQC report on both bam files to see what the quality of the 

mapped reads are.  Hint: same procedure as in 6.10.a but select the bam file of choice. 

 

Flick through the various windows and look at the statistics.  Do you think they are 

filtered adequately?   

Considering some of the filtering metrics for reads discussed in the lecture, do you see 

any reads and bases below phred 20? 

 



 6 

Let’s have a look at the low coverage bam file in IGV (Intregrated Genome Viewer, 

Broad Institute, http://www.broadinstitute.org/igv/ ).  Go to the appropriate box in the 

right panel.  Click on the heading to expand it.  Scroll down and click on “display 

with IGV web current”.  This will ask you to install some java program on your 

computer.  Allow this. 

 

Eventually a new window should appear looking like this: 

 

 
 

Now we need to zoom in on our region.  Click on “ALL” on top just beside the 

reference “Cow (bosTau6)”.  Select Chr1 from drop down menu.  Now, double click 

on the bar in the top panel/track.  Keep double clicking to zoom in to the region.  You 

know you're there when you start seeing reads (i.e. a bunch of layered bars in 

second/middle panel). 

The more you zoom in the more detail you will see.   

 

http://www.broadinstitute.org/igv/
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If you right click on the reads you can choose how you would like to view the data.  

There are many colour options available.  One useful option is to see reads as pairs.  

Show all alternative bases is useful for seeing SNP. 

 

 

 

This picture shows a read that seems to not have mapped correctly.  There are just 

too many differences in it.  By chance, its paired read (to its left) has perfectly 

mapped to the reference. 

 

 

 

 

 

The picture below shows two SNP that have been identified in the high coverage 

animal.  The animals seems to be heterozygous for these SNP, although the 

distribution between the two is not 50/50.   A priory we have an equal probability of 

observing either allele at a heterozygous position within a diploid individual.   
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The two pictures below show deletions, which is a section of reference genome that 

does not occur in this individual. The one on the left is just a 1 bp deletion and the 

individual is heterozygous for it.  The deletion on the right is quite a bit longer. 
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Inspect the low coverage bam file in IGV.  Do you notice anything odd?  Also open up 

the high coverage file and compare the two.  Aside from the obvious difference in 

read depth, is there a different pattern to the way the reads are mapped to the reference 

genome? 

If you notice a difference, which one do you think is better?  In the file that is inferior, 

can you think of a way to filter it to remove the issue? 

 

If you can think of a way, use that filter (Hint: it is listed under “SAM tools” in the 

left panel).  Redo the FastQC analysis and also reinspect the bam in IGV after 

filtering.  Is it fixed and have the stats improved? 

 

 

 

1.c  Variant and Genotype Calling and Quality Control 

 

We could now use these two bam files to call variants (SNP and indel) and to call 

genotypes at those variants with Samtools or GATK.  However, they were aligned 

outside of Galaxy with a slightly different reference than the default cow reference on 

Galaxy.  You could upload to reference to Galaxy and then use it to call the variants.  I 

am happy to provide this reference for you to try on your own.  Alternatively, you can 

download it from http://www.1000bullgenomes.com/  As it is a large file, it would 

take too long to do in this practical. 

 

If you would like to call the variants:  Click on “SAM tools” in the left panel, scroll 

down and click on “MPileup”, select the bam files in the middle and execute.  This 

produces a bcf file, the binary form of the vcf (variant call file) file discussed in the 

lecture.   

You will need to start an additional job on Galaxy to convert this bcf file to a vcf file.  

In the left panel click on “bcftools view” and select the bcf file in the middle panel, 

execute. 

 

Of course this can be accomplished with Samtools on the linux command line using: 

samtools-0.1.18/samtools mpileup -r Chr1:10000-1010000 -P ILLUMINA -ugf 
all_UMD3.fa $bam1 $bam2 | samtools-0.1.18/bcftools/bcftools view -bcvg - > 

var.rawHighLow.bcf 
 

samtools-0.1.18/bcftools/bcftools view var.rawHighLow.bcf > var.rawHighLow.vcf 
 

I have prepared a vcf file using this command for you using the high (BBMg) and 

low (HOLAUSM000A00010228) coverage bam files and this produced a small vcf 

file with ~4000 variants (remember it’s only a 1mb region) VarHighLow.vcf.   There 

are various open source programs that you could use to filter this vcf file for various 

quality characteristics.  For simplicity, we will use excel to filter the variants in this 

practical using the file VarHighLow.xlsx (both files provided). 

http://www.1000bullgenomes.com/
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The vcf file was tab delimited.  Each column in the excel file is a tab field.  Using a 

few excel commands we can further subdivide columns and filter variants . 

 

First, it’s likely best to remove the header where all file components are explained 

(i.e. rows 1-26).  Next we want to expand the INFO column into separate columns 

according to the “ ;” delimiter with the following commands (works in Windows 

2010+). 

Select columns I, J, and K.  Cut and paste them to the right approximately 10 columns 

or more.  Now select column H (INFO).  Above, click on “Data”, and then on “Text to 

Columns” .  In the popup, click on delimited, next, select “;”, Finish.  The INFO 

column should now be expanded.   

Notice now that the first column in the INFO field signifies whether the variant is an 

INDEL or not.  This causes the remaining columns to be out of sync.  It’s best to sort 

on the INFO column now and cut and paste all indels to the next worksheet.  How 

many indels versus SNP were called? 

 

Working now with just the SNP, lets calculate the mean and standard deviation of 

read depth and devise a filtering strategy .  You will have to split DP from the read 

depth by splitting the column as above.  There are two reasons to filter on read depth: 

1) It’s too low so heterozygotes are not called consistently, and 2) it’s too high 

because many reads have mapped to the same repetitive region of the genome.  In the 

first case we can require a minimum read depth meaning that we have enough chances 

to observe both alleles.  Try a minimum of 5 reads to start.  In the second case we can 

filter reads that fall outside of certain range (i.e. extreme values).  Assuming that read 

depth is normally distributed (it’s actually Poisson but that makes little difference in 

this case) we could remove reads that are more than 3 standard deviations from the 

mean read depth. 

How many reads are removed if you applied these filters? 

 

Let’s now check the data for variants with 2 alternative alleles.  Can you think of a 

biological case why this could occur?  What sequencing problem could also result in 

two alternative alleles? 

 

Another important criteria is whether alleles have been observed on forward and 

reverse reads of the sequence data.  Sequencing reads occurs in both directions.  If 

you only observe an allele in one direction then it is likely that something has gone 

wrong.  It’s good practice to remove reads where that alternative allele has only been 

observed in one direction.  In our vcf file these stats are in the DP4 field.  For 

example: DP4=2,4,3,5   where there are 2 observations of the reference allele in the 

forward direction, 4 in reference reverse, 3 alternative forward, and 5 alternative 

forward. 
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How many reads have a 0 for number of alternative and reverse reads?  Check their 

QUAL scores.  Would you also remove variants that have 0 reads for the reference 

allele?  Why or why not? 

 

Next look at mapping quality (MQ).  Are there variants with <30 mapping quality?  

Can you see other problems with these variants? 

 

Go through the filters discussed in the lecture and apply them (if possible).  Which 

ones do you think have merit?  Are there additional filters that you could think of?  

Are there some filters that you don’t think are necessary? 

 

Finally, let’s have a look at the genotypes and their quality.  They are in the 

following format, GT:PL:GQ , where GT is the genotype 0/0, 0/1, or 1/1, PL are the 

phred scaled genotype probabilities for each possible genotype (i.e. 3 probabilities if 

there are 2 alleles), and GQ is the phred scaled genotype quality.  Note that in the case 

of genotype probabilities, lower phreds are better where as in the various quality 

metrics a higher phred score is better.   

 

Inspect the genotype probabilities and compare them with the actual genotype called.  

Do they agree?  Do you see cases of equal probabilities (e.g. 0,0,0)?  Can you 

determine the meaning of this by looking at the other quality statistics for this variant?   

 

Are the genotype quality scores different for the two animals?  Why would that be?  If 

you see low GQ scores what other metrics are also low at that variant? 
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2. Using Beagle to impute missing genotypes 

 

In this practical you will use the BEAGLE program (Browning and Browning 2007) 
to impute from sparse genotypes to denser genotypes in a data set from a 50K dairy 

cattle data set.   
 
Inspect the data.  The first file, reference_50.txt, contains genotypes for 22 animals 

that have been genotyped for all markers.  These genotypes are from chromosome 1, 
the first 50 markers.  The first line of the file is the animal ids, from one to 22.  There 

are two columns for each animal, one column for each allele at each marker.  The 
second row is the genotypes for marker one, two alleles per individual.  The third row 
is the genotypes for the second marker and so on.  The genotypes are unphased at this 

point.  The alleles are coded 1,2, and 0, with 0 for missing.   
 

The second file to check is target_50.txt.  These are genotypes for 3 animals for 5 
markers, which are an evenly spaced subset of the 50 markers above (eg this would be 
an approximately 5K array).   

 
The other file you will need is the map file, telling the BEAGLE program the alleles 

at each marker.  The map file is reference_map_50.txt, the first three lines of which 
are 
 

Hapmap43437-BTA-101873 113641                     1 2   
ARS-BFGL-NGS-16466 244698                           1 2   

Hapmap34944-BES1_Contig627_1906 369418    1 2    
 
Now to run the BEAGLE program you will need to open a command prompt, and 

make sure that the BEAGLE executable beagle.jar and the data files are in the same 
location. 

 
Change directory 
C:> D:   

 
Change folder 

D: cd <foldername> 
 
See all files in a directory 

dir 
 

The command for running beagle with the data above, with a reference and target 
population, is  
 

java -Xmx1000m -jar beagle.jar unphased=reference_50.txt 

unphased=target_50.txt markers=reference_map_50.txt missing=0 out=5K 

 
Note that command is all on one line.  The out command will in this case give all the 
out files the prefix 5K. 

 
You will need to use the 7z program to look at the output files, as they have been 

zipped using a program called gzip.   
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The file 5K.target_50.txt.phased.gz contains the imputed, and phased genotypes.  

Again, there are two alleles for each marker, but these are now phased, eg the first 
allele of the first marker is on the same chromosome segment as the first allele of the 

second marker.     
 
Now we will check how accurately BEAGLE has imputed the missing genotypes.  

The file target_true.txt contains the real genotypes at all markers for our three “target” 
animals.     

 
Compare the true and imputed genotypes to calculate an accuracy of imputation.  
There are a few steps to doing this, which can be done either in excel or R. For excel, 

paste the true genotypes and the imputed genotypes beside each other in a 
spreadsheet.  As the true genotypes are unphased (eg the alleles could be in any 

order), in order to compare the genotypes you will need to calculate basically an X 
matrix for both three true and imputed genotypes.  This matrix has dimensions 
number of markers (50) by number of individuals (3).  The elements are the number 

of two alleles, which can be calculated from the genotypes as allele1 + allele 2 – 2.   
 

Eg.  If for the first animal at the first marker, the genotype was 1,1, the element of X 
would be zero.   
 

Calculate a separate X for both the true genotypes and the imputed genotypes. 
 

Then count up the number of genotypes that are the same in the imputed and true 
genotypes.   
 

For example, for two markers the true and imputed X matrix could be (each column is 
an animal)  

 
True     Imputed   
1 0 1     1 1 0 

1 2 1     1 2 1 
 

Then the accuracies of imputation for each animal are 2/2=100% for animal one, 1/2 
= 50% for animal 2 and 1/2 =50% for animal 3.  The counting up can be done with an 
IF statement in excel. 

 
What are the accuracies of imputation for our three target animals?  What are some 

possible reasons for the differences in accuracy of imputation? 
Finally, have at look at the file 50_SNP.reference_50.txt.gprobs.gz.  This file gives 
for each animal, the probability of each genotype for each animal.  This is a measure 

of the uncertainty of the imputation.  Each line of the file contains the marker name, 
the two alleles at the marker (1 and 2 for all markers in our case), then for each animal 

the probabilities of the three genotypes 11, 12 and 22 (or 0,1,2 in our X matrix).     
 
Can you find maker where there is a lot of uncertainty in the imputation? 

 
How would you build an X matrix for the genomic selection methods that takes 

account of uncertainty of imputation? 
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3.  Assessing the extent of linkage disequilibrium in 
HaploView 

 
We will use the HaploView program to calculate r2 values.  The data set we will use is 

10 SNP markers on a section of chromosome 20 genotyped in 325 bulls.   
 

The genotype (in linkage format) file for HaploView has the following format 
 
Pedigree_ID Individual_ID Sire_ID Dam_ID Sex Affected Marker1_Allele1 

Marker2_Allele2 
 

You can find out more about the genotype input file in the Help tab of haploview 
 
The map file consists of two columns, the marker name and the position, eg 

 
Marker1 19992222 

Marker2 23100202    
 
Import the genotype file “325_bulls_genos.txt”.  Import the file “map.txt”.  Set the 

minumum distance to calculate r2 to markers less than 5000kb apart.   
 

Are all the markers in Hardy-Weinberg equilibrium? Which marker has the lowest 
minor allele frequency? 
 

Set the HW cuttoff to 0.0000, and click on the box to make sure they are all included. 
 
Then click on the LD plot tab.  To make sure the values are r2, click Display -> Show 

LD values -> R–squared.  The boxes show the r2 values between the markers from 0 
to 100.  If the markers are in 100% LD, there will be a red box with no number.      

 
Which markers are in the highest LD?  Are there any markers in perfect LD? 
   

Does the LD decay uniformly across the chromosome segment (for example look at 
marker 1 versus the rest)?  How would you describe the pattern of LD with distance in 

this small chromosome segment? 
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4. Genome wide association study 

 

Now we will conduct a genome wide association study using the same data and 
phenotypes.   

 
Before we use go further, let’s take a moment to get acquainted with R.  We will use a 
simple example of multiplication of two matricies to obtain another matrix.  Open the 

R graphical user interface by clicking on it.  You should see the command prompt.   
 

Let’s multiply two matricies a and b to get a third matrix c. 
 
The matrix a is a two by two matrix with elements: 

1 1 
2 2  

The matrix b is a two by three matrix with elements: 
1 2 2 
2 3 4 

 
We can input these matricies into the computer memory as: 

>  a   <- matrix(c(1,1,2,2),ncol=2,byrow=TRUE)  
>  b   <- matrix(c(1,2,2,2,3,4),ncol=3,byrow=TRUE) 
 

To check the dimensions of a and be are correct type: 
> dim(a) 

> dim(b) 
 
You can print a matrix at any time, eg   

> print(a) 
    

Now lets multiple matricies a and b to get a new matrix c: 
> c <- a%*%b   (%*% is the symbol for matrix multiplication) 
 

Check the dimensions of c are correct,  
> dim(c) 

And that the c matrix has the correct elements: 
> print(c)   (you can compare this to the result in excel for example) 
 

A matrix can be transposed using t(a), eg 
> d <-t(a) 

 
For convenience, a genotype file with genotypes re-coded as 0, 1 or 2 (the number of 
copies of the second allele) is given in xvec_day4.inp.  For the 325 bulls, phenotypes 

for protein % in their daughters milk are given in the file yvec_day4.inp. 
 

Now we write a small R script to read in the data, and fit a regression on the number 
of 2 alleles for each SNP. 
 

 
To start a new script, click file and then New Script.  Remember to save your script.   

 



 16 

Then read in the data.  The easiseast way to do this is to set your work directory to 
whever the files are stored first, then read in the data as a table: 

 
setwd("C:/course_piacenza") 

phenotypes <- read.table("yvec_day4.inp",header=F)  !No header on file 
genotypes <- read.table("xvec_day4.inp",header=F) 
 

Now for each SNP we are going to fit the model 
 

y = mu + Xb+e 
 
Where y are the phenotypes, mu is the mean, X is the design matrix allocating 

phenotypes to genotypes for each SNP, b is the effect of the SNP and e is a vecot of 
random residuals. This can be done in R with the lm command (for linear model) 

 
Lets fit the first SNP.  We can do this as  
 

lm(phenotypes[,1] ~ genotypes[,1])    
 

The [,1] for genotypes tells R to use the first column of genotypes, eg the first SNP 
 
The result gives the intercept (mean), and the regression coefficent, which in our case 

is the effect of the 2 allele.  If you want just the regression coefficent returned,    
lm(phenotypes[,1] ~ genotypes[,1])$coeff[2]    

 
Now we would like to know how significant the SNP is.  We can get this with the 
anova command,  

 
anova(lm(phenotypes[,1] ~ genotypes[,1]))    

 
If you want just the P value returned, 
 

anova(lm(phenotypes[,1] ~ genotypes[,1]))$P[1] 
 

Now to run the genome wide association study, get the effect of each SNP and it’s P 
value and store them.  This can be done by writing a loop for the number of SNP (10) 
and fitting the models above each time.   

 
Now read in the map file (map_10_markers.txt).  

 
Plot –log10(P value) against map position for the SNP.  Which is the most siginficant 
SNP(s).  Can you explain this result in terms of the linkage disequilibrium among the 

SNP in the previous practical? 
 

Now plot the SNP effects against –log10 of their P values.  Are the SNP with the 
largest effects the most significant?  Why/why not.  Will this always be the case in a 
GWAS study?  And why do some of the SNP have the same effect? 
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4.  Genomic selection using BLUP 

In this practical you will perform genomic selection in a small data set using BLUP.  

The data set consists of a reference population of 325 bulls with daughter yield 

deviations (DYDs) for protein %. This phenotype is an accurate predictor of 

genotype, eg the heritability is close to one.  The bulls have been genotyped for 10 

SNPs. 

 

Then there are a set of 31 calves who are selection candidates for this years progeny 

test team.  They are genotyped for the same 10 markers.  Your task is to predict 

GEBV for these 31 selection candidates.  To do this we will need to predict the effects 

of the 10 SNPs in the reference population, using the equations: 







































yX'

y'1

gIλXX'X'1

X'1'11 n

n

nnn μ
 

Where g are the SNP effects, 1n is a vector of ones (325 x 1, X is a design matrix 

allocating SNP genotype to records,  is the overall mean.  We will use R to solve 

these equations.  The X matrix has already been built for you, and is contained in the 

file xvec_day4.inp.  The y matrix is contained in the file yvec_day4.inp. 

 

What you need to do is write a small R script to solve the equations.  This can be done 

by starting the script in notepad, then opening it in the R console.   

 

The first lines should declare the parameters number of markers and number of 

records.  A this point we will also specify the value of lamda as 10.   

nmarkers <- 10      #number of markers 

nrecords <- 325     #number of records 

lamda    <- 10     #value for lamda 

 

Next we will read in the files.  Change the path to the location where you have stored 

the files.  Note that these statements should all be on one line.  Have a look at these 
files before opening them.     
 

x <- 

matrix(scan("d:/iowacourse/practicals/day4/realDataExample/xvec_day4.

inp"),ncol=nmarkers,byrow=TRUE) 

y <- 

matrix(scan("d:/iowacourse/practicals/day4/realDataExample/yvec_day4.

inp"),byrow=TRUE) 
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So now we have the matrix x, the vector y.  We still need a vector of ones and a 

identity matrix dimension number of markers x number of markers….. 

ones <- array(1,c(nrecords)) 

ident_mat <-diag(nmarkers) 

 

The next step is to build the coefficient matrix.  This can be done in blocks, eg…. 

coeff <- array(0,c(nmarkers+1,nmarkers+1)) 

coeff[1:1, 1:1] <- t(ones)%*%ones 

coeff[1:1,2:(nmarkers+1)] <- t(ones)%*%x 

 

You will need to build the other blocks.  You will also need to build the right hand 

side of the equation.   

 

The solutions can be obtained easily by using the inbuilt function solve, 

solution_vec <- solve(coeff,rhs) 

 

Print out this vector of solutions (eg print(solution_vec)).  What is the solution for the 

mean?  Which SNP has the largest effect? 

 

Next we want to print GEBV for the selection candidates.  This is done with the 

equation: 

 



 gXGEBV  

 

The g_hat are the solutions for the SNP effects you have just solved.  The xvector for 

the selection candidates is in the file xvec_prog.inp.  Can you write a small R script to 

calculate the GEBV? 

 

Fours years later, all the selection candidates receive a phenotypic record from a 

progeny test.  The results are in the file yvec_prog.inp.  What is the correlation 

between your GEBV and the TBV?   (Don’t expect this to be to high with only 10 

SNPs).  
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5 Genomic selection using a Bayesian approach 

For the first exercise, we will analyse a small data set using the method BayesA of 

Meuwissen et al. (2003).  We will analyse the data with a script written in the R 

language, meuwissenBayesA.R.  The script considers single markers rather than 

marker haplotypes, but would be easy to extend to haplotypes.  The script estimates 

single marker effects (g), a variance for each of these effects (gvar), and overall mean 

mu and the error variance (vare).  A description of the program is given here 

(descriptions in bold). 

 

R coding of genomic selection from Meuwissen et al. (2001) 

 

Set the number of markers, the number of markers and the number of               # 

iterations 
 

nmarkers <- 3      #number of markers 

nrecords <- 25     #number of records 

numit    <- 1000   #number of iterations 

 

The next section reads in the data from two files.  The first is the x vector, with   -

0 for the 1 1 SNP genotype, 1 for 1 2 and 2 for 2 2.  The second file is a vector  of 

phenotypic records.  Set the path to the location of your files. 
   

x <- 

matrix(scan("d:/iowacourse/practicals/day5/smallExample/xvec.inp"),nc

ol=nmarkers,byrow=TRUE) 

y <- 

matrix(scan("d:/iowacourse/practicals/day5/smallExample/yvec.inp"),by

row=TRUE) 

 

Set up some storage vectors and matricies to store parameter values across 

iterations 
 

gStore <- array(0,c(numit,nmarkers)) 

gvarStore <- array(0,c(numit,nmarkers)) 

vareStore <- array(0,c(numit)) 

muStore <- array(0,c(numit)) 

ittstore <- array(0,c(numit)) 

 

The Gibbs cycles begin. 

 

Step 1.  Initialization of g and mu, declaration of other arrays. 
 

g <- array(0.01,c(nmarkers))  

mu <- 0.1 

gvar <- array(0.1,c(nmarkers)) 

ones <- array(1,c(nrecords)) 

e <- array(0,c(nrecords)) 
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Begin the iterations 
 

for (l in 1:numit) { 

 

Step 2.  Sample vare from an inverse chi-square posterior    
      e <- y - x%*%g - mu   # First calculate the vector of residuals 

      vare <- (t(e)%*%e)/rchisq(1,nrecords-2) 

             

Step 3 Sample the mean from a normal posterior  
      mu <- rnorm(1,(t(ones)%*%y - 

t(ones)%*%x%*%g)/nrecords,sqrt(vare/nrecords)) 

 

Step 4.  Sample the gvar from the inverse chi square posterior 
 

      for (j in 1:nmarkers) { 

 

#       gvar[j] <- (0.002+g[j]*g[j])/rchisq(1,4.012+1)  # Meuwissen                                                

#et al. (2001) prior 

#       gvar[j] <- (g[j]*g[j])/rchisq(1,1)        # Xu (2003)  #prior 

        gvar[j] <- (g[j]*g[j])/rchisq(1,0.998)    # Te Braak et # al. 

(2006) prior 

      } 

 

 

Step 5 Sample the g from a normal distribution 
      z <- array(0,c(nrecords)) 

      for (j in 1:nmarkers) { 

       gtemp <- g 

       gtemp[j] <- 0 

       for (i in 1:nrecords) { 

        z[i] <- x[i,j] 

       } 

       mean <- ( t(z)%*%y-t(z)%*%x%*%gtemp-t(z)%*%ones*mu ) / 

(t(z)%*%z+vare/gvar[j])   # Calculating the mean of the distribution 
       g[j] <- rnorm(1,mean,sqrt(vare/(t(z)%*%z+vare/gvar[j]))) 

      } 

 

The final step in each iteration is to store the parameter values       
      for (j in 1:nmarkers) { 

        gStore[l,j] <- g[j] 

        gvarStore[l,j] <- gvar[j] 

      } 

      vareStore[l] <- vare 

      muStore[l] <- mu  

      ittstore[l] <- l 

}   

This is the end of the program. 

 

Consider a data set with three markers.  The data set was simulated as: the effect of a 

2 allele at the first marker is 3, the effect of a 2 allele at the second marker is 0, and 

the effect of a 2 allele at the third marker was -2.  The mu was 3 and the vare was 1.  

The data set is: 
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Animal Phenotype 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker 2 
allele 2 

Marker3 
allele 1 

Marker 3 
allele 2 

1 9.68 2 2 2 1 1 1 

2 5.69 2 2 2 2 2 2 

3 2.29 1 2 2 2 2 2 

4 3.42 1 1 2 1 1 1 

5 5.92 2 1 1 1 1 1 

6 2.82 2 1 2 1 2 2 

7 5.07 2 2 2 1 2 2 

8 8.92 2 2 2 2 1 1 

9 2.4 1 1 2 2 1 2 

10 9.01 2 2 2 2 1 1 

11 4.24 1 2 1 2 2 1 

12 6.35 2 2 1 1 1 2 

13 8.92 2 2 1 2 1 1 

14 -0.64 1 1 2 2 2 2 

15 5.95 2 1 1 1 1 1 

16 6.13 1 2 2 1 1 1 

17 6.72 2 1 2 1 1 1 

18 4.86 1 2 2 1 1 2 

19 6.36 2 2 2 2 2 2 

20 0.81 1 1 2 1 1 2 

21 9.67 2 2 1 2 1 1 

22 7.74 2 2 2 1 1 2 

23 1.45 1 1 2 2 2 1 

24 1.22 1 1 2 1 2 1 

25 -0.52 1 1 2 2 2 2 

   

The first step is to make the files yvec.inp and xvec.inp.  In the case of yvec.inp, this 

is simply the list of phenotypes (no headers or identifiers).  For xvec.inp, the number 

of 2 alleles at each marker for each animal, as a 25 x 3 matrix.  The first line of this 

file would be (for animal 1)       “2 1 0”. 

 

Save these files in a convenient location.  Next open the R graphical interface, and 

open the script “meuwissenBayesA.R”.  Check the number of markers is set to 3, and 

the number of records 25.  You will have to change the path of the files as well.   

 

Choose a number of iterations, say 1000.   

 

Run the script using the run all command.  As the script runs, it stores values for g, 

gvar, mu and vare for each iteration.  After the script has run, you can use the plotting 

facilities in R to investigate changes in the parameters over iterations.     
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For example, to look at the effect of the third marker across iterations, you would 

enter the command 

 

> plot(ittstore[1:1000],gStore[1:1000,1]) 

 

Use this command to investigate each of the parameters in turn, and determine if they 

appear to be fluctuating about the correct values. 

 

We can also plot the posterior distribution, for example for the effect of the third 

marker.  We would discard the first 100 iterations of the program as “burn in”: 

 

> plot(density(gStore[100:1000,1])) 

 

Does the distribution appear to be normal?  What about the distributions of the other 

parameters? 

 

To get the mean of the distribution, you would type: 

mean(gStore[100:1000,1]) 

Do the means of the parameters agree with the true value of these parameters? 

 

Now a new set of animals (selection candidates without phenotypes) are genotyped 

for the three markers.  Their genotypes are: 

 

Animal 
Marker1 
allele 1 

Marker1 
allele 2 

Marker2 
allele 1 

Marker2 
allele 2 

Marker3 
allele 1 

Marker3 
allele 2 TBV 

26 2 2 2 1 2 1 4 

27 2 1 1 2 2 1 1 

28 1 1 1 2 2 2 -4 

29 1 2 2 2 2 1 1 

30 1 1 2 2 1 2 -2 

31 2 1 1 2 2 1 1 

32 2 2 2 2 2 2 2 

33 2 2 2 2 1 2 4 

34 2 2 2 1 1 2 4 

35 1 1 1 2 2 2 -4 

 

Calculate the GEBV for these animals as: 



 gXGEBV  
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What is the correlation with the True breeding values ? (given in the table above, 

TBV).    

 

Next we will use the script to estimate SNP effects in the reference population in 

practical 5.6.  So you will need to read in the x matrix in xvec_day4.inp, the y vector 

in yvec_day4.inp.  The number of markers in the program will need to be changed to 

10 and the number of records to 325.   

 

Run the script. 

 

The next thing you want to do is extract SNP solutions.  After the script has run, you 

can do this by typing: 

> mean(gStore[100:1000,1])  

This will give you the mean value of the SNP effect for SNP 1 from iterations 100 to 

1000 (eg, excluding burn in).  So for SNP 6 you would type 

>mean(gStore[100:1000,6]).   

 

Compare your SNP solutions from the Bayes program to those from BLUP (practical 

5.6).  One of the reasons for using the Bayesian approach is to allow different 

variances of SNP effect across chromosome segments.  In particular, the Bayes 

approach should set some variances (and so SNP effects) to very close to zero.  Does 

this seem to have happened?  How many QTL would you say are on the chromosome 

segment? 

 

Can you predict GEBV for the selection candidates in practical 5.6 using the SNP 

solutions from the Bayesian approach?  Are they more highly correlated with the 

TBV than the GEBV from the BLUP approach?    

 

Now change the R script to use the prior distribution of chromosome segment 

variances of effects to that of Meuwissen et al. (2001), eg.  )002.0,012.4(2 .  Now 

re-run the script.  How do the SNP solutions compare with those when the Xu (2003) 

prior is used?  Are the accuracy of the GEBV improved?  
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6 Bayesian approach a large weight at zero (BayesB)  

 

In this exercise, we will modify the BayesA script from the previous exercise to 

sample from a prior distribution for the chromosome segment variances with a large 

weight at zero.  This incorporates our prior knowledge that many of the chromosome 

segments will not contain any QTL with an effect on the quantitative trait.   

 

The prior of the variance of chromosome segment effects is now 

 

Unlike BayesA, the posterior of the variance of chromosome segment effects does not 

have a known distribution and cannot be sampled directly in the Gibbs chain.  We will 

therefore implement a Metropolis Hastings (MH) step with the Gibbs chain to sample 

gvar and g simultaneously.   

 

To modify the code, you will need first specify the number of MH cycles you wish to 

do: 

# Parameters 

nmarkers <- 10      #number of markers 

nrecords <- 325     #number of records 

numit    <- 1000   #number of iterations 

propSegs <- 0.66    #Prior proportion of segments having a non zero 

effect  

numMHCycles = 20 # Number of metropolis hastings cycles when sampling 

variance of segments 

 

The next step is to correct the phenotypic records for all number of MH cycles when 

sampling the gvar and g (Steps 4 and 5).  We will store the corrected records in a 

vector called ycorr: 

# Step 4.  Sample the gvar and g using Metropolis Hastings algorithm 

(Independance sampling) 

      for (j in 1:nmarkers) { 

 

# First correct records for all other effects including mean and 

other markers 

       gtemp <- g 

       gtemp[j] <- 0 

       ycorr <- array(0,c(nrecords,1)) 

       Ival <- array(0,c(nrecords,nrecords)) 

       for (i in 1:nrecords) { 

        ycorr[i] <- y[i] - mu 

        Ival[i,i] <- vare 

        for (k in 1:nmarkers) { 

         ycorr[i] = ycorr[i] - x[i,k]*gtemp[k] 
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        } 

       } 

 

In this step we have also built a matrix which is nrecords x nrecords and has vare on 

the diagonal, as we will need this in the next step.  

  

The next step is to calculate the likelihood of the data given the current gvar, before 

we sample a new one.  The formula for the likelihood is: 

)(2/1
||2

1
|(

2/12/1

2 corrcorreL
ngi yV'y

V
y* 1


  where ))2 2

eIσ'X(IXV  ii gi and 

|V| is the determinant of V.  In R we can do this calculation as: 

# Now calculate likelihood with current gvar[j] p(gvar[j]|ycorr) 

going into the chain 

       V = (x[,j]*gvar[j])%*%t(x[,j])+Ival 

       LH1 <- 1/(2*pi^(1/2*nrecords)*sqrt(det(V)))*exp(-

0.5*t(ycorr)%*%ginv(V)%*%ycorr) 

The ginv function calculates the generalised inverse of V.  You will have to load the 

R package MASS to get this function.  (Load packages in the     

It is also useful to calculate the likelihood of the data when the gvar is zero, as we will 

sample gvar=0 many times in the MH cycles. 

# And likelihood if variance is zero 

       V = Ival 

       LH0 <-  1/(2*pi^(1/2*nrecords)*sqrt(det(V)))*exp(-

0.5*t(ycorr)%*%ginv(V)%*%ycorr) 

Now we can run the MH cycles, sampling a new gvar, comparing the likelihood of the 

data with the new gvar to the old gvar.  If the likelihood improves, we will replace the 

old gvar with the new gvar.  If it does not improve, we will replace it with a 

probability LH(new gvar)/LH(old gvar).  If we do replace gvar, we will also sample 

the effect of the SNP with the new gvar.   

       for (kk in 1:numMHCycles) { 

        if (runif(1,0,1)<propSegs) {      # sample segment variance 

from (1-progSegs)*0 + propSegs*chi-square 

# Sample new gvar[j] from driver distribution 

         gvar_new <- 1/rchisq(1,4.012)       

         V = (x[,j]*gvar_new)%*%t(x[,j])+Ival 

         LH2 <- 1/(2*pi^(1/2*nrecords)*sqrt(det(V)))*exp(-

0.5*t(ycorr)%*%ginv(V)%*%ycorr) 
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         alpha <- min(LH2/LH1,1) # replace gvar with prob LH(new 

#gvar)/LH(old gvar). 

         if (runif(1)<alpha) { 

# Acceptance 

          gvar[j] = gvar_new 

          LH1 <- LH2 

         }   

        }  

        else {         # if zero variance sampled 

         alpha <- min(LH0/LH1,1) 

         if (runif(1)<alpha) { 

# Acceptance 

          gvar[j] = 0  

          LH1 <- LH0 

         } 

        } 

       } 

       if (gvar[j]>0) { 

        meanval <- ( t(x[,j])%*%y-t(x[,j])%*%x%*%gtemp-

t(x[,j])%*%ones*mu ) / (t(x[,j])%*%x[,j]+(vare)/gvar[j]) 

        g[j] <- 

rnorm(1,meanval,sqrt((vare)/(t(x[,j])%*%x[,j]+(vare)/gvar[j]))) 

       } 

       else { 

        g[j] <-0 

       } 

      } 

Once you have finished coding the method, save your R script as a new file 

(BayesB.R for example).   

Now run the script with the small data set from practical 5.7 (3 markers and 25 

records)  Use 20 MH cycles.  Look at the values sampled for each of 3 segments 

across the Gibbs chain.  Do any of the g get set consistently to zero?  Now choose 

different values for the proportion of segments set to zero and the parameters of the 

inverse chi square parameters where gvar new is sampled from (both these for the 

prior of the gvar).  How sensitive are the results to the parameters of the prior 

distribution of the variances of chromosome segment effects?   

 

 

 

 

 


