From sequence data to
genomic prediction




Course overview
Day 1

— Introduction

— Generation, quality control, alignment of sequence data
— Detection of variants, quality control and filtering

Day 2

— Imputation from SNP array genotypes to sequence data
DEVAS

— Genome wide association studies with SNP array and
sequence variant genotypes

Day 4 & 5

— Genomic prediction with SNP array and sequence variant
genotypes (BLUP and Bayesian methods)

— Use of genomic selection in breeding programs



Genome wide association

e AiIm
— With SNP arrays: find markers in high

linkage disequilibrium with causative
mutations -> candidate genes

— With sequence data: find causative
mutations (?)

— Put these on SNP chip, GBS designs



Genome wide association

e Linkage disequilibrium

e Models for GWAS

e Factors affecting accuracy of GWAS
e Accounting for population structure

e Examples with sequence - can we find
causative mutations?

e Using biological information



Definitions of LD

e Genome wide association studies with SNP
arrays exploit linkage disequilibrium with
common SNP and QTL



Definitions of LD

e Classical definition:

— Two markers A and B on the same
chromosome

— Alleles are
e marker A Al, A2
e marker B B1, B2

— Possible haploptypes are A1_B1, A1l_B2,
A2 _B1, A2_B2



Definitions of LD

Linkage equilibrium......... :

Marker A
A2 Frequency

Marker B Bl
B2
Frequency
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Definitions of LD

Linkage disequilibrium.........

Marker A

Al A2
Marker B B1

B2
0.5 0.5

Frequency




e Linkage disequilibrium between
marker and QTL




Definitions of LD

Linkage disequilibrium.........

Marker A

MarkerB Bl

B2
Frequency

D = freq(Al_B1)*freq(A2_B2)-freq(Al1_B2)*freq(A2_B1)
0.4 * 0.4 - 0.1 * 0.1

0.15



Definitions of LD

e Measuring the extent of LD (determines
how dense markers need to be for LD

mapping)

D = freq(Al_B1)*freq(A2_B2)-
freq(Al1_B2)*freq(A2_B1)

- highly dependent on allele frequencies
e not suitable for comparing LD at different sites

r2=D?/[freq(Al)*freq(A2)*freq(B1)*freq(B2)]



Definitions of LD

Linkage disequilibrium.........

Marker A

MarkerB Bl

B2
Frequency

= 0.15

D2/[freq(Al)*freq(A2)*freq(B1)*freq(B2)]
= 0.15%/[0.5*%0.5*0.5*0.5]
= 0.36



Definitions of LD

e Measuring extent of LD

— determines how dense markers need to be
for LD mapping

= freq(A1_B1)*freq(A2_B2)-
freq(Al BZ)*freq(AZ Bl)

- highly dependent on allele frequencies
e not suitable for comparing LD at different sites

r2=D2/[freq(Al)*freq(A2)*freq(B1l)*freq(B2)]

Values between 0 and 1.



Definitions of LD

e If one loci is @ marker and the other is QTL

e The r¢ between a marker and a QTL is the
proportion of QTL variance which can be
observed at the marker

— eg if variance due to a QTL is 200kg?, and r?
between marker and QTL is 0.2, variation
observed at the marker is 40kg?.



Causes of LD

e A chunk of ancestral chromosome is
conserved in the current population
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Causes of LD

e A chunk of ancestral chromosome is
conserved in the current population
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Causes of LD

e A chunk of ancestral chromosome is
conserved in the current population

é \ Marker Haplotype

J J 111 2

N

e Size of conserved chunks depends on effective
population size



Causes of LD

e Predicting LD with finite population size
e E(r2) =1/(4Nc+1)

- N = effective population size

— ¢ = length of chromosome segment

~—~
I
n
@)
~
=
>
=
2
=
o
()
1%
©
S
@
X
=
-

Length of chromosome segment (cM)



Extent of LD in humans and livestock

Humans (Tenesa et al. 2007)

Human (CEPH)
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Extent of LD 1n humans and livestock
And cattle......

+ Angus

8 Holstein

& NDama

+ Brahman

£ Human (CEFH)
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Implications?

e In Holsteins, need a marker approximately every

10kb to get average r? of 0.5 between marker and
QTL

e ~ 300K SNP






Extent of LD in other species
e Sheep HapMap project (Kijas et al. 2011)
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e Maize (i)
—-Yan et al. 2009 (PLoS One. 4:e8451).

— Relatively low LD across 632 inbred lines

— Concluded up to 480,000 SNPs needed for
genome wide association

0.5
0.4
03
02
0.1

0

0 0.1kb 0.2kb 0.3kb 0.4kb 0.6kb 1kb 1.5kb 2Kb 5Kb 10Kb 100kb 1Mb 5Mb 10Mb100MB00+Mb

Distance



e Maize (ii)

— Van Ingehlandt et al.
2011 TAG 123:11

— Considerable LD among
heterotic groups

— Concluded 4000-
65,000 SNPs needed
for genome wide
association




Extent of LD in other species

e Perennial
r'yegrass
— outbreeder

- very little LD
(Ponting et al 2007)

— Extremely large
effective population
size?
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Linkage disequilibrium

e Extent of LD in a species determines marker
density necessary for GWAS/genomic prediction

e In cattle, r2~0.4 at 5kb ~ 300 000 markers
necessary for GWAS

e In humans, LD lower, need many more markers



Genome wide association

e Linkage disequilibrium

e Models for GWAS

e Factors affecting accuracy of GWAS
e Accounting for population structure

e Examples with sequence - can we find
causative mutations?

e Using biological information



Genome wide association

e LD mapping of QTL exploits
population level associations
between markers and QTL.
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small segments of chromosome in
the current population which are
descended from the same common é
ancestor J




Genome wide association

e LD mapping of QTL exploits
population level associations
between markers and QTL.

— Associations arise because there are
small segments of chromosome in
the current population which are
descended from the same common
ancestor

— These chromosome segments, which
trace back to the same common
ancestor without intervening
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Genome wide association

e LD mapping of QTL exploits
population level associations
between markers and QTL.

— Associations arise because there are
small segments of chromosome in
the current population which are
descended from the same common
ancestor

— These chromosome segments, which
trace back to the same common
ancestor without intervening
recombination, will carry identical

|

—
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— If there is a QTL somewhere within
the chromosome segment, they will
also carry identical QTL alleles
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Genome wide association

e LD mapping of QTL exploits
population level associations
between markers and QTL.

— Associations arise because there are
small segments of chromosome in
the current population which are
descended from the same common
ancestor

- These chromosome segments, which
trace back to the same common
ancestor without intervening

|

—

recombination, will carry identical
marker alleles or marker haplotypes

— If there is a QTL somewhere within
the chromosome segment, they will
also carry identical QTL alleles

e The simplest way to exploit these

associations is by single SNP
regression
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Single marker regression

e Association between a marker and a trait can be
tested with the model

y=1 p+Xg+e
e Where

— Yy is a vector of phenotypes
— 1n is a vector of 1s allocating the mean to phenotype,

— X is a design matrix allocating records to the marker
effect,

— g is the effect of the marker
— e is a vector of random deviates ~ N(0,c.? )

e Underlying assumption here is that the marker will
onIK affect the trait if it is in linkage disequilibrium
with an unobserved QTL.




Single marker regression

e A small example
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Single marker regression

e The design vector 1, allocates phenotypes to the mean

Animal Phenotpe SNP allele1 SNP allele Animal
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Single marker regression

e The design vector 1, allocates phenotypes to the mean

e The design vector X allocates phenotypes to genotypes

X, Number of “2”
Animal Phenotpe SNP allele1 SNP allele Animal alleles

2.030502
3.542274
3.834241
4.871137
3.407128
2.335734
2.646192
3.762855
3.689349
3.685757

1
2
3
4
)
6
7
8
9

N N e = T T S T SN S
N NN R R N NDNN R
© 0O N O 0O b~ W N B

|_\
o
P P P O O Fr N kP B O

=
o




Single marker regression

e The design vector 1, allocates phenotypes to the mean

e The design vector X allocates phenotypes to genotypes

X, Number of “2”
Animal F SNP allele1  SNP allele Animal alleles
2.030502
3.542274
3.834241
4.871137
3.407128
2.335734
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3.689349
3.68575
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Single marker regression

e Estimate the marker effect and the
mean as:

| (L1 17X :

ql LX1, XX




Single marker regression
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Single marker regression
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Single marker regression

e



Single marker regression
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Single marker regression

e Estimates of the mean and marker
effect are:

e In the “simulation”, mean was 2, r?
between QTL and marker was 1, and
effect of 2 allele at QTL was 1.



Single marker regression

e Is the marker effect significant?

e F statistic comparing between
marker variance to within marker
variance

e Test against tabulated value for
Foc,Vl,VZ
— a= significance value

-v1l=1 (1 marker effect for
regression)

-v2=8 (hnumber of records -2)



Single marker regression

e In our simple example
_Fdata=4'56
- Fo.05,1,8=5.12

e Not S|gn|f|cant




Prop ortion of black....

» 600 Holstein-Friesian dairy bulls scored proportion of black
» genotyped for 50 000 SNPs
» Single marker regression



roportion of black....
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Extent of LD 1n humans and livestock
And cattle......

+ Angus

8 Holstein

& NDama

+ Brahman

£ Human (CEFH)
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Genome wide association

e Linkage disequilibrium

e Models for GWAS

e Factors affecting accuracy of GWAS
e Accounting for population structure

e Examples with sequence - can we find
causative mutations?

e Using biological information



Power of GWAS

e What is the power of an association
test with a certain number of records
to detect a QTL?

e Power is probability of correctly
rejecting null hypothesis when a QTL of
really does exist in the population
- Hy = no QTL
- H; = thereis a QTL

e How many individuals do we need to
genotype and phenotype?



Power of GWAS

Power is a function of:
— r?2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself



Power of GWAS

Power is a function of:
— r?2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself

— Proportion of total phenotypic variance explained
by the QTL

—  Number of phenotypic records



Power of GWAS

Power is a function of:
— r?2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself

— Proportion of total phenotypic variance explained
by the QTL

—  Number of phenotypic records

— Allele frequency of the rare allele of SNP

e determines the minimum number of records used to
estimate an allele effect.

e The power becomes particular sensitive with very
low frequencies (eg. <0.1).

— The significance level a set by the experimenter



Power of GWAS

Power to detect a QTL explaining 5% of the
phenotypic variance, 1000 phenotypic
records
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Power of GWAS

e Power to detect a QTL explaining
5% of the phenotypic variance
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Human height

previous article next article

Hundreds of variants clustered in genomic loci and
biological pathways affect human height

Hana Lango Allen, Karol Estrada, Guillaume Lettre, Sonja |. Berndt, Michael N. Weedon, Fernando
Rivadeneira, Cristen J. Willer, Anne U. Jackson, Sailaja ledantam, Soumya Raychaudhuri, Teresa
Ferreira, Andrew R. Wood, Robert J. Weyant, Ayellet V. Segré, Elizabeth K. Speliotes, Eleanor
Wheeler, Nicole Soranzo, Ju-Hyun Park, Jian Yang, Daniel Gudbjartsson, Mancy L. Heard-Costa,
Joshua C. Randall, Lu Qi, Albert Vernon Smith, Reedik Magi + ef al.

Affiliations | Contributions | Corresponding authors

Nature 467, 837838 M4 Oectaber 2010% | dai-10 1038/natureN9410

... 180 loci explain 10% of the varianc

inheritance: OMA sequence variants at many genetic loci influence the B ag =
phenatype. Genome-wide association (GWA) studies have identified more =

than 600 variants associated with human traits’, but these typically explain

small fractions of phenotypic variation, raising questions about the use of % download citation

further studies. Here, using 183,727 individuals, we show that hundreds of
genetic variants, in at least 180 loci, influence adult height, a highly heritable
and classic polygenic trait® >. The large number of loci reveals pattemns with ~ =) rights and permissions

order reprints

important implications for genetic studies of common human diseases and 1 share/bookmark
traits. First, the 180 loci are not random, but instead are enriched for genes




Power of GWAS

Power to detect a QTL explaining
2.5% of the phenotypic variance
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Power of GWAS

e What significance level to use?
- P<0.01, P<0.001?

e We have a horrible multiple testing
problem

— Eg. If test 10 000 SNP at P<0.01 expect
100 significant results just by chance?
e (Could just correct for the number of
tests

— But is too stringent, ignores the fact that
tests are on the same chromosome (eg
not independent)



Power of GWAS

An alternative is to choose a significance level with
an acceptable false discovery rate (FDR)

Proportion of significant results which are really false
positives

FDR = mP/n
-  m = number of markers tested
— P = significance level (eg. P=0.01)
— n = number of markers actually significant



Power of GWAS

An alternative is to choose a significance level with
an acceptable false discovery rate (FDR)

Proportion of significant results which are really false
positives
FDR = mP/n
m = number of markers tested
P = significance level (eg. P=0.01)
n = number of markers actually significant
Example

10 000 markers tested at P<0.001, and 20 significant.
What is FDR?

FDR=10000*0.001/20 = 50%

Eg. 50% of our significant results are actually false
positives



Power of GWAS

An alternative is to choose a significance level with
an acceptable false discovery rate (FDR)

Proportion of significant results which are really false
positives
FDR = mP/n
m = number of markers tested
P = significance level (eg. P=0.01)
n = number of markers actually significant
Example

10 000 markers tested at P<0.001, and 20 significant.
What is FDR?

FDR=10000*0.001/20 = 50%
Eg. 50% of our significant results are actually false
positives

In practise, P<5x10-8



Genome wide association

e Linkage disequilibrium

e Models for GWAS

e Factors affecting accuracy of GWAS
e Accounting for population structure

e Examples with sequence - can we find
causative mutations?

e Using biological information



Population structure

Simple model we have used assumes
all animals are equally (un) related.

Unlikely to be the case.

Multiple offspring per sire, breeds or
strains all create population structure.

If we don’t account for this, false
positives!



Population structure

Simple example
— a sire has many progeny in the population.
— the sire has a high estimated breeding value

— a rare allele at a random marker is homozygous in
the sire (aa)



Population structure

Simple example

a sire has many progeny in the population.
the sire has a high estimated breeding value

a rare allele at a random marker is homozygous in
the sire (aa)

Then sub-population of his progeny have higher
frequency of @ than the rest of the population.

As the sires’ estimated breeding value is high, his
progeny will also have higher than average
estimated breeding values.

If we don't account for relationship between
progeny and sire the rare allele will appear to
have a (perhaps significant) positive effect.



Population structure

e Can account for these relationships by
extending our model.....

y=1"u+Xg+2u+e

e Where

— u is a vector of polygenic effects in the model with a
covariance structure u~N(0,Ac,?)

— A is the average relationship matrix built from the
pedigree of the population

— Z is a design matrix allocating animals to records.



Population structure

e Can account for these relationships by
extending our model.....

y=1"u+Xg+2uU+e

e Solutions (A=c.%/c,%):

1'1 1°'X  1'Z
=| X'l XX  XZ

Z'1. ZX ZZ+A*




e An example A matrix....... :

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3



e An example A matrix....... :

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal6
1



e An example A matrix....... :

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal6
1
0 1



e An example A matrix....... :

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal6
Animal 1 1

Animal 2 0) 1

Animal 3 0 0 1
Animal 4

Animal 5

Animal 6



e An example A matrix....... :

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Ani
1
0

|3 Animal4 Animal5 Animal 6



e An example A matrix....... :

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal6

Animal 1 1

Animal 2 0) 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0) 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6



e An example A matrix....... :

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal6

1
0 1
0 0 1
0.5 0.5 0
0.5 0.5 0 @ 1



e An example A matrix....... :

Pedigree

Animal Sire Dam

o0l WN P
Rk, PFP OOO
W NN OOO

Animall Animal2 Animal3 Animal4 Animal5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0) 0) 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0) 0.5 1
Animal 6 0.5 0] 0.5




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06

6.21
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Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21

(1,01, 1,XT

X'l XX
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e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57

6.06
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y=1"u+Xg+Zu+e




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21

y=1"u+Xg+Zu+e

1'1 1'X 1'Z
= X1 X'X  XZ
Z'1, Z'X Z'Z+A'A




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21

y=1"u+Xg+Zu+e

A=0.33



Population structure

e Example

Animal Sire Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21

6 8
8 2
1 1
1 2
1 2
1 1
1 1
1 1




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31

6.57
6.06
6.21




Population structure

e A simulated data set with a half sib
family structure, one QTL simulated
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Population structure

e A simulated data set with a half sib
family structure, one QTL simulated
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Population structure

e Problem w

hen we do not have history of the
population

Solution — use the average relationship
across all markers as the A matrix
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Genomic relationship matrix

e Rescale X to account for allele frequencies
~ Wy = Xjj — 2P

e Then




Population structure

Use a Quantile-quantile (QQ) plot to assess if we have
accounted for population structure

Rank SNPs on observed, —-log10(Pvalue), then plot observed
against expected

Population structure removed if observed, expected
approximately equal for large P values

)
S
o
>
O
g
3
c
3
8
(¢]

Expected -logy (P - value)



Genome wide association

e Linkage disequilibrium

e Models for GWAS

e Factors affecting accuracy of GWAS
e Accounting for population structure

e Examples with sequence - can we find
causative mutations?

e Using biological information



GWAS with sequence

e Step 1. Impute sequence data into all
individuals with phenotypes
- Target region
- Whole genome

e Step 2. Run GWAS

- Single SNP regression?

— Use genotype probabilities to account for
Inaccuracy in imputation



Single marker regression

e Association between a marker and a trait can be
tested with the model

y=1 p+Xg+e
e Where

— Yy is a vector of phenotypes
— 1n is a vector of 1s allocating the mean to phenotype,

— X is a design matrix allocating records to the marker
effect,

— g is the effect of the marker
— e is a vector of random deviates ~ N(0,c.? )

e Underlying assumption here is that the marker will
onIK affect the trait if it is in linkage disequilibrium
with an unobserved QTL.




GWAS with sequence

ARTICLES

nature |
genetlcs

Genome-wide association studies of 14 agronomic traits
in rice landraces

Xuehui Huang!?'% Xinghua Wei*1?, Tao Sang*!?, Qiang Zhao'21°, Qi Feng"1%, Yan Zhao!, Canyang Li!,
Chuanrang Zhu!, Tingting Lu!, Zhiwu Zhang®, Meng Li*>%, Danlin Fan!, Yunli Guo!, Ahong Wang!, Lu Wang!,
Liuwei Deng!, Wenjun Li!, Yigi Lu!, Qijun Weng!, Kunyan Liu!, Tao Huang!, Taoying Zhou!, Yufeng Jing!,
Wei Lil, Zhang Lin!, Edward S Buckler®7, Qian Qian?, Qi-Fa Zhang?, Jiayang Li® & Bin Han!2

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is
important to world food security. Here we have identified ~3.6 million SNPs by sequencing 517 rice landraces and constructed

a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association
studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies, The loci identified through GWAS
explained ~36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified
genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach
integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical
biparental cross-mapping for dissecting complex traits in rice.




GWAS with sequence

e Huang et al. (2010)

— Sequenced 517 rice landraces (inbred lines!) at 1x
coverage

— Represent ~ 82% of diversity in worlds rice
cultivars

— Called SNP in sequence pileups
— 3.6 million SNP

— With 1x coverage, could only call genotypes at
~ 20% of SNP

— Therefore use imputation to fill in missing
genotype

— Example



GWAS with sequence

e Huang et al. (2010)
e Extent of LD

e Red indica, blue japonica

100 200 300 400
Distarnce (k)




GWAS with sequence

e Huang et al. (2010)
e Now have 517 lines with 3.6 million SNP genotyped

e Well characterised phenotypes for 14 agronomic traits
e Grain size, flowering date, etc
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GWAS with sequence

e Can we detect known mutations with imputed
sequence data?

e DGATI1 -> Chri4, large effect on fat% in milk

e GHR -> Chr20, large effect on protein%



GWAS with sequence

Hubert Pausch (Technical University of Munich)

Impute sequence variants into 2 populations with
650K SNP data

2327 Holstein bulls
3513 Fleckvieh bulls

Accuracy of imputation DGAT1 mutation 99.8%



1000 bull genomes Run 3.0'-5;5
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1000 bull genomes project

30.8 million
filtered variants

29.1 million SNP

1.7 million
INDEL

All variants
annotated
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GWAS with sequence

Holstein Fleckvieh

I I Y
40 40 60 80

Position Position




GWAS with sequence

¢ 777K
sequence

@ GHR: p.279F>Y
(Blott et al., 2003)

25 30 35
Position (Mb)




GWAS with sequence

Causative mutations detected

Imputed sequence variants often more significant
than original 650K

However even with accurate imputation, causative
mutation not always most significant -> sampling
error

Use additional information, multi-traits, multi-
breeds, gene expression?



GWAS with sequence

o EarIy lactation fat content (Ruedi Fries, Hubert Pausch, TUM)
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GWAS with sequence

Chromosome 27 -> Early lactation fat content
e (Ruedi Fries, Hubert Pausch, TUM)
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GWAS with sequence

e Chromosome 27 -> Early lactation fat content

¢ 11 variants in the promotor /
5' UTR of AGPAT6
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GWAS with sequence

e Chromosome 27 -> Early lactation fat content

PPARalpha:RXRalpha

B RAR-alph
36,211,258 bp T3R

reference Seqguence CAGAGCTCCAGGCAGTGGGCAGTGAGGAGGCCCATCTTC

alternative Sequence CAGAGCTCCAGGCAGTGGGG-TCAGTGAGGAGGCCCATCTTC
Sp1
CPE bind
GR




GWAS + Biological Info

e (Gene expression
— is gene expressed in a tissue associated with phenotype

- is the mutation associated with a change in level of
expression of a gene associated with the phenotype
(eQTL, Allele specific expression)

e Proteomics/Metabolomics

— Is the mutation associated with change in a
protein/metabolitite linked to the trait

e Mouse/Arabidopsis knockouts

— Does knockout of the gene cause a phenotype similar to
the one under study



GWAS + Biological Info

e Chromosome 19 (Protein%
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GWAS + Biological Info

e Chromosome 19 (Protein%
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GWAS + Biological Info

e Chromosome 19 (Protein%

Stat5a is mandatory for adult mammary
gland development and lactogenesis

Xiowen Liu,' Gertraud W, Robinson,' Kay-Uwe Wagner, Lisa Garrett,” Anthony Wynshaw-Boris,”
and Lothar Hennighausen's
'Laboratory of Biochemistry and Metabolism, National Institute of Diabetes and Digestive and Ki Di (NIDDEK],

MNational Institutes of Health (NTH), Bethesda, Maryland 20892-1812 Lahoratory of Genetic 2 rch,
National Center for Human Genome Research, Bethesda, Maryland 2
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Prolactin (PRL) induces mammary gland development (defined as mammopoiesis) and lactogenesis. Binding of
PRL to its receptor leads to the phosphorylation and activation of STAT (signal transducers and activators of
transcription) proteins, which in turn promote the expression of specific genes. The activity pattern of two
STAT proteins, Stat5a and Stat5h, in mammary tissue during pregnancy suggests an active role for these
transcription factors in epithelial cell differentiation and milk protein gene expression. To investigate the
function of Stat5a in mammopoiesis and lactogenesis we disrupted this gene in mice by gene targeting.
Stat5a-deficient mice developed normally and were indistinguishable from hemizygous and wild-type
littermates in size, weight, and fertility, However, mammary lobuloalveolar outgrowth during pregnancy was
' curtailed, and females failed to lactate after parturition because of a failure of terminal differentiation,
40 42.% ¢ Although Stat5b has a 96% similarity with Stat5a and a superimposable expression pattern during mammary
SNP posi on (Mb) gland development it failed to counterbalance for the absence of Stat5a. These results document that Stat5a is
the principal and an obligate mediator of mammopoietic and lactogenic signaling.

STATSA STATSB



GWAS with sequence

Causative mutations detected

Imputed sequence variants often more significant
than original 650K

However even with accurate imputation, causative
mutation not always most significant -> sampling
error

Use additional information, multi-traits, multi-
breeds, biological information?



GWAS Software

Software

SNPSnappy

GCTA

Emmax

matrix

G matrix

Weights

Genotype
probabilities

Reference

Meyer K,
Tier B.
Genetics
2012;190:2
75-277.
Yang J Am J

Hum Genet.
2011
7,;88:76-82.
Kang HM
Nat Genet.
2010;42:34
8-354




Validation, validation, validation

e Must validate significant associations in
independent population
— Another breed?
- Remove false positives

e Design of genome wide association study is
discovery + validation

e Make validation set large, limit number of
markers to test

- QTL effects likely to be small

— Avoid over-estimation of QTL effect due to multiple
testing



GWAS take home points

e Large data sets needed, QTL explain 1%
of variance for many traits

e Multi-breed to break down LD

e Any population structure results in
spurious associations

e With SNP arrays

— Power depends on extent of LD/marker
density and number of phenotypic records

— Knowledge of extent of LD critical
e With sequence
— Some cases direct to causal mutation
— Sampling error, inaccurate imputation
e Validation, validation, validation



Results of genome scans with dense SNP panels
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